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Finite-temperature properties of the two-dimensional Kondo lattice model
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Using the recently developed Lanczos technique we study finite-temperature properties of the 2D Kondo
lattice model at various fillings of the conduction band. At half filling the quasiparticle gap governs physical
properties of the chemical potential and the charge susceptibility at small temperatures. In the intermediate
coupling regime quasiparticle gap scales approximately linearly with the Kondo couplifig,a€.3]. Tem-
perature dependence of the spin susceptibility seems to reveal two different temperature scales. A spin gap in
the intermediate regime leads to a drop of the spin susceptibility at low temperatures, while a scaling of spin
susceptibility is found for temperatures abdve=0.6]. Charge susceptibility at finite doping reveals existence
of heavy quasiparticles. A low energy scale is found at finite doping.

I. INTRODUCTION Ruderman-Kittel-Kasuya-YoshidéRKKY) interaction that
acts between localized spins. The Kondo screening and the
The Kondo lattice model is one of the simplest two-bandRKKY interaction are in many cases competing interactions.
lattice models of correlated electrons. It is widely used toConditions, under which one or the other prevails depend
model heavy fermion materials where weakly interactingmostly on the strength of the Kondo coupling, the electron
electrons in wide bands coexist with almost localized elecfilling and the dimensionality of the system.
trons in unfilled orbitals of actinide or rare-earth elements. In . A number of theoretical approaches has been applied to
heavy fermion materials a remarkable variety of differentthe investigation of the Kondo lattice modeln the strong
phases can be found at low temperatures: paramagnetic metjupling regime perturbation theory can be appfiegrge-
with large quasiparticle mass, anti-ferromagnetic and ferron, expansion can be used in the case of large localized spin-
magnetic phases, unconventional superconductivity, etc. IgegeneracyN;.® The slave-boson approathGutzwiller
most of these cases, strong electron correlations represent t{}griationm treatment%,and the recently developed strong
key ingredient of the theory that explains the rich variety ofcoupling methofl have been successful in predicting the

physical phenomena. _ heavy mass of the quasiparticles, the phase diagram, and the
In this work we investigate the Kondo lattice model, de-properties of the spectral functions.

fined on a two dimensional square lattices. The model can be Numerical calculations have been mosﬂy limited to one
written as dimensional systems where various well developed tech-
niques are available and finite-size effects can be easily con-
_ T trolled. Calculations on small systems have demonstrated
= t(ijz) CiSC'S+H'C'+JEi SS. @ that at half-filling the one-dimensional Kondo lattice model
. o is a spin liquid with a finite spin gap.Density-matrix
wheres =24 €, 0/ sCis and summatiolij ) runs over near-  numerical-renormalization groufpMRG) calculation§ pro-
est neighbors. There are two distinct types of degrees ofided an accurate determination of spin and charge gaps as a
freedom in this model: free electrons describecchyopera-  function of the Kondo coupling® Recently, a powerful
tors and localized spins described 8y In the limit where finite-temperature DMRG methd!? has been used to ob-
J=0 two systems are decoupled which leads to a large deain results for thermodynantit®® and dynamic
generacy of states due to noninteracting spins. At finitoropertie$®' of the model aff>0.
Kondo coupling# 0 the two systems interact. It is believed, = While there are many reliable numerical results of the
that the interplay between the two degrees of freedom reprdondo lattice model in 1D, much less is known about the
sents the most important physical mechanism of the heavgnodel in two or three dimensions. Based on theoretical con-
fermion materials. Associated with the two distinct systemssiderations conceptually different physical behavior is ex-
are competing interactions that govern the low-temperaturpected in higher dimensions. Spin-charge separation exists in
physics. Finite Kondo coupling leads to the formation of 1D correlated models. Luttinger liquid parameters define
Kondo spin-singlets between the conducting electrons angdower-law behavior of correlation functions in 1D while in
the localized spins screening the magnetic moments of locahigher dimensions exponential behavior of correlation func-
ized spins. Singlet formation competes with band propagations is expected unless a long-range order exists. The lack
tion of electrons in the conduction band. Furthermore, localof the long-range order in 1D is responsible for Kondo
ized spins interact via conduction electrons by thescreening to overcome the RKKY interaction for any firite

0163-1829/2000/64)/24826)/$15.00 PRB 61 2482 ©2000 The American Physical Society



PRB 61 FINITE-TEMPERATURE PROPERTIES OF THE TWO. . 2483

In two dimensions, however, there is a critical value ofwhere we have introduced the dopidg1—n. While the

