next up previous
Next: About this document ...

Lecture 3: Introduction into second quantization.

Review of Quantum Mechanics for a finite number of particles.

Motivation for the introduction of a tensor product Hilbert space $H_0\bigoplus H_1 \bigoplus ... $ to accomodate an indefinite number of particles.

Second quantization as a new notation for old concepts.

$
\{ \alpha _1 ...\alpha _N \left. {} \right\rangle = a_{\alpha _1 }^\dag ...a_{\alpha _N }^\dag\left\vert 0 \right\rangle      (F)
\\
$

$
\{ \alpha _1 ...\alpha _N \left. {} \right\rangle = \prod\limits_\lambda {\fr...
...a _1 }^\dag ...a_{\alpha _N }^\dag\left\vert 0 \right\rangle      (B) \\
$

$
a_{\alpha _{} }^\dag\{ \alpha _1 ...\alpha _N \left. {} \right\rangle = \{ \alpha \alpha _1 ...\alpha _N \left. {} \right\rangle   (F) \\
$

$
{\rm if}   \{ \alpha _1 ...\alpha _N \left. {} \right\rangle _U \equiv a_{\alpha _1 }^\dag ...a_{\alpha _N }^\dag\left\vert 0 \right\rangle    (B) \\
$

$
a_{\alpha _{} }^\dag\{ \alpha _1 ...\alpha _N \left. {} \right\rangle _U = \s...
... \{ \alpha \alpha _1 ...\alpha _N \left. {} \right\rangle _U     (B) \\
$

$
\{ \alpha _1 ...\alpha _N \left. {} \right\rangle = \sum\limits_p {} \frac{si...
...pha _1 } \right\rangle ...\left\vert {\alpha _N } \right\rangle    (F) \\
$

$
\{ \alpha _1 ...\alpha _N \left. {} \right\rangle = \sum\limits_p {} \frac{1}...
...pha _1 } \right\rangle ...\left\vert {\alpha _N } \right\rangle    (B) \\
$

changes of basis $ Q_\beta ^\dag = \sum\limits_\alpha {}
a_{\alpha _{} }^\dag\left\langle {\alpha \vert\beta }
\right\rangle $

Second quantized notation for matrix elements of one and two body operators

$
T = \sum\limits_{\alpha \beta } {} \left\langle {\alpha \vert T\vert\beta } \right\rangle a_{\alpha _{} }^\dag a_\beta ;   T = \sum\limits_i {} T(i) \\
$

$
V = \frac{1}{2}\sum\limits_{\alpha \beta \gamma \delta } {} \left\langle {\al...
...\beta _{} }^\dag a_\delta a_\gamma ;   V = \sum\limits_{i < j} {} T(ij) \\
$





Gabi & 2001-09-19