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I. INTRODUCTION

In recent years understanding of the physics of strongly
correlated materials has undergone tremendous increase.
This is in part due to the advances in the theoretical treat-
ments of correlations, such as the development of dynamical
mean-field theory �DMFT�.1 This approach offers a minimal
description of the electronic structure of correlated materials,
treating both the Hubbard and the quasiparticle bands on the
same footing. It becomes exact in the limit of infinite lattice
coordination introduced in the pioneering work of Metzner
and Vollhardt.2 The great allure of DMFT is the flexibility of
the method and its adaptability to different systems as well as
the simple conceptual picture it allows us to form of the
dynamics of the system. The mean-field nature of the method
and the fact that the solution maps onto an impurity model,
many of which have been thoroughly studied in the past,
means that a great body of previous work can be brought to
bear on the solution of models of correlated lattice electrons.
This is exemplified by the great many numerical methods
that can be employed to solve the DMFT equations.

DMFT has been very successful in understanding the
mechanism of the Mott transition in model Hamiltonians. We
now understand that the various concentration-induced phase
transitions can be viewed as bifurcation of a single functional
of the Weiss field. The phase diagram of the one-band Hub-
bard model, demonstrating that there is a first-order Mott
transition at finite temperatures, is fully established.1 Further-
more Landau-like analysis demonstrates that all the qualita-
tive features are quite generic at high temperatures.3 How-
ever, the low-temperature ordered phases and the
quantitative aspects of the spectra of specific materials
clearly require realistic treatment.

This triggered realistic development of DMFT in the last
decade which has now reached the stage that we can start
tackling real materials from an almost ab initio approach,4,5

something which in the past has been exclusively in the do-
main of density functional theories. We are now starting to

see the merger of DMFT and such ab initio techniques and
consequently the opportunities for doing real electronic
structure calculations for strongly correlated materials which
so far were not within the reach of traditional density func-
tional theories.

Density functional theory6 �DFT� is the canonical ex-
ample of the ab initio approach, very successful in predicting
ground-state properties of many systems which are less cor-
related, for example the elemental metals and semiconduc-
tors. However, it fails in more correlated materials. It is un-
able to predict that any system is a Mott insulator in the
absence of magnetic order. It is also not able to describe
correctly a strongly correlated metallic state. As a matter of
principle DFT is a theory of the ground state. Its Kohn-Sham
spectra cannot be rigorously identified with the excitation
spectra of the system. In weakly correlated substances the
Kohn-Sham spectra is a good approximation to start a per-
turbative treatment of the one-electron spectra using the GW
method.7 However, this approach breaks down in strongly
correlated situations, because it is unable to produce Hub-
bard bands. In orbitally ordered situations the local density
approximation �LDA�+U method8 produces the Hubbard
bands; however, this method fails to produce quasiparticle
bands and hence it is unable to describe strongly correlated
metals. Furthermore, once long-range order is lost the
LDA+U method reduces to the LDA and hence it becomes
inappropriate even for Mott insulators.

Dynamical mean-field theory is the simplest theory that is
able to describe on the same footing total energies and the
spectra of correlated electrons even when it contains both
quasiparticle and Hubbard bands. Combined with the LDA,
one then has a theory which reduces to a successful method
�LDA� in the weak-correlation limit. In the static limit, one
can show9 that LDA+U can be viewed as a static limit of the
LDA+DMFT used in conjunction with the Hartree-Fock ap-
proximation. Therefore the LDA+U is equivalent to the
LDA+DMFT+further approximations which are only justi-
fied in static ordered situations. Up to now, the realistic LDA
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band structure was considered with DMFT for the purpose of
computing one-electron �photoemission� spectra and total
energies.

Following Refs. 1, 4, and 5 in this paper we extend this
approach to computation of transport properties. Many trans-
port studies within DMFT applied to model Hamiltonians
have been carried out, and the strengths �nonperturbative
character� and limitations �absence of vertex corrections� are
well understood. However, applications to real materials re-
quire realistic computations of current matrix elements.

There are two ways in which the DMFT can be used to
understand the physics of real materials. The simplest ap-
proach, outlined in Refs. 1 and 4, is closely tied to the idea of
model Hamiltonians. This requires �i� methodology for de-
riving the hopping parameters and the interaction constants,
�ii� a technique for solving the dynamical mean-field equa-
tions, and �iii� an algorithm for evaluating the transport func-
tion which enters in the equations of transport coefficients.
The second direction is more ambitious and focus on an
integration of �i� and �ii� using functional formulations.10

In this paper we follow the first approach. The emphasis
here is in illustration of different aspects of the modeling
which affect the final answer. This is necessary to obtain a
balanced approach toward material calculations. There are
now many impurity solvers; they differ in their accuracy and
computational cost. In the present paper we use two impurity
solvers, the Hirsch-Fye quantum Monte Carlo �QMC�
method11 and the symmetrized finite-U non-crossing
approximation12 �SUNCA� method comparing them in the
context of simplified models without the additional compli-
cations of real materials. To calculate the transport properties
we use the SUNCA method as an impurity solver and
La1−xSrxTiO3 as an example material.13 For other reviews of
realistic implementations of DMFT and electronic structure
see Ref. 14.

In the next section we briefly review basic dynamical
mean-field theory concepts and their application to realistic
structure calculations. The theory of the transport calcula-
tions is given in Sec. III. The test system used for transport
calculations, which is doped LaTiO3 ceramics, and the
DMFT results are described in Sec. IV. The results of dc
transport calculations are presented in Sec. V. And finally we
come to conclusions in Sec. VI.

II. DYNAMICAL MEAN-FIELD THEORY

A. Realistic DMFT formalism

A central concept in electronic structure theory is the
f-model Hamiltonian. Conceptually, one starts from the full
many-body problem containing all electrons and then pro-
ceeds to eliminate some high-energy degrees of freedom.
The result is a Hamiltonian containing only a few bands. The
determination of the model Hamiltonian is a difficult prob-
lem in itself, which has received significant attention.15–21

The Kohn-Sham Hamiltonian is a good starting point for the
kinetic part of the Hamiltonian and can be conveniently ex-
pressed in a basis of linear muffin-tin orbitals �LMTO’s�,22

which need not be orthogonal �see Appendix A�, as

HLDA = �
im,jm�,�

��im�im,jm� + tim,jm��cim�
† cjm��, �1�

where i , j are atomic site indices, m is the orbital one, and �
denotes spin.

It is well known that the LDA severely underestimates
strong electron interactions between localized d and f elec-
trons because the exchange interaction is taken into account
only approximately via the functional of electron density. To
correct this situation, the LDA Hamiltonian can be supple-
mented with a Coulomb interaction term between electrons
in the localized orbitals �here we will call them a heavy set of
orbitals�. The largest contribution comes from the Coulomb
repulsion between electrons on the same lattice site which
we will approximate by the interaction matrix Ui of the
heavy shell �h� of atom i as

Hint =
1

2 �
i���

U���
i ni�ni��,

where the index �= �m ,�� combines the orbital and spin in-
dices.

The LDA Hamiltonian already contains a part of the local
interaction which has to be subtracted to avoid double count-
ing. The full Hamiltonian is thus approximated by

H = HLDA − Hdc + Hint = H0 + Hint, �2�

where H0 is the one-particle part of the Hamiltonian, which
will play the role of the kinetic term within a DMFT ap-
proach. The double-counting correction cannot be rigorously
derived within the LDA+DMFT. Instead, it is commonly
assumed to have a simple static Hartree-Fock form, just
shifting the energies of the heavy set,

Hdc�m,��m��k� = ��m,��m����h
Edc. �3�

Here, � is the atomic index in the elementary unit cell; �h
runs over atoms with correlated orbitals. The simplest ap-
proximation commonly used for Edc is4,8

Edc = U�nh − 1
2� , �4�

where nh=�m�nm� is the total number of electrons in the
heavy shell �see Appendix A�.

The main postulate of the DMFT formalism is that the
self-energy is local, i.e., it does not depend on momentum,
��k ,	�=��	�. This postulate can be shown to be exact in
the limit of infinite dimensions provided that the hopping
parameters between different sites are scaled appropriately.
Within this approach, the original lattice problem can be
mapped onto an Anderson impurity model where the local
Green’s function and the self-energy, Gloc and �, are identi-
fied with the corresponding functions for the impurity model,
i.e.,

�imp�	� = ��	� and Gimp�	� = Gloc�	� . �5�

Equations �5� along with the trivial identity
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Gloc�	� = �
k

G�k,	� �6�

constitute a closed set of self-consistent equations �here and
everywhere in the text the normalization over the number of
lattice points is assumed�. The only thing that remains is to
solve the Anderson impurity model.

Notice that the statement that the self-energy is local is a
basis-dependent statement and if ��i	n� is momentum inde-
pendent in one basis and Uk is a unitary transformation from
one basis to another, and the LMTO Hamiltonian, HLDA in
the new basis is given by UkHLDAUk

†, then the self-energy in
the new basis ��=Uk��i	n�Uk

† is momentum dependent.
Therefore DMFT approximation, if valid at all, is valid in
one basis.23 Hence, we will work in a very localized basis
where the DMFT approximation is most justified.

So we assume that the self-energy is local and nonzero
only in the block of heavy orbitals. Therefore it is convenient
to partition the Hamiltonian and the Green’s function into the
light and heavy sets �denoted by l and h, respectively� as

G�k,	� = ��	 + 
��Ohh Ohl

Olh Oll
�

k
− �Hhh

0 Hhl
0

Hlh
0 Hll

0 �
k

− ��hh�	� 0

0 0
��−1

, �7�

where �¯	−1 means matrix inversion, 
 is the chemical po-
tential, and O is the overlap matrix �see Appendix B�.

In DMFT we construct the self-energy � as a solution of
the Anderson impurity model with a noninteracting propaga-
tor �Weiss function� G0,

Simp = �
���,���

c�
†���G0���

−1 ��,���c������

+ �
����h

U���

2
n����n����� , �8�

where � and �� are running over indices m�. The Weiss
function can be linked to the lattice quantities since the local
Green’s function and self-energy are related to each other by
the Dyson equation

Gloc�i	n�−1 = G0�i	n�−1 − ��i	n� . �9�

Combining Eqs. �6�, �7�, and �9� we finally obtain

G0
−1�i	n� = ��

k

1

�i	n + 
�Ok − Hk
0 − ��i	n��−1

+ ��i	n� .