J./t~1.4 (Refs. 17-19below which the RKKY interaction first term is model independent, the second one represents a

prevails and the system orders antiferromagnetically close toontrivial finite-temperature correction.

the half-filled conduction band. The charge response of the system can be measured with
The main purpose of this work is to explore thermody-charge susceptibility.= —dé/du which can be expressed

namic properties of the 2D Kondo lattice model using theas

finite-temperature Lanczos meth®idWe focus our investi-

gations to intermediate and high temperatures and try to 1—62

identify energy and temperature scales that govern the spin Xe= 57

and the charge response. Due to small system sizes we are

not able to explore extremely low temperatures:Trs, e evaluate the spin susceptibility via= 8(S%,2) and per-

since in this regime finite-size effects become dominant. Fofyrm the high-temperature expansion

the same reason we limit our calculations to intermediate and

)

1+52/332 2)
- 8T? | 8

strong couplingJ>t where physics is sufficiently local so 3_ 52 1-62 J
that our results remain valid even in the thermodynamic Xs= 1— 5 ==|. (8)
limit. 8T 3—-6°2T

Note, that unlike in the case qf., there is a IF? correction

Il. ANALYTICAL APPROACHES in xs.
In this section we present results of two analytical ap-
proaches:(a) the highT expansion up to the second non- B. Atomic limit
trivial order in 17T and (b) the atomic-limit, valid at large At large J>t, where the spin singlets that form between
J>t. Despite their simplicity, these results nevertheless prog,. electrons in the conduction band and localized spins are
vide physical insig'ht into two limiting cases and can be useq, ;ite local, many physical properties of the model can be
as a guide to the interpretation of our numerical results.  ¢omnyted taking into account only a single lattice site. In this
limit the grand canonical sum can be calculated s

-~ .  yeat .
A. High-temperature expansion =3P_,e AE ~#N) and only 8 states are taken into account:

The grand-canonical sum can be written as the singlet state with the ener@g" ,= — 3J/4, the degener-
R ate triplet stateE2" ;=J/4 both containing one conduction
E=Tre AH-uN) (2)  electron, and fourfold degenerate sta$ ,,,=0 consisted

. f _ of an empty and a doubly occupied conduction level each of
whereN=ZX;n; and nj=ZXC;sC;s is the fermion number op- them with two different spin configurations. Values of the
erator,u is the chemical potential angl=1/T. exp(—BH) is  spin, quasiparticle and charge gap are in this limit given by
expanded in powers of T/taking into account that at fixed A =J, A,,=3J/4, andA,=1.5]. For simplicity we present
particle density expguN) is not a small number even at analytica! results for spin and charge susceptibility only at
high-T. Equation(2) can be in the caseH,N]=0 expressed 2€ro doping 6=0)
in terms of cumulants as

1+2e Al
_ —B)? Xs=B —pJla,_ 3pIIa’ (
NS —2N,In(1+ %)+ ) | n/f HY%, @ 4+3e Thte
n=1 :
where(- - - ), symbolizes cumulant$ and N, is the number _ 4 10
. . . . XC B —BJl4 33J1/4° ( )
of lattice sites. Performing the cumulant expansiomtove 4+3e A4y 38
obtain
whereg is the inverse temperature apd=0. At finite dop-
. B? J2 5 ing results cannot be written in an explicit form due o
INZ==2NIn(1—p)+ 5-Nsp(1—p)| 5= +8t°|, (4  #0. However, in the lowF limit approximate results ab

#0 can be obtained
wherep=1/[1+exp(—Bw)]. Our calculations are performed

at fixed particle density, so the chemical potential(3,n) o
is calculated from the equation of the state Xs= 27 (13)
1 dinE
n=———. 5 o(1-9)
N, d(Bw) ® Xe= T 12

After inverting and taking into account E¢4) leads to _ - :
g g ® At 6+ 0 spin and charge susceptibilities diverge at [Bwy,

diverges because interactions between moments on different
(6) atomic sites are negligibley. diverges because of discrete
energy levels af>t.

