From fran@physics.rutgers.edu Thu Oct 26 17:47:08 2000
Date: Thu, 26 Oct 2000 13:10:06 -0400 (EDT)
From: Fran Delucia
To: fran@physics.rutgers.edu, kotliar@physics.rutgers.edu
Subject: file
Gabi:
Here is the hint for problem set 3
fran
\documentstyle[12pt]{article}
\begin{document}
\begin{center}
{\bf Problem Set 3}
\end{center}
$H_{o} = \sum\limits_{k} \varepsilon\limits_{k} c^{\dagger}_{k \sigma} c_{k \sigma}$
\bigskip
$N = \sum\limits_{k} c_{k \sigma}^{\dagger} c_{k \sigma}$
\bigskip
$\mid \psi_{o} \rangle = \prod\limits_{k < k _{F}} c_{k \uparrow}^{\dagger} c_{k \downarrow}^{\dagger} \mid o \rangle$
\bigskip
$\rho_{q} \equiv \sum\limits_{k \sigma} \ \ c_{t g \sigma}^{\dagger} c_{k \sigma}$
\bigskip
$\Delta_{q} \equiv \sum\limits_{k} c_{-ktq \sigma \uparrow}^{\dagger} c_{k \downarrow}^{\dagger}$
\bigskip
a) zero temperature.\\
Calculate the Fourrier transform of
$G_{\rho}(t,q) G_{p}(t,q)$ in time.\\
\bigskip
$G_{\rho}(t,q) = \langle T(\rho_{q}(t) \rho_{-q}(0)) \rangle$
\bigskip
$G_{p}(t,q) = \langle T(\Delta_{q}(t)\Delta_{+q}(o))\rangle$
\bigskip
in 3 dimensions and in 2 dimensions.
\bigskip
b) Finite temperature - if $\tau$ is the imaginary time it is convenient to use Fourrier series. $G_{\rho}(i \nu_{n},g)= \int_{o}^{\beta} e^{i \nu_{n}\tau} G_{\rho}(\tau,_{t}^{o})d \tau$
$G_{p}(i \nu_{n},q) = \int_{o}^{\beta} e^{i \nu_{n}} \tau G_{p}(\tau,_{t}^{o}) d \tau$
\bigskip
\underline{Evaluate them} in 3 and 2 dimensions.
Now G$_{g}$ and G$_{p}$ are defined by
\smallskip
$G_{\rho}(\tau,q)$ $= tr e^{-\beta(H_{o} -\mu N)}$ $\rho_{t}
^{o}(\rho_{q}(o))$
\smallskip
$G_{p}(\tau, q) = t_{r}$ $e^{-\beta(H_{o} -\mu N)}$ $\Delta_{q}(\rho) \Delta_{t q}(o)$
\bigskip
c) What happens in 1 dimension?
\newpage
Hints to solve problem set 3\\
Define $\rho_{g} (t, t^{o}) = -i \ \ \langle T (\rho q (t) \rho t q^{t} (o)) \rangle$\\
$\rho_{\Delta}(t, q) = -i \ \ \langle (\Delta_{q} (t) \ \Delta_{t}^{t} (o) \rangle)$
\smallskip
$\rho_{q}^{(t)} = \sum\limit_{k} c_{-k q \uparrow} c_{k \downarrow}$
\bigskip
a) Use Wick's theorem to express $\rho_{g} (t,q)$ and $\rho_{\Delta}(t,q)$ in terms of\\
$-i \langle T (c_{k}(t) c_{k}^{t} (o)) \rangle = G(kt)$
\bigskip
b) Compute G(k,w) = $\int_{\infty}^{\infty} e^{iwt} G(k,t) dt$ - show it as given by\\
$G(k,w) = \frac{1}{iw - \varepsilon_{k} ti \rho sign (\mid k \mid-k_{F})}$ $\rho \rangle 0$
\bigskip
c) Combine (a) + (b) and use the fact that the Fourrier transfer of the product is the solution of the Fourrier transfer to show that
$\rho_{g} (w,q) = \int_{-\infty}^{\infty} dt e^{iwt} \rho_{g} (t,q)$\\
$\rho_{\Delta} (w,q) = \int_{-\infty}^{\infty}dt e^{iwt} \rho{\Delta} (t,q)$\\
are given Bg expressions line\\
$\rho_{g} (w,q) ~ -i \int dw' \sum_{k} G(w'tw, ke) G (w',k)$\\
$\rho_{\Delta} (w,q) ~ -i \int dw' \sum_{k} G(-w'tw, ktq) G(w',k)$\\
\bigskip
d) Now carry out the frequency integral using the residue theorem. Get expressions of the fermi\\
\bigskip
$\rho_{g}(w,q) ~ \sum_{k} \frac{[f(\varepsilon_{ktq}) - f(\varepsilon_{k})]}{\varepsilon_{ktq} - \varepsilon_{k} -U - i \sigma} \ \ w > o$\\
$\rho_{\Delta}(w,q) ~ \sum_{k} \frac{[f(\varepsilon_{ktq}) - f(\varepsilon_{k})]}{\varepsilon_{ktq} + \varepsilon_{k} - w -i \sigma} w > o
$f(\eplison_{k}) = {1 lf k