�10�

One can solve the very general impurity model defined by
the action �8� and Weiss field �10�. But it is much cheaper to
eliminate the light �weakly interacting� bands and define an
effective action in the subspace of heavy bands only. In this
way, the local problem can be substantially simplified. The
procedures of light band elimination and restoration are
called downfolding and upfolding, respectively. Their de-
tailed description can be found elsewhere.24

To solve the set of DMFT equations, a method to solve
the local problem is required. In the following, we will focus
our attention on two impurity solvers: QMC,1,25 and
SUNCA.12

Below, we summarize the basic steps in the DMFT self-
consistent scheme that delivers the local self-energy—a cru-
cial quantity to calculate the transport and optical properties
of a solid.

Usually one starts the iteration by a guess for the Weiss
field G0

−1 from which the local Green’s function Gloc is cal-
culated by one of the impurity solvers. The self-energy is
then obtained by the use of the Dyson equation

Ghh
−1 = G0hh

−1 − � . �11�

Momentum summation over the Brillouin zone, also
called the DMFT self-consistency condition,

Ghh = �
k

��	 + 
�Oef f�k� − Hef f�k� − �	−1, �12�

delivers a new guess for the local Green’s function and
through the Dyson equation also for the Weiss field G0

−1:

G0hh = ��	 + 
� − �	−1, �13�

where the hybridization function � behaves regularly at in-
finity.

The iteration is continued until convergence is found to
the desired level. The scheme can be illustrated by the fol-
lowing flowchart:

G0
−1 →

Imp solver

G→
DE

� →
DMFT SCC

G0
−1,

where DE stands for the Dyson equation and DMFT SCC
means the DMFT self-consistent condition.

The QMC impurity solver is defined in imaginary time �;
therefore the following additional Fourier transformations
between imaginary time and Matsubara frequency points are
necessary:

G0�i	�→
IFT

G0��� →
QMC

G���→
FT

G�i	� .

Here FT and IFT are the direct Fourier and inverse Fourier
transformations, respectively. Since the QMC method pro-
duces results in complex time �G��m� with �m=m��,
m=1, . . . ,L	 and the DMFT self-consistency equations make
use of the frequency-dependent Green’s functions and self-
energies, we must have an accurate method to compute Fou-
rier transforms from the time to the frequency domain. This
is done by representing the functions in the time domain by
cubic splined functions which should go through the original
points with the condition of continuous second derivatives
imposed. Once we know the cubic spline coefficients we can
compute the Fourier transformation of the splined functions
analytically �see Appendixes C and D�. After the self-
consistency is reached, the analytic continuation is required
to obtain the real-frequency self-energy. This issue is ad-
dressed in Sec. II B. Let us notice here that for simplicity in
our QMC calculations we used the orthogonal basis. The
nonorthogonal implementation can be found in Ref. 26.
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The SUNCA method is implemented on the real fre-
quency axis to avoid the ill-posed problem of analytic con-
tinuation. Furthermore, the SUNCA method can be applied
to an arbitrary multiband degenerate Anderson impurity
model with no additional numerical cost. This is an impor-
tant advantage compared to some other methods like quan-
tum Monte Carlo or exact diagonalization. The method is
especially relevant for systems with large orbital degeneracy
such as systems with f electrons.

As an input, it requires the bath spectral function
Ac�	�=−�1/��Im G0

−1�	� and delivers the local spectral
function Ad�	�=−�1/��Im G�	�:

Ac�	� →
SUNCA

A�	�→
KK

G�	� .

The real part of the local Green’s function is obtained by the
use of the Kramers-Kronig �KK� relation.

It is well known that all methods have drawbacks. The
pathologies that severely limit the usefulness of the non-
crossing approximation in the context of DMFT are greatly
reduced with inclusion of ladder-type vertex corrections in
the SUNCA. Nevertheless, they do not completely remove
the spurious peak that forms at temperatures substantially
below the Kondo temperature. To overcome this shortcom-
ing, we employed an approximate scheme to smoothly con-
tinue the solution down to zero temperature. This is possible
because at the breakdown temperature the solution of the
SUNCA equations shows the onset of a Fermi-liquid state.
As we will show in the subsequent sections, by comparison
with the QMC method, the SUNCA gives the correct quasi-
particle renormalization amplitude Z and the real part of the
self-energy at zero frequency approaches the Luttinger value.
The imaginary part of the self-energy, however, has a narrow
spurious dip on top of the parabola that is formed around
zero frequency at temperatures substantially below Tk �for
T
0.05D in the case of doped LaTiO3�. To access lower
temperatures we tested a scheme where we matched the
Fermi-liquid parabolic form for the imaginary part of the
self-energy in the small window of the dip such that it
smoothly connects to the intermediate frequency region
where the parabola was formed. The details as well as the
results of the above mentioned procedure will be published
elsewhere. We numerically found that this SUNCA pathol-
ogy is rapidly reduced with increasing number of bands, i.e.,
it is much less severe in the case of the three-band model
than in the one-band case.

B. Analytic continuation of the self-energy

The QMC simulation produces the Green’s function G���
of imaginary time �= it or equivalently the Green’s function
and the self-energy defined at the Matsubara frequency
points. However, the real-frequency self-energy is needed to
obtain transport quantities. Hence, the analytic continuation
of QMC data is required, which is an ill-posed problem and
altogether hopeless if the precision of data is not extremely
good and if the statistical errors are not taken into account
properly. As is well known, the Padé method is not very
useful for analytic continuation of noisy QMC data. The

maximum entropy method27 tries to overcome this problem
by adding an entropy term to the functional to be minimized.
This is one of the best methods presently available and usu-
ally produces real-frequency Green’s function of relatively
high quality provided the data are carefully analyzed. We
refer the reader to the original literature for the details.27

However, the quasiparticle peak for realistic density of
states can have quite a rich structure since at low temperature
it tries to reproduce the LDA bands around the Fermi level,
i.e., the spectral function approaches the LDA density of
states contracted for the quasiparticle renormalization ampli-
tude Z, A�	�=��	 /Z+
0�. The maximum entropy method
has a tendency to smear out this rich structure because of the
entropy term. At low temperature, this can lead to overshoot-
ing of the spectral function and subsequently to the non-
physical self-energy that ruins the causality. To avoid this
pathology, we sometimes found useful to directly decompose
the singular kernel with the singular value decomposition
�SVD�. When constructing the real-frequency data, we took
into account only those singular values that are larger than
the precision of the QMC data.

The imaginary-time Green’s G��� can be expressed by the
spectral function as

G��� = −
 d	 f�− 	�e−�	A�	� , �14�

or in the discretized form

G� = − �
	

f�− 	�e−�	A	�	 = �
	m

V�mSmUm	A	, �15�

where UU†=1 and V†V=1 are orthogonal matrices and S is
diagonal matrix of singular values. The inversion is than sim-
ply given by

A	 = �
m,�

Um	

1

Sm
V�mG�. �16�

The magnitude of singular values drops very fast and only
the first few terms in the upper sum can be determined from
the QMC data. The rest of the information, which determines
mostly higher-frequency points, can be acquired from the
SUNCA spectral function. We therefore approximated the
sum in Eq. �16� by

A	 = �
m�M,�

Um	�m
QMC + �

m�M

Um	�m
SUNCA,

�m
QMC = �

�

1

Sm
V�mG�,

�m
SUNCA = �

	�

Um	�A	�
SUNCA, �17�

where M can be determined by the precision of the QMC
data, i.e., ��V�M�G��SM.

We plot the sum �17� in Fig. 1 where the first six, nine, or
12 coefficients were obtained from the QMC data. The cor-
responding smallest singular value is printed in the legend of
the same figure. For comparison, we also display the spectral
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function obtained by the maximum entropy method and the
SUNCA solution for the same parameters. The difference
between the various curves gives as a rough estimate for the
accuracy of the technique. As we see, the quasiparticle reso-
nance is obtained by reasonably high accuracy, while the
Hubbard band is determined with less accuracy. In the inset
of Fig. 1 we plot the same curves in a broader window. As
we see, the singular value decomposition does not guarantee
the spectra to be positive at higher frequencies. This, how-
ever, does not prevent us from accurately determining most
of the physical quantities.

Within DMFT, the real-frequency self-energy can be ob-
tained from the local Green’s function by the inversion of the
Hilbert transform. Although the implementation is very
straightforward, we will briefly mention the algorithm we
used. In the high-frequency regime, we can expand the Hil-
bert transform in terms of moments of the density of states
�DOS� as

w�z� =
 D���d�

z − �
= �

n

��n�
zn+1 . �18�

The series can be inverted and solved for z:

z�w� =
1

w
+ ��� + ���2� − ���2�w + ���3� − 3��2���� + 2���3�w2

+ ¯ . �19�

For most of the frequency points, the expansion up to some
higher power �
w8� gives already an accurate estimation for
the inverse function. However, when w gets large, we need to
use one of the standard root-finding methods to accurately
determine the solution. This is, however, much easier than
general root finding in the complex plane since we always
have a good starting guess for the solution. We start evalu-
ating the inverse function at high frequency where the abso-
lute value of G is small and we can use the expansion in Eq.

�19�. Then we use the fact that the Green’s function is a
continuous function of a real frequency and we can follow
the solution from frequency point to frequency point by im-
proving it with a few steps of a secant �or Newton� method.
Special attention, however, must be paid not to cross the
branch cut and get lost in the nonphysical complex plane.
Therefore, each secant or Newton step has to be shortened if
necessary. The self-energy is finally expressed by the inverse
of Hilbert transform w−1 as

� = 	 + 
 − w−1�G� . �20�

Figure 2 shows the imaginary part of the self-energy ob-
tained by both analytic-continuation methods. As a reference
and comparison we also show the results obtained by the
SUNCA method, which is defined and evaluated on the real-
frequency axes and hence does not require analytic continu-
ation. The low-frequency part of the self-energy is again very
reliably determined and does not differ by more than 3%.