1-6 ¢
log—————

o 2
1+6 272 8t

pu=T 8

3J? )
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TABLE I. The quasiparticle gap\,,/J and peak positions
Tqp/J and Ts/J both presented in units of the Kondo coupliag
Quasiparticle gaps were obtained from the limi¢6—0,T—0).
Spin susceptibilitiesys can be in the temperature intervalJ
<0.6 and forJ/t<2.5 well fitted to a simple formys=C/Texp
(=Ts/T) where the effective momei@ varies from 0.25 for small
J/t to 0.5 at largel/t. Estimated errors where not otherwise speci-
fied are within 5%.

JIt (Ng=8) Agpld Tap/d T3
0o , , 1.2 0.27 0.31 0.080.04
0.0 0.2 0.4 0.6 0.8 T 1.0 1.6 0.28 0.30 0.120.03
FIG. 1. Chemical potentiak as a function of t ik () - 0.30 0.31 0.120.03
16, L emlca PO el’_H as a un_c 10N O (_emperau : a) 25 0.32 0.31 031003
at dlfferer_n dopingss and fixedJ, (b) at fixed dopingé and differ- 10.0 0.56 0.38 0.470.04
ent couplingsl/t.
Ill. RESULTS J/t (Ns=10) Agp/d Typ!d Te/d
Our numerical calculations are performed by recently de- 12 0.40 0.49 0.080.04
veloped finite-temperature Lanczos metlibuve investigate 16 0.30 0.35 0.150.03
square lattices oN;=8 and 10 sites. Most of the results 2.0 0.29 0.32 0.230.03
presented are for thl =10 case. Standarfi=0 exact di- 2.5 0.31 0.32 0.370.03
agonalization results on small clusters are generally plagued 10.0 0.56 0.38 0.470.04

by strong finite-size effects. Performing calculationsTat
>0 and within the grand-canonical ensemble gives us not

only the thermodynamical properties of the system, but mos#iate coupling range. In the strong coupling limit, e.dt
importantly diminishes finite-size effects far>T;.2* The =10, the extrapolated values agree well with the strong cou-
finite sizeT;. depends primarily on the number of low lying Pling resultA o= §J—2t+ £t%J=5.72"

excited states in the system. Thg can be quite small when

the system possesses eitli@ra large number of low-lying B. Spin and charge susceptibilities
energy states db) if the physics is sufficiently local. A local _
physics is expected at large>t where the size of the Kondo 1. Zero doping

singlet is of the order of lattice spacing. We present results |n Fig. 2(a) we present spin susceptibilitiky,(T/J) at

for half-filled casen=1 and at finite dopingd+0. Due to  zero doping,6=0, for different values of J. AT>t,J nu-
particle-hole symmetry onlg>0 is considered. In this work merical results agree with the highexpansion given by Eq.
we restrict calculations to thermodynamic quantities as areg). In the intermediate temperature regime we find rather
&, XsXc and the specific heat,= — T9°F/dT?, whereF is  surprising result. All curves merge on a single curve Tor
the free energy. Despite small system size we can compute T.~0.6J. It could be argued that this is because the high-

thermodynamic quantities at any dopidgsimply by choos- T result in Eq.(8) scales withJ, i.e., the function y4(J/T) is
ing the appropriate chemical potentfal.

A. Chemical potential u

In Fig. 1(a) we show chemical potential as a function of
T for small doping values andl't=2.5. Due to the particle-
hole symmetry the relatiop(5=0)=0 is valid at allT. At
T>1,J and 6#0, u approaches the expressiffaint dotted
lines), calculated by the high-temperature expang®nNu-
merical results start deviating significantly fro(@) below
T/t~2. At small T . approaches a finite value even in the
limit 6—0. Infinitesimally small doping thus leads to an
abrupt change of the chemical potential. Such behavior indi-
cates formation of the quasiparticle gag, also found in the

1D DMRG calculationg? To investigate the quasiparticle 0.0, 05 o s 20
gap in more detail, we present in Fig(bl w«/J at fixed ™
doping for different choices af on a system oN¢= 10 sites. FIG. 2. Spin(a) and chargdb) susceptibilities) ., Jy. vs T/J

