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ERROR ANALYSIS
PURPOSE:

To understand terminology and concepts used in measurement.
To apply these concepts in a simple experimental situation.
To become familiar with the use of a spreadsheet.

READINGS:
Baird, 2.1 to 2.7, 2.11, and 3.1 to 3.11

APPARATUS:
Gate generator
Timer

INTRODUCTION:
For a scientist to arrive at a valid conclusion in testing a theory or hypothesis

it is necessary to understand the underlying concepts of measurement errors. In
engineering and manufacturing these same concepts are important in designing and
making quality products.

Systematic errors are those which would tend to reproduce the same incorrect
answer if the experiment were repeated using the same techniques. Instruments
can generate systematic errors by erroneous design or construction. A ruler with
a worn end or a voltmeter whose pointer has been bent are simple examples. Or,
the experimenter can introduce a certain bias. The accuracy of an experiment is
limited by systematic errors. You cannot improve the accuracy of an experiment
by repeating it a number of times and taking the average; the systematic error will
not average away.

A random error is one which tends to produce different results when an experi-
ment is repeated using the same technique. The average of a large number of such
repetitive measurements will reduce random error by averaging out the variation:
the measured value will sometimes be above the actual value and sometimes below.
Experimental precision is limited by random errors.

MATHEMATICAL DESCRIPTION OF RANDOM ERRORS
The first important concept is the average (arithmetic mean) of a number of

measurements:

x =

∑N
i=1 xi

N
(1)

This formula says: Add the N measurements x1, x2, x3, etc., up to xN . This
sum is written as

∑N
i=1. Now divide by N to get the average value of x, namely x.



8/01

FIGURE 1.

Let us plot a “histogram” to display some measurements (Fig. 1, above) (actual
data values give in Table 1, below). This histogram displays how many times a
measurement lies between 15.00 and 15.10 (once), between 15.10 and 15.20 (twice),
etc. The various intervals, e.g., the one from 15.00 to 15.10, are called “bins”. The
appearance and usefulness of a histogram is strongly influenced by the size of a
bin. It is desirable to have a large bin size in order to make the number per bin (n)
large. The fluctuations in “n” from bin to bin will then be relatively small. On the
other hand it is desirable to have the bin size small enough so as not to obscure the
shape of the variation of “n”. It is an art to picking the bin size that best displays
your experimental results. If the measurement were repeated many times and a
“histogram” plotted, but with much smaller intervals, the diagram shown in Fig.
2 (next page) might result. Note that as the number of measurements increases,
the histogram becomes smoother. With still more measurements a histogram of
data with only random errors approaches the “Gaussian” or “normal” distribution
shown in Figure 2. The Gaussian function is given by:

PG(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (2)

In this plot the vertical scale is the number of times a given value of x is measured.
The horizontal scale is the value of x expressed in units of σ, the standard deviation,
which is a measure of the spread of the measured values of x. The mathematical
expression for σ is given by:
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FIGURE 2.

σ =

√∑N
i=1(xi − x)2

N − 1
(3)

A large value for σ implies a large data spread, whereas a smaller value implies a
small spread. σ gives an estimate of the uncertainty of a single measure-
ment, xi. It can be shown that the area under the normal curve centered around
the mean between x−σ and x+σ is 68.3% of the total area under the curve. This
means that about two-thirds of the measurements, xi, fall between x−σ and x+σ
. Also, the area of the curve between x− 2σ and x + 2σ is 95.4% of the total area.
And, ±3σ covers 99.7%. Notice in the histogram is Fig. 1 that 12 out of the 21
points, or 57%, of the measurements fall in the range x−σ to x+σ. You would ex-
pect to get exactly 68.3% only if a very large number of measurements were made.
As an example of how you would use this concept, suppose we write 15.5± 0.2 m
for a single measurement, then this implies that the probability is about 68% that
the true value lies between 15.3 and 15.7.

