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Strong Lens Modeling (III):
Advanced Techniques

Chuck Keeton

Rutgers, the State University of New Jersey
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Goals

point sources + parametric lens models

I composite models

I astrophysical priors

I substructure

I statistical techniques

extended sources

free-form lens models
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Case studies

What can you do with advanced analyses of point sources and
parametric lens models?

Q0957+561

I sophisticated composite models

I use of astrophysical priors

I MCMC

HE 0435−1223

I substructure

I statistical methods

I nested sampling

(work led by Ross Fadely)
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Q0957+561

Fadely et al. 2010ApJ...711..246F

Figure: (Left) Central 30′′ of combined HST F606W and F814W
images. (Right) Close-up of the strong lensing region, after the main
lensing galaxy and quasar images have been subtracted.
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Lensed features

E

N
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0.02 0.04 0.06Figure: Sets of multiple images — all told, 30 images of 14 sources.
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Properties of main lens galaxy

Figure: Ellipticity and position angle of galaxy isophotes.
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Components of mass model

Stellar component: observed light distribution

I stellar mass-to-light ratio Υ

Dark matter halo: NFW or softened power law

I normalization

I scale radius

I ellipticity and position angle

Environment: cluster surrounding main lens galaxy

φenv(r, θ) =
κc
2
r2 +

γ

2
r2 cos 2(θ − θγ)

+
σ

4
r3 cos(θ − θσ) +

δ

6
r3 cos 3(θ − θδ) + . . .

I shear (γ, θγ), higher-order terms (σ, θσ, δ, θδ)

I mass sheet κc constrained with separate weak lensing analysis
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Searching parameter space

Full set of parameters:

I 11 mass model parameters — searched explicitly (MCMC)

I 28 source position parameters — optimized analytically

I H0 from time delay
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Basic results

Softened power law halo with isothermal profile (α = 1)
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Basic results

Softened power law halo with steeper profile (α = 0.5)
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Basic results

Softened power law halo with shallower profile (α = 1.5)
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Basic results

NFW halo
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Density profile

Deflection curve, α(r) ∝M(r)/r — 2-d analog of rotation curve

Trade-off between stars and dark matter changes density profile

Rising deflection curve ⇒ density profile shallower than isothermal.
Due to massive cluster around lens?
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Additional information – priors

Stellar mass-to-light ratio is not totally unknown.

Can predict it using Stellar Population Synthesis (SPS) models.

I generate a population of stars at some time

I stellar evolution models → predict how pop’n evolves

I stellar atmospheres → predict spectrum as a function of time

I include star formation history → predict galaxy spectrum

e.g., Bruzual & Charlot 2003MNRAS.344.1000B; Maraston et al.
2009MNRAS.394L.107M; Conroy et al. 2009ApJ...699..486C

Fit SPS models to observed galaxy colors, constrain Υ.

Note: analysis depends on H0 through time vs. redshift.
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Combined constraints on H0

SPS constraints → H0 = 79.3+6.7
−8.5 km s−1 Mpc−1 (68% CL)



Q0957

Data

Model

Basic results

Priors: SPS

Priors: H0

HE0435

Statistics

Smooth models

Few-clump models

Pop’n models

Extended Sources

Linear mapping

Lensing operator

Regularization

Reconstruction

Examples

Free-form Models

Multipole

Multipole/Taylor

Mass pixels

Other

Priors on H0

Instead of trying to recover H0, we could place priors from
independent measurements.

Distance ladder (Riess et al. 2009ApJ...699..539R):

H0 = 74.2± 3.6 km s−1 Mpc−1

WMAP5+SNe+BAO (Komatsu et al. 2009ApJS..180..330K):

H0 = 70.5± 1.3 km s−1 Mpc−1
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Stellar mass-to-light ratio

From lensing, using priors on H0:

Υ = 5.5+0.9
−0.5 (distance ladder priors)

Υ = 5.5+0.2
−0.3 (WMAP5+SNe+BAO priors)

SPS models:
Υ = 5.9± 1.9

Use lensing to constrain stellar populations?!
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HE 0435−1223
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Constraints

I HST positions, σ = 3–5 mas

I optical/IR fluxes, σ ∼ 5%

I (time delays, σ = 0.8 d)

(Fadely & CRK 2011AJ....141..101F, 2012MNRAS.419..936F)
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Statistics: Comparing models

Bayesian evidence allows objective model comparison, even with
different numbers of parameters.