III. TRANSPORT COMPUTATION

A. Transport theory

The transport parameters of the system are expressed in
terms of so-called kinetic coefficients, denoted here by Am.
The equation for the electrical resistivity � is given by

� =
kBT

e2

1

A0
. �21�

The thermopower S and the thermal conductivity � are ex-
pressed through

S = −
kB

�e�
A1

A0
, � = kB�A2 −

A1
2

A0
� . �22�

Within the Kubo formalism28 the kinetic coefficients are
given in terms of equilibrium state current-current correla-
tion functions of the particle and the heat currents in the
system; namely we have

FIG. 1. �Color online� Spectral function for semicircular DOS,
inverse temperature �=16 and density n=0.8. Dot-dashed, full, and
double-dot-dashed curves correspond to the sum �17� with M cho-
sen to be 6, 9, and 12, respectively. In the legend, we also print the
lowest singular value taken into account �SM�. For comparison we
show the maximum entropy spectrum �dashed curve� and SUNCA
spectrum �dotted line�. The inset shows the same spectra in a
broader window.

FIG. 2. �Color online� Imaginary part of the self-energy ob-
tained from the Green’s function by the inverse of the Hilbert trans-
form. Full line was obtained by the singular value decomposition,
the dashed by the maximum entropy method, and the dot dashed by
SUNCA. Parameters used are the same as in Fig. 1.
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Am = �m lim
	→0

Zm�i� → 	 + i0� , �23�

where

Z0�i�� =
i�

i��



0

�

d� ei���T�jx���jx�0�� , �24�

Z1�i�� =
i�

i��



0

�

d� ei���T�jx���Qx�0�� , �25�

Z2�i�� =
i�

i��



0

�

d� ei���T�Q
x���Qx�0�� . �26�

To evaluate these correlation functions, expressions for
the electric and heat currents jx and Qx are needed. Once
those currents are evaluated calculation of the transport prop-
erties within the DMFT is reduced to the evaluation of the
transport function

�xx��� =
1

V
�

k

Tr�vk
x����k���vk

x����k���� , �27�

and the transport coefficients

Am = Nspin� � 

−�

�

d� �xx���f���f�− ������m. �28�

The momentum integral in Eq. �27� extends over the Bril-
louin zone and V is the volume of the unit cell. The simplest
form of the velocity is �k� � �1/m��x �k��=vk

�� and it requires
evaluation of matrix elements of �x. However, an alternative
form of the current and the transport function can be derived
via the Peirls substitution generally in the nonorthogonal ba-
sis and is described in Appendix E. These two procedures
generally give different answers.23,29,30

Next we define the energy-dependent velocity as

v�k��� = v�k − �u�k. �29�

The second term is due to the nonorthogonality of the basis
or more specifically due to overlap between orbitals at dif-
ferent sites; local nonorthogonality does not contribute to the
velocity. The spectral density matrix �k��� is the multiorbital
generalization of the regular single orbital density of states
and is given in terms of the retarded Green’s function G of
the system by the equation

�k��� = −
1

2�i
�Gk��� − �Gk���	†� . �30�

Finally the Green’s function �GF� is given by

Gk�z� = ��z + 
�Ok − Hk
0 − ��z�	−1. �31�

Note here that in accordance with the DMFT the self-
energy matrix is assumed to be momentum independent.
Now given an effective Hamiltonian for the system, an over-
lap matrix, and the self-energy, the equations above give a
complete prescription for computing the transport param-
eters. For computation of Eq. �27� we have developed two
methods; one method generalizes the analytical tetrahedron

method31 �ATM� and the other one uses the one-particle GF
method in DMFT,4 used to compute spectral densities in
band structure calculations. First the total Hamiltonian
Hk���=Hk

0+���� is diagonalized and written in the form

Hk��� = OkAk
R���Ek���Ak

L���Ok, �32�

where Ek is the diagonal matrix of complex eigenvalues and
Ak

R and Ak
L are the right and the left eigenvector matrices,

respectively. Then the Green’s function can be written as

Gk��� = Ak
R������ + 
�I − Ek���	−1Ak

L��� , �33�

with I being the identity matrix. The transport function can
now be expressed as

�xx��� = −
1

2�2V
Re�

k,pq
�rk,qp

x rk,pq
x Dk,pDk,q

−
1

2
�sk,qp

x tk,pq
x + sk,pq

x tk,qp
x �Dk,p�Dk,q�*� , �34�

where the matrices rx, sx, and tx are

rk
x = rk

x��� � Ak
L���vk

x���Ak
R��� ,

sk
x = sk

x��� � Ak
L���vk

x����Ak
L���	†,

tk
x = tk

x��� � �Ak
R���	†vk

x���Ak
R��� , �35�

and Dk is a diagonal matrix defined by

Dk = Dk��� � ��� + 
�I − Ek���	−1. �36�

When the computation of the transport function is carried out
one is faced with computing integrals of the form

�
k

rk,pq
x rk,qp

x

�� + 
 − Ek,p��� + 
 − Ek,q�
,

�
k

sk,pq
x tk,qp

x

�� + 
 − Ek,p��� + 
 − Ek,q
* �

. �37�

The strategy that is used to compute these integrals is similar
in spirit to the analytical tetrahedron method. The Brillouin
zone is split up into a collection of equal-sized tetrahedra and
the integral over each tetrahedron is taken using linear inter-
polation between the four corners of the tetrahedron. In the
analytical tetrahedron method the numerator and the energy
eigenvalues in the denominator are linearized independently
and the resulting integral is then done analytically. In our
case we would want to follow the same rule which results in
two linear functions in the denominator. Unfortunately we
have not been able to evaluate that integral in the most gen-
eral case, i.e., when none of the tetrahedron corners are de-
generate, although solutions can be found for degenerate
cases when at least two of the four corners of the tetrahedron
are identical. Hence we have to pursue further approxima-
tions which we outline below.

The two main integrals that we need to compute are of the
form
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TSS
pq = �

k��

F�k�
�z − Ek,p��z − Ek,q�

,

TOS
pq = �

k��

F�k�
�z − Ek,p��z − Ek,q�* . �38�

Here � denotes the tetrahedron and SS indicates that the
imaginary parts of both denominators have the same sign and
OS indicates that they have the opposite sign. This is ensured
by the fact that the self-energy is retarded and z is real. For
the diagonal case �p=q� the TSS integral can be computed
exactly by linearizing the eigenvalues in the denominator;
one simply needs to differentiate the ATM formulas by
Lambin and Vigneron.31 For the diagonal TOS, however, we
note that the numerator is real and therefore we can write the
integral in the following form:

TOS
pp = Im �

k��

�F�k�
�k,p

� 1

z − Ek,p
, �39�

where �k,p=Im Ek,p. We note that �k,p is solely due to the
self-energy, which is momentum independent, and thus it is
reasonable to expect that �k,p changes little with momentum.
Hence the term in the parentheses will be approximated lin-
early within the tetrahedron and the resulting integral can be
computed with the ATM.

The off-diagonal case �p�q� for both TSS and TOS is
treated the same way so we will just look at TSS. Both factors
in the denominator are inspected and we determine which
one has larger modulus �on average if necessary�. Then we
write the integral in the form

TSS
pq�p�q = �

k��

� F�k�
�z − Ek�L

� 1

�z − Ek�S
, �40�

where L indicates the denominator with the larger modulus
and S indicates the one with the smaller modulus. The term
in the parentheses is now approximated linearly within the
tetrahedron and the resulting integral can be computed with
the ATM.

The approach described here to compute the transport
function has been tested numerically against models where
other methods can be used to evaluate the transport function.
For cubic systems with nearest-neighbor hopping one can,
for instance, evaluate both the density of states and the trans-
port function quite efficiently using fast Fourier transforms.1

In general the results are quite accurate.

B. Small-scattering limit

In order to make connections with previous approaches to
the computation of transport properties it is interesting to
consider the small-scattering limit. So we take the self-
energy of the form

���� = ����� + ������ , �41�

where ����� is the real part of the self-energy matrix, ������
is the imaginary part, and � is a small parameter.

It is clear that the transport function will diverge as 1/�
and thus we can approximate the numerator matrix elements

to zeroth order in �. Within this approximation the transport
function can be written as

�xx��� =
1

V
�
k,p

�vk,p
x �2�k,p������ + 
 − Ek,p� � , �42�

where Ek,p� are the eigenvalues of Hk
0+����� and vk,p

x denotes
the corresponding band velocity. The lifetime �k,p��� is for-
mally given by

�k,p��� =
1

2��Im Ek,p�
; �43�

here Ek,p are the eigenvalues of the full Hamiltonian. The
imaginary part of these eigenvalues is due to the scattering
term and is therefore to first approximation linear in �. The
lifetime therefore diverges as 1/� but for a finite value of �
we regard Eq. �42� as an approximation to the transport func-
tion and we will refer to this approach as the small-scattering
approximation.

In spite of the limited validity of the small-scattering ap-
proximation it is useful in the sense that it is computationally
much simpler to evaluate the transport function in the small-
scattering approximation than in the general case. Therefore
it can be used in order to obtain a rough idea of the behavior
of the transport parameters.

The equations of the small-scattering approximation are
very similar to the formulas that have been used by other
groups to compute the transport parameters of real
materials.32–34 In particular the assumption of constant life-
time is quite often used in practice, especially when the ther-
mopower is being calculated. In this case we obtain

�xx��� = ��xx��� , �44�

where the so-called transport density � is defined as

�xx��� =
1

V
�
k,p

�vk,p
x �2��� + 
 − Ek,p� � . �45�

Numerical tests have shown that while the small-
scattering approximation can be quite good for broadbands it
does not work well in narrowbands such as the dynamically
generated quasiparticle bands of strongly correlated systems
due to constant time approximation used.

In the case of the thermopower we obtain

S = −
kB

�e��
−�

�

�xx���f���f�− ������



−�

�

�xx���f���f�− �� � ,

=
T→0

−
kB

�e�
�2kBT

3
� d

d�
ln �xx����

0
. �46�

This is the classical Mott relation for the thermopower. In
the literature this equation is often quoted with the transport
density replaced by the spectral density and much emphasis
placed on the fact that in case the Fermi level coincides with
a Van Hove singularity the thermopower diverges. This con-
clusion is not supported when the correct form for the ther-
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mopower is used since no Van Hove singularities are present
in the transport density.