We find thatA,, increases almost linearly with in the gt zero doping. Faint dashed line (@ represent high-temperature
intermediate coupling range, i.e., faft=1.6, 2.0, and 2.5. expansion result, Eq8). Legends, given irfa) apply also for(b)
Extrapolated values af ;, in the T— 0 limit are presented in  and the inset ir(b). In the inset in(b) all six different curves for
Table | for systems oN ;=8 and 10 sites. Results, obtained J/t=1.2-10 are presented. All, except foft=10 appear as a
from the two systems agree reasonably well in the intermesingle line. Legend FT irfa) indicates analytical result, E¢8).
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independent of. However, the agreement with the E§) is  system has a large gap at The scaling is therefore less
only within 10% up toT/J~1 [see Fig. 2a)] while the over-  obvious for theNg=10 system size, however, locations of
lap of susceptibilities calculated for a wide rangelJof is  the peaks nevertheless approximately scale @idmd peak
within a few percent. At lowF, x, reaches a maximum at PositionsT, approximately matcl ,, obtained fromu for
T=T, and then approaches zero. In the strong coupling limig=1.6, 2.0, and 2.5.
the spin gap\; is larger thamd,, however, at smalled/t
this is no longer true. In the region of smalt~1.4 A is
expected to vanish due to formation of AFM ord&iow Spin susceptibilityys, presented in Fig. ), at small
temperature behavior gfs in the intermediate coupling re- doping §=0.1 show a similar high-temperature behavior as
gime is thus governed by the spin gap. There are two posn the zero doping case. At>t,J, x, follows Curie-like 1T
sible approaches to estimatg using our method. AT=0 behavior, predicted by the high-expansion, Eq(8). As in
A, equals the energy difference between the low&st@) the 5=0 case,x curves calculated for different/t show
and the first excited§=1) state. AtT#0 the Ag can be scaling abovel >T.~0.6). With decreasing temperatuge
estimated from the position of the peakyjg(T) given by the  reaches a peak dt=Ts whereTs is close to itsé=0 value.
activation temperatureTs. We believe, that the second EVven thoughAis expected to disappear &#0 andT=0,
method, even though indirect, gives results that are closer 8t T>0 remains of the spin gap can be observed. Similar
the thermodynamic limit. results were observed in 1D calculatidfigwith further de-
Values of T, are presented in Table I. As seen from Fig. c€@sing ofT x; first decreases and then sharply increases at

2(a) with increasing), low-temperature peak in spin suscep- even lower te.mperature._ In this region the ;usceptibility
tibility moves toward higher values @fJ. T therefore does CYVe€ can be fitted to a s[m'ple form:C‘S/T' This Curie-
not scale linearly withd for smallJ as doesh, (see Table like form suggests that finite doping produces nearly free

s . localized spins. In contrast to 1D resulfswe find that for
). This points towards a non-linear dependencd gof's. J/t . . _
that was found in 1D systehand also recent calculations in !ntermedlate valued/t=1.6, 2.0, and 2.5 the Ioca_l mo_mt_ant
the 2D systemt? A qualitatively good agreement is found is reduced and equals3~0.18. In the strong coupling limit,

also betweerTg and theA obtained by the projection quan- ‘]_/tozzt_)o’lntr,:ﬁelzc?rlerr?]grroemté;acehri Ifl'mastrrd vitttle
tum Monte Carlo simulation¥’ a0 X w-temperature linyd should satu-

At small values of the Kondo coupling/t<1.4 gapless rate either due to RKKY interaction between localized spins

AFM long range order is expected to develop as a conse{-or small values ofl/t or due to Kondo screening effects for

quence of RKKY interactiof®1°Uniform spin susceptibility frg;r ‘]/[t_l' Th]is gfftect ca;r_w t%etfeleg g]othe gazse ofr:arger
in this case saturates around the temperature which is givq‘gss" éi\\llveregr:ntolrnlar;]:\r/?c])? a'sa i ﬂ_&t 0’ 1 .cés?: X5 Shows

by the RKKY interaction between localized spins. Our re- - A
y P The charge susceptibility. at §=0.1, presented in Fig.

sults in this regime are less reliable at Idwelue to pro- 3(b), follows the 17 behavior at highF. predicted by the

nounced finite-size effects. s e ' ofi, ( .
The charge susceptibility. shows in many respects dif- €XPansion in q(7). xc reaches a local maximum aroun
T=Tgp. For small dopingT,, overlaps with its value ab

ferent behavior thays. The agreement of numerical results . .
with the high-temperature expansion depends strongly. on =0. At even smallefT we ot_)serve a sharp INcreasexy.

In Fig. 2(b) we showd y.(T/J) at 6=0 and a wide range of xc(T=0) should be proportional to the quaS|part|cIe'masfs.
J. At large J/t=10, whereJ is the dominant energy scale in | € Sharp increase of. therefore suggests that quasiparti-
the system, numerical results agree with the analytical resuIEIes are very massive.

given by Eq.(7), down to T/J=0.4. At smallerJ high-
temperature limit is reached aboVéJ>2.