Z(M) =

∫
L(d|q,M) P (q,M) dq

Compare two models via Z2/Z1 or log10(Z2/Z1) = ∆ log10(Z).

Jeffreys (1961) scale:

∆ log10(Z) Significance
0–0.5 Barely worth mentioning

0.5–1.0 Substantial
1.0–1.5 Strong
1.5–2.0 Very strong
> 2.0 Decisive
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HE0435: Smooth mass models

parameters

I main galaxy: mass, position, e/PA, core radius, profile (7)

I neighbor galaxy: mass, position, e/PA (5)

I rest of environment: shear/PA (2)

I source: position, flux (3)

data

I images: positions, fluxes (12)

I main galaxy: position (2)

I neighbor galaxy: position (2)
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HE0435: Smooth mass models

16 constraints, 17 parameters — but best χ2 = 24.6 (!)
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HE0435: Smooth mass models

16 constraints, 17 parameters — but best χ2 = 24.6 (!)
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With mass clump(s)

Add one clump near image A.
Add three clumps near images A, B, D.
Clumps are truncated isothermal spheres.
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Position of clump A

95% confidence limits

I dotted: M < 106M�
I dashed: M < 107M�
I solid: M < 108M�
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Posterior parameter constraints

68% and 95% confidence intervals

I solid: smooth model

I dashed: + clump A
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Statistical significance of clump(s)

Use nested sampling to compute Bayesian evidence and compare
different models.

model ∆ log10(Z)
smooth ≡ 0
clump A 3.83± 0.12
clumps AD 3.90± 0.13
clumps AB 4.46± 0.12
clumps ABD 4.35± 0.13

Decisive evidence for a clump near image A.

log10(MA
ein) = 7.65+0.87

−0.84 log10(MA
tot) = 9.31+0.44

−0.42

Intriguing evidence for a second clump near image B.

log10(MB
ein) = 6.55+1.01

−1.51 log10(MB
tot) = 8.76+0.50

−0.77
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Full population of clumps

It seems unlikely that the lens galaxy contains one or two clumps
that are (almost) perfectly aligned with the quasar images.

More likely: they are “special” representatives of a larger pop’n.

Try to constrain the population directly

I assume truncated isothermal spheres with mass function

dN

dm
∝ m−1.9, m ∈ 107–1010M�

I see whether models make sense, constrain κs = Σs/Σcrit
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Statistical inference

Parameters

I q = smooth model

I s = substructure population (abundance, mass function, etc.)

I c = individual clumps (position, mass, etc.)

Most interested in marginalized posterior for substructure
population parameters:

P (s) ∝
∫
L(c, q) P (c|s) P (s, q) dc dq
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Monte Carlo techniques

Need to evaluate

P (s) ∝
∫
L(c, q) P (c|s) P (s, q) dc dq

We can’t do the c integral explicitly!

Use Monte Carlo integration: let cj be a realization of the clump
population, drawn from P (c|s). Then

P (s) ∝
∑

j

∫
L(cj , q) P (s, q) dq
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Marginalizing vs. optimizing

P (s) ∝
∑

j

∫
L(cj , q) P (s, q) dq

For each cj , what do we do with q?