There is a second closely related quantity – σ, the standard deviation of the mean
of the measurement of x – that is frequently confused with σ. σ gives an estimate
of the uncertainty in the measurement of the mean. Mathematically, σ is
given by:
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σ =

√√√√∑N
i=1(xi − x)2

N(N − 1)
(4)

[For simplicity some authors use N instead of N − 1 in the denominators. For
large values of N the difference is minimal.] Comparing Eq. 3 with 4, we see that

σ = σ/
√

N . Notice that σ is always larger than σ. It is also true, but perhaps
not so obvious, that no matter how large N becomes, the value of σ will not get
smaller. It will fluctuate about some value due to the random errors, but will
not get smaller. This is reasonable, since the uncertainty in any one measurement
cannot depend on how many times before you’ve made the measurement before.
σ, on the other hand, will decrease as N increases – to decrease the error in the
average, you simply make more measurements. The standard deviation σ is used
as a measure of the error (uncertainty) expected for an individual measurement. In
most science and engineering applications, you will need to calculate x, the mean,
and σ, the standard deviation of the mean.

To illustrate the procedure we will work out the average (mean) value x and the
standard deviation of the mean, σ, and the standard deviation of an individual
data point, σ, using the position measurements in the accompanying Table 1.

TABLE 1. Position Measurements

xi xi − x (xi − x)2

(m) (m) (m2)
15.68 0.15 0.0225
15.42 −0.11 0.0121
15.03 −0.50 0.2500
15.66 0.13 0.0169
15.17 −0.36 0.1296
15.89 0.36 0.1296
15.35 −0.18 0.0324
15.81 0.28 0.0784
15.62 0.09 0.0081
15.39 −0.14 0.0196
15.21 −0.32 0.1024
15.78 0.25 0.0625
15.46 −0.07 0.0049
15.12 −0.41 0.1681
15.93 0.40 0.1600
15.23 −0.30 0.0900
15.62 0.09 0.0081
15.88 0.35 0.1225
15.95 0.42 0.1764
15.37 −0.16 0.0256
15.51 −0.02 0.0004
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From the above table we can make the following calculations:

N = 21
N∑

i=1

xi = 326.08 m
N∑

i=1

(xi − x)2 = 1.61998 m2.

and then evaluate the following quantities:

x =

∑N
i=1 xi

N
=

326.08

21
= 15.53 m

σ =

√∑N
i=1(xi − x)2

N − 1
=

√
1.6201

20
= 0.28 m

σ =

√√√√∑N
i=1(xi − x)2

N(N − 1)
=

√
1.6201

21(20)
= 0.06 m.

The error or spread in individual measurements is σ = 0.28 m. But for the mean
x±σ = 15.53±0.06 m. This says the average is 15.53 m which has an error of 0.06
m. Or putting it another way, there is about a 68% probability that the true value
of x falls in the range 15.47 m to 15.59 m. In some cases the fractional error σ/x, or
relative error, is of more interest than the absolute value of σ. It is possible that
the size of σ is large while the fractional error is small. Note that increasing the
number of individual measurements on the uncertainty of the average reduces the
statistical uncertainty (random errors); this improves the “precision”. On the other
hand, more measurements do not diminish systematic error in the mean because
these are always in the same direction; the “accuracy” of the experiment is limited
by systematic errors.

In today’s experiment you will compare three data sets measuring reaction times
– two sets will be on your own reaction time and one on your partner’s. You will
determine whether the last two data sets are significantly different from the first.
In order to be clear about the purpose of the experiment, let’s go through the
reasoning for a concrete example unrelated to the experiment:

Suppose the students in a class are randomly assigned to one of three groups, each
with N students, and two groups are taught some new material using one teaching
technique, while the third group is taught the same material using a different
technique. The three groups are then given the same exam on the material. We’ll
call the average exam scores for the three groups t1, t2, and t3, and the standard
deviations of the means σ1 σ2, and σ3.