For free electrons the transport density is given by

�xx��� =
1

12�2�2me

�2 �3/2

�3/2, �47�

and therefore we get

S = −
kB

�e�
�2kBT

2

1

�F
= − n−2/3T � 0.281

nV

K
, �48�

where the density n is measured in electrons per cubic Bohr
radius and the temperature T is measured in kelvin. In case
the effective mass of the electrons is enhanced the ther-
mopower will simply increase by the enhancement factor.

The enhancement of the thermopower can also be de-
duced from the Mott equation in case the only effect of the
real part of the self-energy is to change the effective mass of
the bands that cross the Fermi surface. If we assume that the
change in effective mass is the same for all the bands that
participate in the transport the low-temperature thermopower
becomes

�S � −
kB

�e�
�2kBT

3Z

d

d�
ln �0,xx����

0

, �49�

where the noninteracting transport density �0,xx��� is defined
by

�0,xx��� =
1

V
�
k,p

�vk,p
0.x�2��� + 
 − Ek,p

0 � . �50�

Here Z denotes the quasiparticle residue of the bands in-
volved. Hence we see indeed that the low-temperature ther-
mopower is enhanced by a factor of 1 /Z compared to the
noninteracting thermopower.

IV. TEST SYSTEM AND DMFT RESULTS

A. Test system

To test the obtained transport equations on a realistic sys-
tem we have chosen a doped LaTiO3 compound. The
La1−xSrxTiO3 series has been studied very extensively in the
past35–40 and can be regarded as being one of the prime ex-
amples exhibiting the Mott-Hubbard metal-insulator transi-
tion. The end compound LaTiO3 when prepared well is a
Mott-Hubbard insulator although in the literature it is often
characterized as a correlated or a poor metal. At high tem-
perature this material is paramagnetic. The other end com-
pound SrTiO3 is an uncorrelated band insulator with a direct
gap of 3.3 eV. The electronic structure properties of the
La1−xSrxTiO3 series is governed by the triple degenerate cu-
bic t2g bands of the 3d orbitals �d1 ionic configuration�.41 In
the distorted structure of LaTiO3 the degeneracy of the band
has been lifted and the single electron occupies a very nar-
row, nondegenerate dxy band.42 Studies of the magnetic sus-
ceptibility do indeed indicate that the electronic structure of
thePbnm phase is that of a narrow dxy band, which then with
doping changes into a broad t2g band �calculated bandwidth
is W=2.7 eV� with degenerate dxy, dxz, and dyz orbitals in the

Ibmm and Pm3m phases. As a function of doping the mate-
rial behaves as a canonical doped Mott insulator. The specific
heat and the susceptibility are enhanced, the Hall number is
unrenormalized, while the photoemission spectral function
has a resonance with a weight that decreases as one ap-
proaches half filling. Very near half filling, �for dopings less
than 8%� the physics is fairly complicated. At small doping
an antiferromagnetic metallic phase is observed.39,43,44

To obtain the LDA band structure of LaTiO3 we used the
linear muffin-tin orbitals method in its atomic sphere ap-
proximation �ASA� with the basis Ti�4s ,4p ,3d�, O�2s ,2p�,
and La�6s ,5p ,5d� assuming for simplicity instead a real
orthorhombic structure with a small distortions a cubic one
with the same volume and the lattice constant a0=7.40 a .u.
This approximation brings a slight overestimation of the ef-
fective bandwidth and underestimation of the band gap be-
tween valence and conduction bands. In photoemission stud-
ies of LaTiO3,13 a similar basis has been used.

Using the LDA band structure one can compute and com-
pare with experiment the linear coefficient of specific heat
which is simply given in terms of the density of states at the
Fermi level by

� = 2.357� mJ

mol K2��tot�Ef��states /�eV unit cell�	
Z

,

�51�

where Z is the quasiparticle residue or the inverse of the
mass renormalization. In LDA calculations the value of Z is
equal to 1. Doping dependence of the linear coefficient of
specific heat in LDA calculations was computed within the
rigid band model. Our results along with the experimental
data are presented in Table I.

In general, we see that the LDA data for � are lower than
the experimental values, indicating a strong mass renormal-
ization. We note also that as we get closer to the Mott-
Hubbard transition the effective mass grows significantly.
This is consistent with DMFT modeling of the Mott-Hubbard
transition which shows that indeed the effective mass di-
verges at the transition. We should note, however, that this is
not a necessary signature for the Mott-Hubbard transition: in
V2O3 the pressure-driven metal-insulator transition is accom-
panied by the divergence of the effective mass whereas the
doping-driven transition in the same system does not show
that divergence.46

The physical picture of the studied material is quite trans-
parent, very near half filling �dopings less than 8%� the

TABLE I. The linear coefficient of specific heat � for
La1−xSrxTiO3 measured in units of mJ/mol K2. The experimental
data are taken from Ref. 45. LDA data for the linear coefficient of
specific heat are computed from the LaTiO3 LDA DOS.

Doping �%�
5 10 20 30 40 50 60 70 80

Experiment 16.52 11.51 8.57 7.70 6.21 5.38 4.55 4.35 3.52

LDA 3.23 3.16 3.00 2.82 2.67 2.52 2.38 2.19 2.10
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Fermi energy becomes very small and now is comparable
with the exchange interactions and structural distortion ener-
gies. A treatment beyond single-site DMFT then becomes
important to treat the spin degrees of freedom. On the other
hand for moderate and large doping, the Kondo energy is the
dominant energy and the DMFT is expected to be accurate.
This was substantiated by a series of papers which compared
DMFT calculations in single-band or multiband Hubbard
models using a simplified density of states with the physical
properties of real materials. Reference 47 addressed the en-
hancement of the magnetic susceptibility and the specific
heat as half filling is approached. The optical conductivity
and the suppression of the charge degrees of freedom as the
Mott insulator is approached was described in Refs. 48 and
49, the observation that the Hall coefficient is not renormal-
ized was found in Refs. 50 and 51. Finally the thermoelectric
power on the model level using iterative perturbation theory
�IPT� as impurity solver was investigated by Pálsson and
Kotliar.52

Given the fact that only very simple tight-binding param-
etrizations were used in those works, and the fact that a large
number of experiments were fitted with the same value of
parameters one should regard the qualitative agreement with
experiment as very satisfactory. The photoemission spectros-
copy of this compound as well as in other transition metal
compounds is not completely consistent with the bulk data,
and it has been argued that disorder, and modeling of the
specific surface environment is required to improve the
agreement with experiment.53 In this situation, it is clear that
this is the simplest system for study, and it was in fact the
first system studied by LDA�DMFT.4

The important questions to be addressed are the degree of
quantitative accuracy of DMFT. Furthermore, given the sim-
plicity of this system, and the existence of well-controlled
experiments, it is an ideal system for testing the effects of
different approximations within the LDA�DMFT scheme.

B. The model

As we pointed out in Sec. II for a correct description of a
system with strong electron correlations one needs to bring
the self-energy into the heavy orbitals. To this end a model
which correctly describes the physics of interacting orbitals
is needed. In this paper we consider a three-band Hubbard
model whose underlying noninteracting dispersion relation is
that of the degenerate cubic t2g band of the transition metal
3d orbitals. For simplicity the Hubbard interaction term is
taken to be SU�6� invariant, i.e., there is equal interaction
between two electrons of opposite spin in the same orbital as
there is between two electrons in different orbitals on the
same site. The more general case will be reconsidered in
future publications.

The value of the interaction strength in our model is cho-
sen large enough to exhibit metal-insulator behavior in the
studied compound. In units of half bandwidth D, the interac-
tion strength is taken to be U=5. The interaction strength
should be regarded as an input parameter whose value has to
be adjusted to the experimental situation. Saying this, we
mean the chosen interaction strengths should be good

enough to reproduce as many physical properties as possible
with maximum proximity to experiment. To investigate the
dependence of the calculated physical properties on the in-
teraction strength we calculate all quantities studied in this
paper for the values of Coulomb repulsion U=3, 4, and 5.
On the model level U=4 is the value very close to the mini-
mum interaction to get metal-insulator transition �MIT� for
integer filling n=1 even in the threefold-degenerate Hubbard
model using the DMFT as an instrument which takes care of
the interaction in the system. Hence our choice of the inter-
action should guarantee exploration of two physically differ-
ent behaviors of the system with and without the MIT. In the
literature the absolute value of Coulomb interaction is the
magnitude under discussion mainly because there is no direct
and reliable method to extract it either experimentally or
theoretically. The uncertainty between different theoretical
methods13,54 attempting to estimate the value of U is quite
substantial, the interaction strength ranging from 3.2 to 6 eV.

It should be noticed that although this choice of param-
eters is consistent with insulating behavior of this system it
might have limited validity in the real system at low doping.
Since La1−xSrxTiO3 is known to undergo several structural
transformations upon doping and in particular the structure
of LaTiO3 is distorted away from the cubic perovskite struc-
ture and in fact the distortion lifts the degeneracy of the t2g
orbitals and the ground-state orbital is a narrow nondegener-
ate dxy orbital. Hence one might expect that the Mott-
Hubbard transition in this system would be better described
in a one-band model �x
0.08�. At larger dopings
�x�0.08� it is, however, clear that the system is degenerate
and thus our model can be expected to give a reasonably
good description in the larger doping range. In the present
paper we do not consider the effect of lifting the degeneracy
due to Jahn-Teller distortion; rather we explore the threefold-
degenerate Hubbard model in the whole region of doping
interval including n=1 point.

The kinetic part of the model Hamiltonian has been ob-
tained from tight-binding LMTO ASA calculations. The band
structure of the compound around the Fermi level consists of
the threefold-degenerate Ti 3d t2g band, hosting one elec-
tron, which is well separated from an empty Ti 3d eg band
located above the t2g band. A rather broad gap below t2g
separates Ti 3d and completely filled 2p oxygen band. Hence
it is quite straightforward to make the tight-binding fit of the
t2g band to be used in the impurity solvers. To achieve asym-
metry in the tight-binding DOS one needs to take into ac-
count the next-nearest-neighbor, so-called, t� term on Ti sub-
lattice. The dispersion that we obtained from the fit is the
following: �k=2t�cos kx+cos ky�+2t�cos�kx+ky�+2t�cos kz,
where t=−0.3297, t�=−0.0816, t�=−0.0205 in eV. The t2g
part of the LaTiO3 DOS �dotted line� and its fit �solid line�
are presented in Fig. 3. We also added one more curve in Fig.
3 corresponding to a semicircular DOS which we will use for
a different kind of benchmarking of our approach.