I Marginalize = do the integral, find the area

I Optimize = just find the peak

They are not necessarily equivalent!

q

LHqL
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Marginalizing vs. optimizing

Each point is one realization of clump pop’n; Lpeak = e−χ
2/2
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Marginalizing vs. optimizing

Each point is one realization of clump pop’n; Lpeak = e−χ
2/2
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Marginalizing vs. optimizing

Each point is one realization of clump pop’n; Lpeak = e−χ
2/2
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Results

Recall: dN/dm ∝ m−1.9 for m ∈ 107–1010M�

⇒ fsub > 0.00077 at Einstein radius
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Extended source lenses: Arcs and rings

Figure: Arcs and rings from SLACS (http://www.slacs.org).
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Source reconstruction

Figure: Example of source reconstruction in a SLACS lens (Bolton et
al. 2008ApJ...682..964B)
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Source reconstruction

Figure: Example of source reconstruction in a SLACS lens (Bolton et
al. 2008ApJ...682..964B)
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Lensing conserves surface brightness

!"#$%&'(#)%& *+,-.%&'(#)%&

d = Ls
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“Unfold” 2-d image into vector
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Constructing the lensing operator

!"
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Constructing the lensing operator

!"
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Constructing the lensing operator

!"
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Constructing the lensing operator

!"
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Pixelated sources

pure surface brightness map:

d = L0 s

with PSF:
d = Ls where L = BL0
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goodness of fit:

χ2
img = (Ls− dobs)t S−1

d (Ls− dobs)

in general, more parameters than constraints, so a large family of
solutions

many of the solutions may be unphysical (e.g., lots of negative
flux) or merely implausible (e.g., spikes or weird shapes)
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Regularization

goal: penalize models that are unrealistic

I penalize spikes

χ2
reg ∼

∑
s2j = st s

I penalize large gradients: finite differencing → v = Hvs so

χ2
reg ∼ vtv ∼ stHt

vHv s

I penalize large curvature: again finite differencing →

χ2
reg ∼ stHt

aHa s

all told, use penalty function of the form

χ2
reg ∼ stHtHs
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with quadratic regularization, full χ2 is

χ2 = (Ls− dobs)t S−1
d (Ls− dobs) + λs s

tHtHs

where λs controls the strength of the regularization:

I low λ→ more emphasis on fit quality

I high λ→ more emphasis on regularization

optimal source found analytically — solve ∇sχ
2 = 0 or

(Lt S−1
d L + λsH

tH) s = Lt S−1
d dobs

(Warren & Dye 2003; Dye & Warren 2005; Treu & Koopmans 2004; Koopmans 2005; Suyu et al. 2006; Vegetti & Koopmans

2009; coming “soon” to lensmodel)



Q0957

Data

Model

Basic results

Priors: SPS

Priors: H0

HE0435

Statistics

Smooth models

Few-clump models

Pop’n models

Extended Sources

Linear mapping

Lensing operator

Regularization

Reconstruction

Examples

Free-form Models

Multipole

Multipole/Taylor

Mass pixels

Other

Test case

Suyu et al. 2006MNRAS.371..983S
988 S. H. Suyu et al.

Figure 1. Left-hand panel: the simulated Gaussian sources with peak intensities of 1.0 and FWHM of 0.05 arcsec, shown with the astroid caustic curve of the

SIE potential. Right-hand panel: the simulated image of the Gaussian sources (after convolution with Gaussian PSF and addition of noise, as described in the

text). The solid line is the critical curve of the SIE potential, and the dotted lines mark the annular region where the source grid maps using the mapping matrix

f .

annulus correspond to the non-empty rows of the f matrix. The

annular region thus marks the set of data that will be used for the

source inversion process.

With the f matrix and the data of simulated image intensities in

the annulus, we can construct matrix F and vector D using equations

(9) and (10)4 for the unregularized inversion (the most likely source

intensity, in Bayesian language). We use UMFPACK5 for sparse matrix

inversions and determinant calculations. We compute the inverse of

the matrix F and apply equation (8) to get the most likely source

intensity. Using UMFPACK, the computation time for the inversion of

F, a 900 × 900 matrix in this example is only ∼20 s on a 3.6-GHz

CPU. Setting λ = 0 (implicit in A) in equation (24), we obtain the

covariance matrix of the inverted source intensity and hence the 1σ

error and the signal-to-noise ratio.

The top row of Fig. 2 shows the unregularized inverted source

intensity in the left-hand panel, the 1σ error of the intensity in the

middle panel and the signal-to-noise ratio in the right-hand panel.