Xc is governed by a single energy scale, i.e., the quasipar- At large values ofl, physics of the Kondo model becomes
ticle gapAq,. This is reflected in nearly perfect scaling of local. We support our claim by results shown in Fig. 4 where
Jx(T1J) for the Ng=8 system in the intermediate coupling we present comparison gf and . for J/t=10 and analyti-
region 1.2<J/t<2.5[see the inset of Fig.(B)]. Scaling is  cal results obtained within the atomic limit. Spin and charge
due to the fact that the quasiparticle gap scales nearly linsusceptibilities, Eqs(9),(10), presented in Fig(4) follow
early with J, i.e., Ay,=0.3J in this regime.A,, remains 1T law at T>J. At lower temperatures we see a peak,
finite even at smalll~1.2 where the spin gap disappears.marked by arrows. We introduce two temperature scales that
The scaling does not persist up to the strong coupling limitmark the peak positionsts=0.453) and T,,=0.386) for
J/t=10 due to a crossover wherke; becomes larger than spin and charge susceptibility, respectively. Given values are
Agp. The location of the peak al=T,, seen iny.(T) obtained analytically from Eq€9),(10). At low-T both sus-
matches the value of the quasiparticle gég,~A,, ob-  ceptibilities approach zero @=0 consistent with the exis-
tained from the doping dependence of the chemical potentidence of a gap in the excitation spectrum. Ldvibehavior is
(see Table)l Despite a smaller system size we believe, thain both cases given by, > 8 exp(—38J/4) which leads us
near or at zero dopind\s=8 system shows less finite-size to a conclusion, that the quasiparti¢Emallest gap A,,/J
effects then théNg=10 when calculating quasiparticle prop- =3/4 governs the low behavior of both susceptibilities.
erties of the system. The reason is that fhe=8 noninter-  This is possible since a quasiparticle excitation modifies the
acting fermion system has a sixfold degenerate level at zercharge configuration and also changes the spin quantum
energy which overlaps with the value of the chemical potennumber by+1/2. Even though both susceptibilities share a
tial at zero doping. In contrast, thd,=10 noninteracting common gap, they reach a maximum at slightly different

2. Finite doping

3. Comparison with the strong coupling results
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10 | e Jit=1.6
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0.0 0.5 1.0 15 2.0

2.0
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o 1.0

0.5 A

0.0
0.0 0.5 1.0 15 2.0 ) ’ ’ ’ ™

FIG. 5. Specific heat a6=0 c, (8 vs T/t and (b) vs T/J
calculated on a system &f;=10. The faint dashed line represents
the free electron resulld) and result obtained in the atomic limit

(b).

FIG. 3. Spin(a) and chargeb) susceptibilities)xs, Jx. vs T/J
at 6=0.1 and 0.2. Legends given {h) apply also for(a) and both
insets.

temperatured s and T, which is due to different nature of _
the excitation spectra above the gap. singular and appears only far—0. At small values of],

We see that numerical calculations at ladje=10, also ~ €:9-J/t=0.8, 1.2, 1.6, and 2.0, we observe two peaks,in
presented in Fig. 4, agree reasonably well with analyticall "€ low-T peak that has emerged from the lifting of the
results at zero and finite doping. Agreement at finite dopimﬂ\?_generacy af/t=0 can be attributed to spin excitations.
is somewhat surprising since in the atomic limit only a singleWith increasingJ this peak shifts towards highef and
site of the Kondo lattice is taken into account. The diver-Proadens. The broadening is due to the spin excitation spec-
gence of spin and charge susceptibilities at low temperaturdfm having bandwidth of some effectivé; which in-
can be explained within the atomic limit, see E¢sl),(12). creases withl. The broao! peak, that or_|g|nateo! frqm the free
Divergence at low temperatures is in the strong coupling!ectron band ai=0, shifts towards higheT with increas-
regime a consequence of nearly degenerate level system. i J and becomes even broader. This is due to the interplay
even lowerT, results saturate towards finite values due toOf Pand effects and the charge gap that develops with in-
weak interatomic correlations that lift the degeneracyyin CréasingJ/t. The two peaks abové/t=2.5 merge into a
such a deviation from the predictedTllaw can be seen in single peak which in the strong coupling limit scales linearly