The results for a few chosen doping values computed at
temperature equal to 300 K are displayed in Table IIwhere
we have also displayed the experimental results from Ref.
40.

It is quite noteworthy that for the two lowest doping val-
ues in the table the LDA and the experiment are in a good
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agreement. For higher values of doping, however, the experi-
mental values are about twice as large as the LDA values.
The good agreement at low doping should be regarded as
mostly accidental since the experimental data for doping val-
ues less than 5% show the holelike thermopower, which the
LDA, of course, will not be able to reproduce.

C. Summary of DMFT results

In the previous section we described how to obtain the
Hubbard-like Hamiltonian with the kinetic part coming from
downfolded bands and the interaction part defined by renor-
malized Coulomb repulsion. In this section we study the in-
fluence of interactions on physical properties of the system.
The method used to solve the Hamiltonian is the dynamical
mean-field theory which was described in Sec. II.

So, the main effect expected from electron interactions is
to reproduce the Mott transition when the system approaches
an integer filling. One can see indications of the MIT in
filling n, dependencies of the chemical potential 
, and qua-
siparticle residue Z. The MIT is clearly seen by a jump of the

 versus n dependence �the chemical potential changes while
the filling remains the same� plotted in Fig. 4 and also by the
vanishing energy scale seen in the Z versus n dependence in
Fig. 5 while approaching the Mott transition.

In Fig. 4 we plot the chemical potential against filling
around filling n=1 for three values of Coulomb interaction

U=3, 4, and 5 in units of the half bandwidth D, and for two
shapes of the DOS �semicircular and tight binding�. We no-
tice here that both semicircular and realistic DOSs are renor-
malized in such a way that they run in the interval �−D ,D	
with the norm equal to 1. The first two upper curves pre-
sented in Fig. 4 correspond to U=3. The upper curve is
obtained using the tight-binding DOS and the lower one
comes from the semicircular DOS. The first curve is nearly a
straight line crossing n=1 point while the line corresponding
to the semicircular DOS is about to make a jump which is
clearly presented in the behavior of U=4 line. The jump
becomes even more pronounced for U=5 and both semicir-
cular and tight-binding DOS. Let us notice that the absolute
value of the jump for the tight-binding DOS is smaller than
for the semicircular DOS. From this figure one can easily
conclude that the critical interaction when insulating behav-
ior appears in the system should be somewhere between
U=3 and 4 and closer to the second value �the final conclu-
sion about the insulating behavior one can make from the
energy dependence of the DOS on the real axis�.

In Fig. 5 we see five curves for the same values of inter-
action and shapes of the DOS as in the previous graph. As
we expected for U=3 �both DOS, semicircular and tight
binding� at n=1 we have a finite value of Z. Notice that
again �as in the previous plot� the tight-binding DOS shows

TABLE II. The thermopower S of La1−xSrxTiO3 at 300 K mea-
sured in units of 
V/K is computed using the LDA band structure.
The experimental data are taken from Ref. 40.

Doping �%�
5 25 50 75 80

Experiment −5.2 −9.3 −18.3 −29.4 −41.2

LDA data −5.6 −7.8 −9.3 −18.2 −22.8

FIG. 3. �Color online� LDA DOS of LaTiO3 �dotted line with
star symbols�, its tight-binding fit �solid line� and semicircular DOS
�dot-dashed line�. Arrows indicate Fermi-level position for filling
n=0.8 �the first one is for the semicircular DOS, and the second one
is for the tight-binding fit�.

FIG. 4. �Color online� The chemical potential 
 versus filling n
for semicircular �sc� and tight-binding �tb� DOS and various values
of interaction U at temperature �=16.

FIG. 5. �Color online� Filling dependence of the quasiparticle
residue, Z, for semicircular �sc� and tight-binding �tb� DOS and
various values of interaction, U, at temperature �=16.
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more metallic behavior �larger value of Z and a straighter
line than in the case of the semicircular DOS�. All other
values of the interaction clearly show insulating behavior of
the system.

So now one can see how electron correlations change the
physical properties of the system. Here we recall that the
main input to the DMFT QMC or DMFT SUNCA procedure
consists of the shape of the DOS �semicircle or tight binding�
and the value of the interaction U. We will analyze both
shapes of DOS for values of U mentioned above.

Using our results presented in Fig. 5 and the behavior of
��EF� presented in Fig. 6 we can calculate the linear coeffi-
cient of specific heat �. As we saw above, the LDA results
differ a lot from experimental values of �. Now we want to
know whether we can get any improvements by applying
DMFT, which changes the quasiparticle residue Z and renor-
malizes the DOS.

In Fig. 7 we plot the linear coefficient of specific heat
against filling for different values of Coulomb repulsion us-
ing semicircular and tight-binding DOSs. We notice that for
the same repulsion strength the linear coefficient of specific
heat for the semicircular DOS is larger than for the tight-
binding one, which is a consequence of the larger pinning
value in the semicircular DOS. Comparing U dependencies

for the semicircular DOS we see that the linear coefficient of
specific heat for U=3 is a nearly linear function until filling
n=1, which one can explain by the almost linear dependence
of the quasiparticle residue observed in Fig. 5. For U=4 and
5 the doping dependence of the linear coefficient of specific
heat reproduces the experimental behavior and the only
question left is how close theoretical and experimental re-
sults are. From the plot we see that in general the results for
the semicircular DOS are positioned far from the experimen-
tal values while for the tight-binding DOS the experimental
curve is just in between the U=3 and 5 lines. Hence we can
claim a rather good agreement �contrary to the LDA situa-
tion� between the DMFT and experimental curves for the
whole range of dopings. The divergence of the linear coeffi-
cient of specific heat shows a strong d-electron effective
mass enhancement at the Fermi level while approaching the
MIT.43 In the case of U=5 a small overestimation of the
linear coefficient of specific heat for large doping can be
explained by 10–15 % inaccuracy in the procedure of the
quasiparticle extraction �we define it from the self-energy on
Matsubara axis�. We could also slightly tune the interaction
strength, which probably should be smaller, down to 4. In
general the agreement between DMFT QMC results and the
experimental ones is quite good.

So we can summarize the linear coefficient of specific
heat results by saying that changes in the spectral weight Z
are the main source of the improvement of our results for the
linear coefficient of the specific heat. Those changes are most
remarkable for U=5 where Z tends to zero when density
approaches the integer filling n=1. The diverging behavior
of the linear coefficient of specific heat for small doping in
the real material can be explained by one of the structural
transitions happening in LaTiO3, at doping less than 5% the
threefold degeneracy is lifted and we effectively have only a
one-band model for which U=3 could be large enough to get
the MIT transition at integer filling.

D. Comparison QMC and SUNCA methods

In this section we analyze and compare two impurity
solvers, i.e., QMC and SUNCA, as candidates to compute
transport properties. Earlier comparisons55 of QMC and
NCA pointed out that the NCA underestimates the Kondo
temperature of the problem. To improve the situation, i.e.,
put more weight on the quasiparticle peak, we used the
SUNCA method. Similar to the case of LDA calculation, in
the impurity problem treatment, we also need to make a rea-
sonable compromise between speed and accuracy. It is well
known that the QMC impurity solver is very expensive but
exact �the only approximation used in the QMC is the Trotter
breakup� while the SUNCA is a computationally cheap
method but it is based on more approximations. The QMC
method works in imaginary-time and Matsubara-frequency
domains while the SUNCA works on the real-frequency axis.
To compute transport properties one needs the self-energy on
the real axis. In the case of QMC calculations it is necessary
to make the analytical continuation using the maximum en-
tropy or singular decomposition method to get the self-
energy on the real axis as was described in Sec. II B. This is

FIG. 6. �Color online� DOS at the Fermi level, ��EF�
�states / �eV unitcell�	, vs filling, n, for semicircular �sc� and tight-
binding �tb� DOS and various values of interaction, U. All of the
data was computed for �=16.

FIG. 7. �Color online� The linear coefficient of specific heat �
�mJ/mol K2� vs the density for different interaction strengths and
DOSs at temperature �=16.
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the weakest point in the DMFT QMC procedure. DMFT
SUNCA working on the real axis has the self-energy right
after self-consistency is reached.

As we noticed in the previous subsection the main task of
the interaction �read the impurity solver� is to produce the
MIT at integer fillings. And one of the criteria of insulating
behavior in the system is vanishing quasiparticle weight. In
Fig. 8 we compare the quasiparticle residue Z obtained from
DMFT QMC and DMFT SUNCA methods as a function of
doping for U=5 and a realistic DOS. We see that both meth-
ods are in a good agreement with each other. We also provide
a Z versus n curve calculated using iterative perturbative
theory56 to see that all three impurity solvers produce the
same trend at least qualitatively.

Now we can go further and compare the electron GF on
the Matsubara axis. The imaginary axis is a natural space of
work for QMC and to compare results with SUNCA we used
the Lehmann representation connecting the spectral function
on the real axis with the GF on the imaginary axis. The
representation is analytical and exact; hence the comparison
can be made without any assumptions and approximations or
uncertainties which could arise in the case of the analytical
continuation provided we wanted to compare results on the
real axis.

In Fig. 9 we plot the GF and imaginary parts of the self-
energy for temperature �=16 �the temperature which is
mostly used in our calculations� and for 10% and 20% of
dopings �they are our usual dopings used in calculations�.
From Fig. 9 we can conclude that there is quite good agree-
ment between the two methods and therefore we used the
SUNCA in our transport calculations where the behavior of
the self-energy on the real axis around the Fermi level is very
crucial for the transport properties, which are extremely sen-
sitive to the shape, slope, and value of the self-energy at the

Fermi level. The SUNCA plays the role of a “good analytical
continuation.” Transport properties become more and more
sensitive to all the details of the transport function at the
Fermi energy with lowering temperature. Taking into ac-
count all the comparisons made and calculations done we
conclude that the SUNCA is a fast and accurate enough
method to compute the transport properties of the compound.