The unregularized inverted source intensity is smoother inside than

outside the caustic curve because the source pixels within the caustic

have additional constraints due to higher image multiplicities. The

higher image multiplicities also explain the lower magnitude of the

1σ error inside the caustic curve. Despite the noisy reconstruction

especially outside the caustic curve, the two Gaussian sources have

significant signal-to-noise ratio in the right-hand panel. These results

agree with fig. 2 in Warren & Dye (2003).

The bottom row of Fig. 2 shows the simulated data in the left-hand

panel (from Fig. 1 for comparison purposes), the reconstructed data

(from the most likely inverted source in the top left-hand panel and

the f matrix) in the middle panel and the residual (the difference

between the simulated and reconstructed data) in the right-hand

panel. The annular region containing the data used for inversion is

marked by dotted lines in the reconstructed and residual images.

Visual inspection of the residual image shows that pixels inside the

annulus are slightly less noisy than those outside. This is due to

4The summations associated with the matrix multiplications in equations (9)

and (10) are now summed over the pixels in the annulus instead of all the

pixels on the image plane.
5A sparse matrix package developed by Timothy A. Davis, University of

Florida.

over-fitting with the unregularized inversion. As we will see in the

next section, Occam’s razor that is incorporated in the Bayesian

analysis will penalize such overly powerful models.

3.2.3 Most probable inverted source

Having obtained the most likely inverted source, we can calculate

the most probable source of a given form of regularization with a

given value of the regularization constant λ using equation (13).

In the remainder of this section, we focus on the three forms of

regularization (zeroth-order, gradient and curvature) discussed in

Appendix A. For each form of regularization, we numerically solve

equation (20) for the optimal value of regularization constant λ using

equation (13) for the values of sMP. Table 1 shows the optimal regu-

larization constant, λ̂, for each of the three forms of regularization.

The table also includes the value of the evidence in equation (19)

evaluated at λ̂, which is needed for ranking the different forms of

regularization in the next section.

Fig. 3 verifies the optimization results for the gradient form of

regularization. The evidence in dot–dashed lines (rescaled) is in-

deed a sharply peaked function of λ, justifying the delta-function

approximation; the optimal regularization constant λ̂ = 34.2 (listed

in Table 1) is marked by the crossing point of the dashed and dotted

lines, demonstrating the balance between goodness of fit and sim-

plicity of model that maximizing the evidence achieves. The plots

of equations (20) and (19) for zeroth-order and curvature regular-

izations look similar to Fig. 3 and are thus not shown.

In Table 1, we constructed three reduced χ 2 using the NDF as

Nannulus, Nannulus − Ns, or Nannulus − γ , where Nannulus is the number

of data pixels used in the inversion and recall Ns is the number of

source pixels reconstructed. In each of the three forms of regular-

ization, the reduced χ 2 with NDF = Nannulus − γ is closest to 1.0,

which is the criterion commonly used to determine the goodness

of fit. This supports our interpretation of the γ , the right-hand side

of equation (20), as the number of ‘good’ parameters determined

by the data. The values of the reduced χ 2 is not strictly 1.0 be-

cause Bayesian analysis determines the optimal λ by maximizing

the evidence instead of setting the reduced χ 2 to 1.0.

For each of the three forms of regularization and its optimal regu-

larization constant listed in Table 1, we use equations (13) and (24)

to obtain the most probable source intensity and its 1σ error. Fig. 4

Journal compilation C© 2006 RAS, MNRAS. No claim to original US government works. 371, 983–998
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Figure 5. The image residual for curvature regularized source inversion with Gaussian sources. From left to right: simulated data, reconstructed data using the

corresponding most probable inverted source in Fig. 4 and the residual equalling the difference between simulated and reconstructed data. The reconstructed

data are restricted to the annulus marked by dotted lines that is mapped from the finite source grid using f . The noise in the residual image is more uniform

compared to that of the unregularized inversion in Fig. 2.