Fig. 4(b) while in ys such deviation is expected at even With J. At J/t=10 ¢, closely follows analytical prediction
lower T. calculated within the atomic limit as seen in Figbbwhere

c, is presented as a function @fJ. Our results for the 2D
- lattice are in many respects similar to results for the 1D
C. Specific heat lattice obtained by the DMRG methddt!®
Results for the specific heat, are shown in Fig. 5. At At finite doping, §=0.1 shown in Fig. @), small peaks
J/It=0, ¢, has a peak at finit& as for free conduction elec- due to the spin gap are still visible at smallAt even larger
trons. The contribution of localized noninteracting spins isdoping,é= 0.2 shown in Fig. &), new peaks emerge at very
small temperaturefsee also the inset of Fig.(l§]. These

0.8 . . : : peaks shift towards larger temperatures with increasing
05 70'2 ----- ‘ll\/t'::l;c limit ] The shift is approximately quadratic in We believe that the
_?f 0.4 1.5

— Jit=0.8

1.0
TA

FIG. 4. Spin(a) and charggb) susceptibilitiesys, xc vs T/J 0.0 05 1.0 15 w20
calculated numerically at/t=10 (full lines). Dashed curves repre-
sent results obtained in the atomic limit. Positions of the p&aks FIG. 6. Specific heat, T/t at(a) §=0.1 and(b) §=0.2 calcu-

(@ andTyp in (b) in the atomic limit and zero doping are indicated lated on a system oN;=10. The inset represents the expanded
with arrows. low-temperature region ith).
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same low energy scale that gives rise to these peaks is reeupling scales a& ,~0.3]. AssumingA.=2A,, we get a
sponsible for saturation of spin susceptibility seen in the indinear scaling for the charge gap.~0.6], which agrees

termediate coupling/t and §=0.2. with the value forT.. At lower temperature$~ T, physics
at zero doping is governed by the spin gap This remains
IV. CONCLUSIONS true as long ad\;<A,,. Near the strong coupling regime

_ ) . . the opposite becomes true, then the quasiparticle gap deter-
We have investigated finite-temperature properties of thenines the low-temperature physics of the spin susceptibility.
Kondo. lattice model on small square Ie_lttlces. The cr_]emlcal The charge susceptibility shows substantially different be-
potential at low temperatures shows singular behavior as Ravior than the spin susceptibility. On a smaller system of
function of doping. The jump in the chemical potential is a)_— g we find scaling withJ in the whole temperature range
consequence of the quasiparticle gap at zero doping. Thgihin the intermediate Kondo coupling region. This result
quasiparticle gap scales approximatelyXag~0.3J in the  g,ggests that a single energy scale, identified as a quasipar-

inter_mediate coupling regime, i.e., £6/t<2.5. Similar e gapAq,~0.3], governs the physics of the charge re-
scaling was recently found by quantum Monte CarloSponse of the system.

simulations® which fu'r.thermore show that scaling persists  a; finite doping we find a new energy scale. It is reflected
even below the transition to the AFM statdf~1.4. In the i the saturation of the T/behavior inyy(T) at small tem-
strong coupling regime the quasiparticle gap again scalégeratyres and in the appearance of low-temperature peaks in
linearly with J as A,,~0.78) which is not too surprising e specific heat, at 5= 0.2. Approximate quadratic scaling
since in this case .phy5|cs becomes local dnd then the ¢ the position of the peaks ia, with the Kondo coupling
only energy scale in the system. The crossover between g anqih suggests, that this energy scale could be attributed to

two linear regimes occurs when the spin gap overcomes thgye RKKY interaction between uncompensated spins at finite
guasiparticle gap, i.e., dft>2.5. Interestingly, calculations doping.

in 11[3 show two distinct linear regimes for the charge gap vs
JI/t.

Two temperature scales govern the temperature depen-
dence of spin susceptibility in the intermediate coupling re-
gime. One scale is given bl /J~0.6 above which we find One of the authors, J.B. is grateful for the hospitality and
an almost perfect scaling calculated for a wide rangd.of financial support of Los Alamos National Laboratory, where
One possible explanation of this unusual scaling isThas  part of this work was performed. We also acknowledge the
governed by the charge gadp.. We have shown in the pre- support of a Slovene-American grant by the Slovene Minis-
vious section that the quasiparticle gap at the intermediatey of Science.
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