V. RESULTS OF TRANSPORT CALCULATIONS

A. Spectral and transport functions in real system

Before doing transport computations it is worth studying
the spectral and transport function dependencies on doping
and temperature. As we discussed in the previous Sec. IV D
we will use the SUNCA as the main method to compute
transport properties �one can avoid the analytical continua-
tion procedure in this case�. But, at any rate, we also did
calculations with the QMC impurity solver and compared the
results obtained from the two impurity solvers and described

FIG. 8. �Color online� Filling dependence of the quasiparticle
residue Z and the linear coefficient of specific heat � obtained from
two impurity solvers: QMC �solid line with stars� and SUNCA
�dashed line with circle symbols� for U=5, temperature �=16. Ex-
perimental points are given by cross symbols and dot-dashed line is
used as a guide for the eye. The tight-binding density of states was
used in the self-consistency loop of the DMFT procedure. For com-
parison we also provide the Z vs n curve obtained with the IPT
method for the same parameters as the ones used in the QMC and
SUNCA calculations.

FIG. 9. �Color online� In the two upper panels we compare the
energy dependencies of imaginary and real parts of the GF on the
Matsubara axis for dopings n=0.8 and 0.9 computed using QMC
�circles� and SUNCA �solid line� methods. In the lower panels we
plot the imaginary parts of the self-energies for the same parameters
as in the upper panels. We used the semicircular DOS in the DMFT
self-consistency procedure and U=5 at temperature �=16.

FIG. 10. �Color online� Temperature dependence of DMFT den-
sity of states for n=0.8 and U=5. A larger frequency interval is
plotted in the inset. Energy is in units of half bandwidth D.
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differences between them when they were the most notice-
able.

In Fig. 10 we plotted the density of states per spin �the
lower Hubbard band and quasiparticle peak are shown in the
main panel and the inset shows the whole energy range� at
filling n=0.8 for various values of temperature. Here tem-
perature is measured in units of the half bandwidth D
=1.35 eV and thus the actual temperature range is quite large
with the smallest temperature, corresponding to T=0.05, be-
ing around 780 K. The highest temperature plotted is equal
to 1 but it is still not large enough to make incoherent motion
in the system dominant. As we can see temperature changes
are quite substantial �the lower Hubbard band nearly disap-
peared and the quasiparticle peak is shifted toward the upper
Hubbard band, indicating the tendency to join the upper
Hubbard band and form an incoherent broad bump� but they
are still not close enough to reach the incoherent motion state
�the upper Hubbard band is changed but still it is very well
separated from the quasiparticle �QP� peak—lower Hubbard
band creation�. This situation is to be expected as we know
the QP picture disappears for temperatures higher than the
Coulomb repulsion U, which is 5 in our case. Hence, for
T�5 one will see only incoherent motion in the system. Let
us notice here the difference between SUNCA and QMC
where in the last method the spectral density is just a single
hump corresponding to purely incoherent carrier dynamics
observed already for temperature �=1. If we start from an
incoherent picture and lower temperature, then the incoher-
ent hump splits up and the Hubbard bands start to form. For
even lower temperature the lower Hubbard band moves com-
pletely below the Fermi surface and the coherent quasiparti-
cle peak appears at the Fermi level. The lower Hubbard band
starts to form at �=4, the QP peak is formed for ��10. For
temperature lower than �=16 the weight of the QP peak
nearly does not change. We observe similar behavior of the
DOS in the SUNCA where the shape of the QP and the lower
Hubbard band change only slightly for temperatures lower
than T=0.1. The described discrepancies on the real axis
between the two methods are entirely in the domain of the
analytical continuation �maximum entropy method� which
reliably reproduces only the low-energy part. We should no-
tice one more interesting thing in Fig. 10, namely, the tem-

perature dependence of the DOS value at the Fermi level.
When this value reaches that of the noninteracting DOS we
say that the pinning condition is obeyed. The temperature
when the pinning condition is reached is called the pinning
temperature and it strongly depends on doping. For filling
n=0.8 as we can conclude from Fig. 10 the pinning tempera-
ture is about 0.1.

In Fig. 11 we plotted the density of states per spin for
T=0.05 and different values of doping. The choice of tem-
perature was dictated by the consideration that it should be
lower than the pinning temperature for the largest filling pre-
sented. With increased doping the quasiparticle peak broad-
ens and its spectral weight increases a lot while the weight of
the lower Hubbard band changes a little �doping changes are
10–20%�. All the weight that the QP peak gained came from
the upper Hubbard band �see inset in Fig. 11 where a larger
energy interval is presented�. With increased doping the sys-
tem becomes less and less correlated and in the limit of
100% doping the Hubbard bands vanish and the quasiparticle
peak transforms into a free and an empty tight-binding band.
With decreasing doping the QP peak vanishes and the system
becomes insulating for the repulsion U=5.

FIG. 11. �Color online� Doping dependence of DMFT density of
states for T=0.05 and U=5. A larger frequency interval is plotted in
the inset. Energy is in units of half bandwidth D.

FIG. 12. �Color online� Temperature dependence of imaginary
part of the self-energy for n=0.8. In the inset the real part of the
self-energy is shown for the same temperatures. Energy is in units
of half bandwidth D.

FIG. 13. �Color online� Doping dependence of imaginary part of
the self-energy for T=0.1. In the inset the real part of the self-
energy is shown for the same dopings. Energy is in units of half
bandwidth D.
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In Figs. 12 and 13 we presented the dependence of the
imaginary part �main panels� and real part �inset� of the self-
energy on temperature and doping for the same temperatures
as in Fig. 10, and the same dopings as in Fig. 11. In Fig. 12
we see nice quadratic behavior of the self-energy for low
temperatures with the minimum at around the chemical po-
tential �zero in our case� which then rises and shifts with the
temperature to the right-hand side. The real part of the self-
energy reflects the quasiparticle residue Z, and with lowering
the temperature the QP residue increases and approaches the
pinning value. The doping dependence of the imaginary part
of the self-energy shows that the self-energy at the chemical
potential decreases with increased doping. This is exactly
what one should expect for a system close to the free-
electron state where a more quadratic and smaller imaginary
part of the self-energy is anticipated. The real part of the
self-energy shows the same tendency with increasing doping
as in the case of the temperature dependence: the curve that
crosses the Fermi level becomes more flat. At zero doping it
should have a zero derivative at the chemical potential sig-
naling about Z=1. The self-energy is an extremely important
characteristic of the system as it is the only quantity that
enters into transport calculations. Using the self-energy one
computes the transport functions, the main ingredient of all
transport equations.

In Figs. 14 and 15 we plot the temperature and density
dependencies of the transport function for the same set of
parameters as we used for Figs. 10 and 11, respectively. One
can reveal similar features as in the density of states: in the
transport function behavior one clearly identifies contribu-
tions coming from the upper Hubbard band and the lower
one plus the QP peak. But the most important contribution to
transport properties at low temperatures comes from the en-
ergy region around the Fermi level. As can be seen from Eq.
�28� the transport coefficients are entirely defined by the
transport function integral in an energy window that depends
on temperature. These equations allow one at least qualita-
tively to define the sign of the thermopower for small tem-
peratures. If the slope of the transport function is increasing
then the thermopower should be negative and for the other
slope it should be positive. For a large energy window the
sign of the thermopower will strongly depend on the shape
of the transport function and its position relative to the
chemical potential.

B. Transport parameters

In Figs. 16–19 we plotted the transport parameters of the
studied system for different densities against temperature.

FIG. 14. �Color online� Temperature dependence of the trans-
port function for n=0.8. In the inset a larger frequency interval is
used. Energy is in units of half bandwidth D.

FIG. 15. �Color online� Doping dependence of the transport
function for temperature T=0.1. In the inset a larger frequency in-
terval is shown. Energy is in units of half bandwidth D.

FIG. 16. �Color online� The temperature behavior of ther-
mopower at different dopings.

FIG. 17. �Color online� The temperature of the resistivity at
three different dopings.
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The transport parameters under consideration are the follow-
ing: � denotes the electrical resistivity, � is the thermal con-
ductivity, S is the thermopower, and L is the Lorentz ratio.
The resistivity behavior, as it was found experimentally45

and theoretically, is a quadratic function in a relatively low-
temperature interval becoming linear at higher temperatures.
The quadratic temperature dependence of the electrical resis-
tivity is reminiscent of the strong electron-electron scattering
which predominates in the electron-phonon scattering pro-
cess. The thermal conductivity behaves like T−2 till tempera-
tures of the order 103−104, which are relatively large
temperatures.52 The Lorentz number tends to a constant
value around 16–17 nW � /K2, indicating that the character
of the low-temperature scattering is Fermi liquid. The ther-
mopower behavior is a little bit more complicated. At low
temperature the thermopower linearly tends to zero. It is very
hard for us to distinguish the doping dependence for rela-
tively small temperatures as all changes lie between the error
bars which are in our case larger than the difference between
the lower and higher thermopower curves presented in the
figure. The reason for large errors lies in a very small value
of the imaginary part of the self-energy which we have to
deal with on lowering the temperature and this situation is
very challenging for the used impurity solvers. For higher
temperatures �higher than 1000 K� we are certain of the ther-
mopower behavior as there are no problems with the self-

energy determination in this temperature range. With increas-
ing temperature we observe a local maximum in the
temperature interval �5�103�− �2�104�. We associate it
with increasing temperature cutoff �see Eq. �28�	, which is
large enough to take into account the right-hand side slope of
the central part in the transport function. Or in other words
the local maximum in the thermopower in some way mimics
the behavior of the transport function �the hump around the
chemical potential�. At any particular temperature the ther-
mopower has a bit more complicated behavior. But generally
it is growing with vanishing doping and for lower than 10%
doping one could even get a positive thermopower which
first becomes positive at temperatures around 5000 K �see
the n=0.9 thermopower curve� and then the positiveness will
propagate to smaller temperatures.

In Fig. 16 along with theoretical curves we plot the ex-
perimental data �taken from Fig. 8 in Ref. 57� for filling
n=0.5 in a rather large temperature interval �200–1000 K�.
We should notice here that the majority of experimental
results40,57 for doped LaTiO3 are published for temperatures
less than 300 K which is a rather hard task to deal with
numerically for the reason we pointed out above. The largest
temperature interval used experimentally we found in Ref.
57. To our satisfaction the results obtained are very close to
the experimental ones. Moreover, we capture correctly the
general trend with temperature, which is a linear dependence
for temperatures as high as 800–1000 K and then we see an
experimental tendency to change the curvature of the slope
to one similar to the n=0.7 case plotted in Fig. 16. The
theoretical thermopower results are quite encouraging. For
temperatures higher than 1000 K the curves obtained could
be considered as our predictions for the future experiments.