convenience for comparing to the reconstructed data. The middle

panel is the reconstructed data obtained by multiplying the corre-

sponding regularized inverted source in Fig. 4 by the f mapping

matrix [only the pixels within the annulus (dotted lines) are recon-

structed due to the finite source grid and PSF]. The right-hand panel

is the residual image, which is the difference between the simulated

and the reconstructed data. The slight difference among the recon-

structed data of the three forms of regularizations is the amount

of noise. Since the most probable inverted source gets less noisy

from zeroth-order to gradient to curvature regularization, the recon-

structed data also get less noisy in that order. The residual images

of all the three forms of regularization look almost identical and

match the input (uniform Gaussian) noise, a sign of proper source

reconstruction.

In contrast to the residual image for the unregularized case in

Fig. 2, the noise in the residual image in Fig. 5 is more uniform.

This is Occam’s razor in action – the presence of regularization pre-

vents the over-fitting to the noise within the annulus. For each form

of regularization, the value of λ̂ (Table 1) is optimal since it leads to

the residual image in Fig. 5 having the input noise, which is uniform

Gaussian noise in our example. If we over-regularize (i.e. use overly

large λ), then we expect the model to no longer fit to the data. This

is shown in Fig. 6 which was obtained using curvature regulariza-

tion with λ = 2000. The panels in the figure are displayed in the

same way as in Fig. 2. The inverted source (top left hand panel)

in Fig. 6 shows the smearing of the two Gaussian sources due to

overly minimized curvature among adjacent pixels. The resulting

residual image (bottom right-hand panel) in Fig. 6 thus shows arc

features that are not fitted by the model. However, note that the

inferred signal-to-noise ratio in the source plane is very high; mod-

els that overly regularize the source intensities give precise (with

small magnitudes for the error) but inaccurate results. Such overly

regularized models lead to low values of the evidence, which is the

quantity to consider for the goodness of reconstruction. We seek

an accurate reconstruction of the source, and a signal-to-noise ra-

tio that accurately reflects the noise in the data. The comparison

among the unregularized, optimally regularized and overly regu-

larized inversions shows the power of the Bayesian approach to

objectively determine the optimal λ̂ (of a given form of regulariza-

tion) that minimizes the residual without fitting to the noise. In the

next section, we will see how Bayesian analysis can also be used to

determine the preferred form of regularization given the selection of

regularizations.

3.2.4 Optimal form of regularization

In the previous section, we showed how Bayesian analysis allowed

us to objectively determine the optimal regularization constant for

a given form of regularization by maximizing the evidence in equa-

tion (19). In this section, we look for the optimal form of regular-

ization given the selection of regularizations.

Since there is no obvious prior on the regularization, we assume

that the prior on the regularization is flat. In this case, the different

forms of regularization is ranked by the value of P(d | f, g) in equa-

tion (23). Since the evidence P(d | f, g, λ) is sharply peaked at λ̂ (as

seen in Fig. 3), P(d | f, g) can be approximated by P(d | f, g, λ̂).

The values of the evidence P(d | f, g, λ̂) in Table 1 indicate that

the evidence for curvature regularization is ∼e43 and ∼e324 higher

than that of gradient and zeroth-order regularizations, respectively.

Therefore, curvature regularization with the highest evidence is pre-

ferred to zeroth-order and gradient for the two Gaussian sources.

In quantitative terms, curvature regularization is ∼e43 more proba-

ble than gradient regularization, which is ∼e281 more probable than

zeroth-order regularization. This agrees with our comment based on

Fig. 4 in Section 3.2.3 that visually, curvature regularization leads

to an inverted source that best matches the original source of two

Gaussians.

The values of the reduced χ2 using NDF = Nannulus − γ in Table 1

show that curvature regularization has the highest reduced χ 2 among

the three forms of regularization. The higher χ2 value means a

higher misfit due to fewer degrees of freedom (with more correlated

adjacent pixels) in curvature regularization. None the less, the misfit

is noise dominated since Fig. 5 shows uniform residual and the

reducedχ 2 is∼1.0. Therefore, the evidence optimization is selecting

the simplest model of the three regularization schemes that fits to

the data, enforcing Occam’s razor.