We would expect the difference to be “small” since the same the two groups
were taught the same way and we would like to attribute the difference to just
random measuring errors. On the other hand, in order to say that the two different
teaching methods produce different learning results we need to be able to say that
| t1 − t2 | is “large”. But small or large compared to what? The answer is – small
or large compared to the error in determining | t1 − t2 | (or | t1 − t3 |), which
we’ll call ∆12 (or ∆13). You calculate these errors from the standard deviations of
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the mean as follows: ∆12 =
√

σ1
2 + σ2

2 and ∆13 =
√

σ1
2 + σ3

2. If groups 1 and
2 are not different then there is a 68.3% probability that | t1 − t2 | will be less
than or equal to ∆12, a 95.4% that it will be less than/equal to 2∆12, and a 99.7%
that it will be less than/equal to 3∆12. The scientific convention is to say two
measurements are significantly (or statistically) different if they differ
by three standard deviations or more. Thus we say that groups 1 and 2 are
not significantly different provided | t1 − t2 |< 3∆12. Likewise, groups 1 and 3 are
significantly different if | t1 − t3 |≥ 3∆13. Notice that ∆13 (like σ1 and σ3) gets
smaller as N , the number of students, increases. Thus if one teaching technique
produces a large improvement in learning, you will only have to try the experiment
out on a small group of students to prove there is a significant difference. If there is
only a small difference in learning, you will have to use a very large N to determine
if the difference is significant.

PROCEDURE
In this experiment you will take two sets of data on your reaction time and

compare the two sets to see if there is a significant difference between them. Then
you will compare one set of your data with that of your partner. We will provide
you with an automatic light and timer. The light will flash on after being off for
a random time. The light starts a digital timer with 0.001 second resolution. You
stop the timer by depressing the switch as soon as you see the light. This turns off
the light. The timer will then show your reaction time – the time it takes for you
realize that the light has come on and to react by pushing the stop button. There
is a reset button to zero the display after you record the time. After a random time
(on the order of 10 seconds) the flasher once again turns on the light and starts the
clock.

1. Practice before you start taking real data. Operate in teams of two people,
with one watching the light and depressing the stop switch while the other
records the data.

2. Make 2 sets of 10 reaction time measurements. Do not record any that are
ridiculously long because you were asleep at the switch (i.e., an obvious “mis-
take”). Calculate your average reaction times, t1, t2, and the standard devia-
tions, σ1, σ2.

3. The other lab partner should now repeat the above to obtain another set of
ten measurements. Calculate t3 and σ3 of the new data.

Making Histograms in Excel Using the FREQUENCY Function

Histograms can be made using the FREQUENCY function in Ex-
cel. It has the form frequency(data array, bins array). For example,
frequency(a1:a10,b1:b20) would bin the data in a1 through a10 according to
the bins listed in bins b1 through b20. In order to enter the function, highlight the
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area where the results should be displayed, type the frequency call desired (e.g.,
frequency(a1:a10,b1:b20)), then hit Control-Shift-Enter (PC) to enter the call.
For example, the bins array might be as follows: b1 = blank, b2=5, b3=6, b4=7.
Highlight the region c1 to c4. After entering frequency, cell c1 will have the number
of values in the data array less than or equal to 5, c2 will have the number greater
than 5 and less than or equal to 6, c3 greater than 6 and less than or equal to 7,
and c4 the number greater than 7.

Significant Figures
Be sure to read section 2.11 in Baird on significant figures and quote all results

accordingly. In general, the uncertainty is quoted to only one significant figure
unless that is a 1, in which case it is sometimes quoted to two (i.e., 0.3, not 0.33, but
0.1 or 0.13 would be acceptable). The value should be quoted to the same precision
as the error, or at most one more. For example, give 2.5± 0.4 not 2.543± 0.4 and
not 2.5± 0.007, although 2.54± 0.1 or 2.54± 0.14 would be acceptable.