From the results presented we see that the thermopower
behavior �which we also treated as electronic� is accurate
within 30% in absolute value. One would expect that the
thermopower could become positive with decreasing doping
in the way it is experimentally observed. We also could ob-
tain it provided we do a much more delicate and hard job
taking into account the structural transition happening at
doping x
0.05 as in this case we effectively should have a
one-band model instead of a threefold-degenerate one. But
this is beyond the scope of the present work. Close to the
MIT we have a strongly asymmetric DOS and transport
functions which in the case of integer filling n=1 will pro-
duce a positive sign of the thermopower. The reason for this
is the position of the negative slope �right-hand side� of the
lower Hubbard band, which is closer to the Fermi energy
than the upper one and hence has a dominant contribution to
the transport properties of the system.

Analyzing Figs. 16–19 as functions of doping for a fixed
temperature we can see that all curves behave in the way one
would expect. The resistivity is growing with decreasing
doping as the system approaches the MIT while the thermal
conductivity and the Lorentz number are decreasing.

The biggest discrepancy between theory and experiment
is in predicting the resistivity at low temperatures. We be-
lieve that the main source of the disagreement is due to the
SU�N� approximation neglecting the Hund’s coupling J and
crystal field splitting between t2g bands. Partial lifting of the
degeneracy of the atomic ground state by including the

FIG. 18. �Color online� The Lorentz ratio vs temperature for
three different dopings.

FIG. 19. �Color online� The temperature behavior of the thermal
conductivity for different dopings.
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Hund’s J results in increase of Tk and consequently in in-
crease of resistivity bringing it closer to the experimental
data. The second reason for disagreement might be due to
limitations of the impurity solvers to access experimental
temperatures.

So it would be fair to say that in our calculations we can
catch at least semiqualitative behavior of the transport pa-
rameters. The electrical resistivity would require an addi-
tional treatment to get quantitatively better agreement while
the thermopower calculations deserve quantitative compari-
son with experiment and can be accurate enough providing
20–30 % agreement with experiment.

VI. CONCLUSION

In the paper we proposed and implemented a method for
calculation of thermoelectrical properties in real materials.
Dynamical mean-field theory was used to take into account
strong electron interactions and thereby bring the self-energy
into first-principles calculations. Taking a rather generic
density of states for many strongly correlated materials, we
obtained temperature and doping dependencies for such
thermoelectric properties as electrical resistivity, thermal
conductivity, thermopower, and the Lorentz ratio.

We believe that this method will be a powerful tool for the
analysis of existing experimental data and for guiding us to a
proper physical understanding of thermoelectrical phenom-
ena. This is especially important not only for correlated
materials such as Mott-Hubbard insulators and high-
temperature superconductors but also for simple materials
like the noble metals which display thermoelectric behavior
that still lacks a proper description. In addition we hope this
method will aid in the search for new materials with better
thermoelectrical performance by allowing for ab initio pre-
dictions of thermoelectric properties.
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APPENDIX A: LDA HAMILTONIAN IN
NONORTHOGONAL BASE

In LDA one has to solve the well-known Kohn-Sham
equation

�− �2 + V��kj = �kj�kj . �A1�

The eigenfunctions �kj are expanded in a basis set for
example the LMTO basis �k

��r� which is not necessarily or-
thogonal as

�kj = �
�

Akj
� ��k. �A2�

Substituting Eq. �A2� in Eq. �A1� we obtain

HLDA
�� �k�Akj

� = �kjOk
��Akj

� .

APPENDIX B: MANY-BODY THEORY IN A
NONORTHOGONAL BASIS

Our starting point here is a representation of the kinetic
term of the Hamiltonian in an orthogonal basis ��i�� and we
assume that this basis is related to the nonorthogonal basis
����� by the transformation matrix

�i� = �
�

��S�i and �i� = �
�

���S�i
* = �

�

Si�
+ ��� . �B1�

The Hamiltonian is now written as

H = �
ij

�i�H�j�ci
†cj = �

ij��

Si�
† ���H���S�jci

†cj = �
��

H��c�
†c�.

�B2�

The last term in the equation above is a requirement that we
place on the creation and destruction operators in the nonor-
thogonal basis and thus we find that

c�
† = �

i

ci
†Si�

† and c� = �
j

S�jcj . �B3�

The nonorthogonality of the basis is encoded in the overlap
matrix O��= �� ��� and this matrix can be related to the
transformation matrix S in the following manner:

�ij = �i�j� = �
��

Si�
† �����S�j = �

��

Si�
† O��S�j . �B4�

Therefore we see that the overlap matrix is defined by

O = �SS†�−1. �B5�

We should note here that the creation operator c�
† does not

create a particle in the state ��� when acting on the vacuum,
since as we see

c�
† �0� = �

i

ci
†Si�

† �0� = �
i

�i�Si�
† = �

i�

���S�iSi�
† = �

�

���O��
−1 .

�B6�

It is, however, worth noting that this state has unit overlap
with the state ��� and zero overlap with all of the other basis
states. The commutation relationships of these operators are
the same as for regular Fermi operators except that we get

�c�
† ,c�� = �

ij

S�j�ci
†,cj�Si�

† = S�iSi�
† = O��

−1 . �B7�

Let us finally obtain the expression for the Green’s function
in the nonorthogonal basis,

G����� = − �c����c�
†�0�� . �B8�

The easiest way to calculate this Green’s function is by look-
ing at the Lagrangian for the system in the orthogonal basis
and then simply transform it into the nonorthogonal one. We
have �summation over repeated indices implied�
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L = ci
† �

��
ci − ci

†Hijcj = Si�
−1c�

† �

��
c��S†��i

−1 − c�
†H��c�

= c�
†O��

�

��
c� − c�

†H��c�. �B9�

The free Matsubara Green’s function can now be obtained
using Fourier transformation of the operators in the Lagrang-
ian and then the inverse of the Green’s function G��

0 �i	� is
simply the term multiplying c�

†c�. Thus we obtain

G��
0 �	� = �i	O − H	��

−1 . �B10�

The renormalized Green’s function one gets as in the or-
thogonal case by adding the self-energy to the Hamiltonian
and thus

G�i	� = �i	O − H − �	−1. �B11�

We should remark here that these Green’s functions do not
share the same properties as their cousins in the orthogonal
bases do and in particular the total density is not given by
trace of G��=0−�. To see that we go back to the orthogonal
basis where we know how things work and write the density
operator as

� = �
i

ci
†ci = �

i��

Si�
−1c�

†c��S†��i
−1 = �

��

O��c�
†c�. �B12�

Thus the total density of electrons in the system is

ntot = ��� = �
��

O���c�
†c�� = �

��

G���� = 0−�O��.

�B13�

We should note in particular that this means that there seems
to be no good way of assigning a density to a particular
orbital in the nonorthogonal case.

APPENDIX C: SPLINES AND FOURIER
TRANSFORMATIONS

1. Direct Fourier transformation

As we know in the QMC program we need to do direct
and inverse Fourier transformations. The direct Fourier trans-
formation is done exactly, i.e., first we obtain coefficients of
the cubic spline exploiting physical properties of the GF and
then make an analytical Fourier integration knowing the
form of the splined curve. The cubic spline interpolation for-
mula reads

G��� = ai + bi�� − �i� + ci�� − �i�2 + di�� − �i�3, � � ��i,�i+1	 ,

where the coefficients ai,bi,ci,di are equal to the values of the
function, its first, second, and third derivatives at knot i, i.e.,
ai=G��i� , bi=G���i� , ci=G���i�, di=G���i�.

Or in terms of the GF values, Gi=G��i�, and its second
derivative, Mi=G���i�, only

ai = Gi,

bi =
Gi+1 − Gi

h
−

2Mi + Mi+1

6
h ,

ci =
Mi

2
,

di =
Mi+1 − Mi

6h
. �C1�

From the equations above we see that one needs to know
the second derivatives Mi, using tabulated values of the GF
Gi, in order to get the cubic spline interpolation. To obtain
the Mi coefficients we use the conditions of smoothness of
the first derivative and continuity of the second one. As a
result we have L+1 equations for L+3 unknowns,

�
2 �0 0


1 2 �1


2 . .

. . .

. . 2 
n−1

0 
n 2

��
M0

M1

. . .

. . .

Mn

� = �
d0

d1

.

.

.

dn

� ,

�C2�

where L is the number of time slices. In addition to L+1
M0 , . . . ,Mn, n=0, . . . ,L, unknowns d0 and dn also should be
provided. The last two unknowns entirely depend on the
boundary conditions which we have to specify in order to
have a unique solution of Eq. �C2�. If one knows the first
derivatives at the end points then d0 and dn are defined
through

�0 = 1, d0 =
6

h
�G1 − G0

h
− G0�� ,


0 = 1, dn =
6

h
�Gn� −

Gn − Gn−1

h
� ,

and di= �3/h���Gi+1−Gi� /h− �Gi−Gi−1� /h	, �i=
i=
1
2 , for

i� �1,n−1	. More detailed derivations of the above formulas
can be found in Ref. 58.

We can reduce numbers of unknowns just putting M0 and
Mn to zero �the so-called natural spline boundary condi-
tions�. In this case

�0 = 0, d0 = 0, 
n = 0, dn = 0,

and we have the number of unknowns matching the number
of equations, L+1.

This boundary condition is good enough to compute the
FT of the GF in the system at or close to half filling since the
second derivative of the Green’s function is small in absolute
value in this regime. And using the natural spline boundary
condition we do not impose a noticeable error. However,
away from half filling when the asymmetry of the system
grows, along with the amplitude, of one out of the two sec-
ond derivatives, usage of the natural spline eventually leads
to pathological behavior of the self-energy. The signature of
this pathology is in the “overshooting” effect59 when the self-
energy at some finite Matsubara frequency, i.e., the imagi-
nary part of the self-energy, becomes positive in some fre-
quency region on the positive Matsubara half axis while it
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should be always negative. This, of course, amounts to hav-
ing negative spectral weight for the self-energy which is
something that does not occur for fermionic response func-
tions. The “overshooting” can get especially severe in the
limiting cases of small temperatures, small particle densities,
or large interaction strength.