For general source brightness distributions, one may expect that

curvature regularization with its complex structure will always be

preferred to the simplistic gradient and zeroth-order forms of reg-

ularization. We show that this is not the case by considering the

source inversion of a box source (region of uniform intensity) and

two point sources as our next example.

Journal compilation C© 2006 RAS, MNRAS. No claim to original US government works. 371, 983–998
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RX J1131−1231

Suyu et al. arXiv:1208.6010
Cosmological constraints from time-delay lenses 11

Fig. 4.— ACS image reconstruction of the most probable model with a source grid of 64×64 pixels. Top left: observed ACS F814W
image. Top middle: predicted lensed image of the background AGN host galaxy. Top right: predicted light of the lensed AGNs and the lens
galaxies. Bottom left: predicted image from all components, which is a sum of the top-middle and top-right panels. Bottom middle: image
residual, normalized by the estimated 1σ uncertainty of each pixel. Bottom right: the reconstructed source. Our lens model reproduces
the global features of the data.

matics and lens environment information for measuring
D∆t.

7. CONSTRAINING κext

In this section, we fold in additional information on the
lens galaxy stellar kinematics and density environment to
constrain the nuisance parameter κext.

7.1. Stellar kinematics

We follow Suyu et al. (2010) and model the velocity
dispersion of the stars in the primary lens galaxy G,
highlighting the main steps. The three-dimensional mass
density distribution of the lens galaxy can be expressed
as

ρG(r) = (κext − 1)Σcritθ
γ′−1
E Dγ′−1

d

Γ(γ′

2 )

π1/2Γ(γ′−3
2 )

1

rγ′ .

(22)
Note that the projected mass of the lens galaxy en-
closed within θE is (1 − κext)ME, while the projected
mass associated with the external convergence is κextME;
the sum of the two is the Einstein mass ME that was
given in Equation (13). We employ spherical Jean’s
modeling to infer the line-of-sight velocity dispersion,
σP(π, γ′, θE, rani, κext), from ρG by assuming the Hern-
quist profile (Hernquist 1990) for the stellar distribution
(e.g., Binney & Tremaine 1987; Suyu et al. 2010).14 An

14 Suyu et al. (2010) found that Hernquist (1990) and Jaffe
(1983) stellar distribution functions led to nearly identical cosmo-

anisotropy radius of rani = 0 corresponds to pure radial
stellar orbits, while rani → ∞ corresponds to isotropic
orbits with equal radial and tangential velocity disper-
sions. We note that σP is independent of H0, but is
dependent on the other cosmological parameters (e.g.,w
and Ωde) through Σcrit and the physical scale radius of
the stellar distribution.

The likelihood for the velocity dispersion is

P (σ|π, γ′, θE, rani, κext)

=
1√

2πσ2
σ

exp

[
− (σ − σP(π, γ′, θE, rani, κext))

2

2σ2
σ

]
,(23)

where σ = 323 km s−1 and σσ = 20 km s−1 from Sec-
tion 4.3. Recall that the priors on γ′ and θE were assigned
to be uniform in the lens modeling. We also impose a
uniform prior on rani in the range of [0.5, 5]Reff for the
kinematics modeling, where the effective radius based on
the two-component Sérsic profiles in Table 1 is 1.′′85 from
the photometry.15 The uncertainty in Reff has negligible
impact on the predicted velocity dispersion. The prior
PDF for π is discussed in Section 8.1, while the PDF for
κext is described in the next section.

7.2. Lens environment

logical constraints.
15 Before unblinding, we used an effective radius of 3.′′2 based

on a single Sérsic fit. The larger Reff changes the inference of D∆t
at the < 0.5% level.
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B1938+666

Vegetti et al. 2012Natur.481..341V

Figure 1: The detection of a dark-matter dominated satellite in the gravitational lens system
B1938+666 at redshift 0.881. The data shown here are at 2.2 micron and were taken with the
W. M. Keck telescope in June 2010. Additional data sets at 1.6 micron, from the Keck tele-
scope and the Hubble Space Telescope, are presented in the Supplementary Information. Top-left
panel: the original data set with the lensing galaxy subtracted. Top-middle panel: the final re-
construction. Top-right panel: the image residuals. Bottom-left panel: the source reconstruction.
Bottom-middle panel: the potential correction from a smooth potential required by the model to
fit the data. Bottom-right panel: the resulting dimensionless projected density corrections. The
total lensing potential is defined as the sum of an analytic potential for the host galaxy plus the
local pixelized potential corrections defined on a Cartesian grid. The potential corrections are a
general correction to the analytical smooth potential and correct for the presence of substructure,
for large-scale moments in the density profile of the galaxy and shear. When the Laplace opera-
tor is applied to the potential corrections and translated into surface density corrections, the terms
related to the shear and mass sheets become zero and a constant, respectively. A strong positive
density correction is found on the top part of the lensed arc. Note that these images are set on
a arbitrary regular grid that has the origin shifted relative to the centre of the smooth lens model
by ∆x = 0.024 arcsec and ∆y = 0.089 arcsec. When this shift is taken into account the position
of the density correction is consistent with the position of the substructure found in the analytic
re-construction (see Supplementary Information).
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Free-form mass models

expand potential or mass in terms of some basis functions

φ(x) =
∑

ν

aν fν(x)

parametric vs. non-parametric?

better: over- vs. under-constrained
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Constraint equations
theory:

u = x−∇φ(x)

∆tij = t0

[
1

2

(
|xi − u|2 − |xj − u|2

)
− φ(xi) + φ(xj)

]

= t0

[
1

2

(
|xi|2 − |xj |2

)
− (xi − xj) · u− φ(xi) + φ(xj)

]

constraints from positions and time delays are linear in aν , umod,
and t−1

0 :

∑

ν

aν ∇fν(xobs
i ) + umod = xobs

i

{∑

ν

aν
[
fν(xobs

i )− fν(xobs
j )

]
+

(xobs
i − xobs

j ) · umod + t−1
0 ∆tobsij

}
=

1

2

(
|xi|2 − |xj |2

)
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Multipole models

assume isothermal profile but allow general angular structure

φgal(r, θ) = r

mmax∑

m=0

(am cosmθ + bm sinmθ)

apply to a lens with anomalous flux ratios:

(Congdon & CRK 2005; also see Evans & Witt 2003; Yoo et al. 2005, 2006)
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Multipole/Taylor models

generalize radial profile — images are often “near” Einstein radius,
so do Taylor series expansion in r − r0 (or equivalently r/r0 − 1):

φ(r, θ) =

mmax∑

m=0

nmax∑

n=0

(
r

r0
− 1

)n
(amn cosmθ + bmn sinmθ)

Trotter et al. 2000ApJ...535..671T apply to MG J0414+0534
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Pixelated mass maps

mass pixels — “pixelens” (Saha & Williams 2000, 2004, etc.)

many free parameters — need priors:

I all pixel densities must be non-negative

I density gradient must point within 45◦ of lens center

I no pixel value may exceed the average of its neighbors by
more than a factor of two (except for central pixel)

I projected density profile must be steeper than r−1/2

I if desired, mass map may be required to have inversion
symmetry

these eliminate models that are grossly unphysical, but are not
especially restrictive

I non-negative Σ does not automatically imply non-negative ρ

I no check on number of images

I shapes may still be implausible
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examples from Saha & Williams 2004AJ....127.2604S

these show average solutions; can also explore range of solutions
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other effects I have not gone into. . .

I pixelated potential corrections
(Suyu et al. 2009, 2010, 2012; Koopmans 2005; Vegetti et al. 2009, 2010, 2012)

I complicated environments
(Wong et al. 2011)

I line-of-sight effects (multi-plane lensing)
(Wong et al. 2011; Suyu et al. 2012)

Bottom line: “precision lensing” is hard work, but we are learning
how to do it!
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