So, to avoid the problem with the self-energy and, hence,
with the whole procedure of the self-consistency in the
DMFT QMC program we need to use the proper boundary
conditions. And in this case we have two possibilities to get
a unique solution for the system of Eq. �C2� exploiting
physical properties of the studied GF: �a� we can provide the
first derivatives at both ends separately �in the next section
we show how to calculate those derivatives� or �b� we can
provide the sum of the first and the sum of the second de-
rivatives at the end points, so called the first and the second
moments of the GF.

With the second choice of the boundary conditions �b� the
system of equations becomes a three-diagonal one with two
off-diagonal elements in the opposite corners of the matrix
�−Mn−1 and − 1

2 M0�:

4M0 + 1M1 − Mn−1 =d0,
1
2 M0 + 2M1 + 1

2 M2 =d1,
1
2 M1 + 2M2 + 1

2 M3 =d2,
1
2 M2 + 2M3 + 1

2 M4 =d3,

� � � ]

1
2 Mn−3 + 2Mn−2

1
2 Mn−1 =dn−2,

− 1
2 M0 + 1

2 Mn−2 + 2Mn−1 =dn−1,

�C3�

where d0= �6/h���G1−G0� /h+ �Gn−Gn−1� /h−M�1�	+2M�2�,
dn−1= �6/h���Gn+Gn−2−2Gn−1� /h	− 1

2B, G0�+Gn�=M�1�, M0

+Mn=M�2�.
Solving the above system of equations we obtain the

spline coefficients ai ,bi ,ci ,di and can take the Fourier inte-
gral analytically,

Gm�	n� = 

�m−1

�m

d��a + b�� − �m�

+ c�� − �m�2 − d�� − �m�3	e�i�	n�

=
ei�m	n�− 6d + 2ic	n + b	n

2 − ia	n
3�

	n
4

−
1

	n
4 �ei�m−1	n�− 6d + 2ic	n − 6i��d	n + b	n

2

− 2c��	n
2 + 3����2d	n

2 − ia	n
3 + ib��	n

3

− ic����2	n
3 + i����3d	n

3�	 . �C4�

The sum Gm�	n� over m G�	n�=�m=1
L Gm�	n�, will give us

the Fourier integral in frequency space.

2. Inverse Fourier transformation

As is well known the Green’s function G�	� falls off as
1 /	 when 	→�. In the program we deal with a finite num-

ber of frequency points and cutting off the 1/	 tail one
would make a rather crude approximation as the discontinu-
ity of GF G��� �imaginary-time domain� has been removed.
In this situation, the high-frequency tail has to be extracted
from the GF G�	� and Fourier transformed analytically us-
ing the following Fourier relation:

1

i	n − �
↔ − � ��� + !n���	e−��, �C5�

where n����1/ �exp����−!	 and != ±1 depending on
whether 	n is bosonic or fermionic.

The inverse Fourier transformation for the GF without the
tail is made by straightforward summation over Matsubara
frequencies. Once it has been done we add the information
about the tail using Eq. �C5�.

APPENDIX D: MOMENTS

The moments M�k� are nothing else than the expansion of
the GF in the frequency domain,

G�	� = �
k=0

N
M�k�

	k+1 . �D1�

Another definition of the k-degree moment is the following:

M�k� = 

−�

+�

d	 	k��	� , �D2�

where ��	� is the density of states.
The moments M�k� can be bound to a sum of GFs and the

sum of its derivatives in imaginary-time space as

�− 1�k+1�G�k��0+� + G�k���−�	 = M�k�, �D3�

where k=0, . . . ,N.
To show this one needs to take the Fourier integral in

parts

G�i	n� = 

0

�

ei	n�G���d�

= �
k=0

N
�− 1�k+1�G�k��0+� + G�k���−�	

�i	n�k+1

+
�− 1�N+1

�i	n�N+1

0

�

ei	n��N+1G���
��N+1 d� . �D4�

So, to solve the system of Eq. �C3� we need to adhere to
the proper boundary conditions which are expressed through
the various moments of the Green’s function. What we need
finally is to provide the first three moments M�0�,M�1�,M�2�.
The first moment for the Green’s function is equal to 1, the
second moment proportional to the chemical potential in the
system and the third one is a little bit more complicated and
contains a density-density correlator. To show that we start
with the single-impurity Anderson model which reads
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HSIAM = �
k�

�k�ck�
† ck� + �

�
��� +

1

2 �
����

U���� f�
† f�

+ �
k�

Vk��f�
†ck� + ck�

† f��

+ �
�


�
��

U����n�n�� −
1

2
�n� + n���� , �D5�

where �̃�=��+ 1
2�����U���. The first three moments are ob-

tained from the following commutators:

M�k� = ��Lkf�; f�
†�+� ,

where LO= �O ,H	 denotes the commutator of operator O
with the Hamiltonian, and �¯�+ is the anticommutator. After
some algebra one finds the following expressions for the
moments:

M�0� = ��f�, f�
†�� = 1,

M�1� = ���f�,H	, f�
†�� = �̃� + �

����

U����n�� −
1

2
� ,

M�2� = ��†�f�,H	,H‡, f�
†��

= ���f�,H	,�H, f�
†	��

=��̃�
2 + 2�̃� �

����

U����n�� −
1

2
�

+ �
��,��

�
��

U���U����n�� −
1

2
��n�� −

1

2
� + �

k

Vk�
2 � ,

�D6�

where �kVk�
2 =M0

2− �M0
1�2, and the moments M0

i are defined
by Eq. �D2� with ��	�=D�	�, where D�	� is the noninter-
acting DOS.

Summing up similar terms in the SU�N� approximation
we get

M�1� = �� + �2N − 1�Un , �D7�

M�2� = ��
2 + 2���2N − 1�Un + U2��2N − 1�n + �nn�	 + �

k

Vk�
2 ,

�D8�

where n is the filling per band and per spin,
n= �1/2N���n�, and the double occupancy is defined as
�nn�=������n�n���.

The second way to make the correct cubic spline as we
mentioned before in Appendix C 1 is to provide the first
derivatives at both ends of the imaginary-time interval �the
boundary conditions�. To find the first derivatives at the ends
one can use the following definition of the first derivatives of
finite-temperature GF:

−
�

��
�T� f����f�

†�0�� = − �T �H, f�	 f�
†� = G���0+� .

Using as the Hamiltonian H=HSIAM we can easily obtain the
derivatives at the ends:

G���0+� = ���1 − n�� + ��
k

Vk�ck� f�
†�

+ �
����

U����n�� − �n��n��� ,

G����−� = ��n� + ��
k

Vk� f�
†ck�� + �

����

U����n��n�� ,

�D9�

where averages, e.g., ��kVk�ck� f�
†� can be calculated from

the following expression:

��
k

Vk�ck� f�
†� = − T�

n

���i	n�G��i	n� . �D10�

In the obtained formulas �Eqs. �D6�–�D10�	 we should
know the filling n� for each band and spin as well as the
density-density correlator �n�n���. The filling we can extract
from the GF itself. The calculation of the correlator in the
QMC highlights one of the advantages of the method, i.e.,
the correlator is provided by the QMC itself and one does not
need to rely on any additional approximations to obtain it as,
e.g., in the case of the multiband IPT method60 where the
coherent potential approximation is used to get the correlator.
At each time slice the density-density correlator is also com-
puted from the GF but in the imaginary-time domain where
it is simply a product of two Green’s functions in �� ,���
space. We should note here that we compute the correlator
along with other parameters in the system at each iteration
step and once self-consistency is reached we have correctly
obtained all the components and parameters in the system.
And finally, with a small enough imaginary time step �� one
can completely avoid the “overshooting” problem, keeping
in mind the main limitation of the QMC procedure U�� /2

1. In the present computations we choose ��=1/4 which
is good enough for the range of parameters we use in the
current paper.

APPENDIX E: TRANSPORT CALCULATIONS:
CURRENT DERIVATION

Below we derive the expressions for the currents in a
general basis. This is done by extending the gauge-theoretic
method developed in Ref. 61. In the nonorthogonal basis the
action for the system can be expressed as follows:

S =
 d��
k

ck�
† �Ok���I� + Hk���ck�. �E1�

Here �J�= 1 " 2 ���
� −��

� � denotes the antisymmetrized time de-
rivative. The particle and heat currents can now be obtained
by considering the invariance of the action under local phase
transformation and local translations in time, respectively. In
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the orthogonal case one is led to the following expression for
the currents:

� j� = −
�H�A� p	

�A� p

�
A� p=0

and �Q� = −
�H�A� h	

�A� p

�
A� h=0

,

�E2�

where A� p and A� h are gauge fields conjugate to the currents

and H�A� p	 and H�A� h	 denote the gauged Hamiltonian, i.e.,

the Hamiltonian with the replacements k�→k� −A� p and

k�→k� +A� h�J�, respectively. This replacement is performed in
both the kinetic and the interaction terms but not in the field
operators. In our case, however, the overlap matrix appearing
in the action depends also on momentum and therefore the
proper generalization of the currents to nonorthogonal basis
will also take the overlap matrix into account. Thus we ob-
tain

� j� = −
��O�A� p	�I� + H�A� p	�

�A� p

�
A� p=0

, �E3�

�Q� = −
��O�A� h	�I� + H�A� h	�

�A� h

�
A� h=0

. �E4�

Performing these operations leads to the following expres-
sions:

j� = �
k��

�v�k,��Bk,��
�0� − u�k,��Bk,��

�1� � , �E5�

Q� = �
k��

�v�k,��Bk,��
�1� − u�k,��Bk,��

�2� � , �E6�

where we have defined

Bk,��
�n� = �− 1�nck,�

+ ��I��nck,�, �E7�

and

v�k,�� =
1

�
�� kHk,��

0 and u�k,�� =
1

�
�� kOk,��, �E8�

where Hk,��
0 is the tight-binding LMTO Hamiltonian of the

system and Ok,�� is the overlap matrix that captures the non-
orthogonality of the basis that we are using. The validity of
the expressions above is not restricted to DMFT and they are
in fact true for all density-density interactions such as the
Hubbard interaction. This is because the interaction terms are
gauge invariant and therefore they do not contribute to the
expressions for the currents.
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