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Abstract – We study the evolution of the optical conductivity in the t-J model with
temperature and doping using the Cluster Dynamical Mean Field Method. The transition to the
superconducting state in the overdoped regime is characterized by an increase in the kinetic energy
of the system, in contrast to the underdoped side where kinetic energy of the system decreases upon
condensation. In the underdoped and optimally doped regime, the optical conductivity displays
anomalous transfers of spectral weight over a broad frequency region.
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Introduction. – How superconductivity emerges from
a strongly correlated normal state is one of the most
important problems in the field of strongly correlated
electron systems. One of the most powerful bulk probes of
carrier dynamics is the optical conductivity. For example,
the changes of the integral of the optical conductivity
upon superfluid condensation [1,2] can be linked to the
kinetic energy change, and therefore gives a direct probe
of the origin of the condensation energy. Much effort was
recently devoted to measure this kinetic energy difference
between normal and superconducting state [3–5] using
a sum rule, by integrating careful measurements of the
optical conductivity up to large enough cutoff of the
order of 1 eV in both normal and superconducting state.
It has been shown that in the overdoped regime, the
absolute value of the kinetic energy decreases, while in
the underdoped regime the system gains kinetic energy.
These surprising experimental results have been the
subject of lively controversy [4,6,7] but have by now been
obtained by at least three experimental groups.
It is well known that the approach to a Mott transi-

tion causes a dramatic reduction of the low energy spec-
tral optical weight. In this paper we address the more
refined issue of how the difference between the optical
conductivity in the normal and superconducting state, and
the consequent difference in kinetic energy are affected by
the proximity to the Mott transition.
The optical conductivity of an electronic model

governed by a Hamiltonian H consisting of a band with
dispersion εk and gauge invariant interaction terms obeys

the f -sum rule [8,9]∫ ∞
0

σ′(x)dx=−πe
2

4
〈T 〉. (1)

The conductivity σ′ is given by the current-current corre-
lation function obtained by Peierls substitution coupling
a vector potential A to the Hamiltonian H(j = δH/δA,
T = δ2H/δA2) and the bracket 〈· · ·〉 denotes the
thermal average with respect to H. T is given by
T =−∑k,σ,α=(x,y)[d2εk/dk2α]nkσ. In the Hubbard model
nk is the electron momentum distribution function while
in the t-J model nk is the momentum distribution of
the electron operator projected to the subspace without
the double occupancy.
For model lattice Hamiltonians with nearest neighbor

hopping, T is the kinetic energy operator. The exper-
imental inference of 〈T 〉super −〈T 〉normal is therefore
extremely important for understanding the mechanism
of high temperature superconductivity. Here 〈T 〉super
and 〈T 〉normal are kinetic energy in superconducting
and normal state, respectively. Notice that this quantity
requires the evaluation of 〈T 〉normal below the supercon-
ducting transition, a quantity which is well defined and
can be calculated only in a mean field framework. Only
mean field theory provides the possibility of defining the
continuation of the normal state below Tc. This is the
procedure done in BCS theory, and our approach repre-
sent the extensions of these ideas to correlated systems.
Experimentally it is estimated by an extrapolation
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procedure from the normal state data as described in ref.
[7], which necessarily involves additional approximations.
In the Hubbard model, the optical conductivity has two

contributions: a low energy contribution due to a motion of
holes and a high energy feature at an energy scale of order
U due to transitions to the upper Hubbard band involv-
ing doubly occupied sites. Hence the operator on the right
hand side of eq. (1) is the sum of the two different contri-
butions which cannot be separated. It has been shown in
ref. [10] that entering the superconducting state results
in a reduction of kinetic energy of the Hubbard model,
in stark contrast with the BCS theory where the kinetic
energy increases upon entering the superconducting state.
The reduction of the kinetic energy was also found in
the t-J model treated within the spin-polaron approxima-
tion [11]. Here we use the t-J model to evaluate separately
the two physically different contributions, motion of holes
and superexchange contribution. This allows us to make
direct contact with optical experiments which measure the
kinetic energy of the holes since the cutoffs which are used
are such that the transitions into the upper Hubbard band,
or the interband transitions, are not included.
We use the Cluster Dynamical Mean Field method

on a plaquette. This approach has been used by several
groups [12–18] to elucidate several qualitative aspects of
the physics of the cuprates such as their phase diagram
[12–14,18] and the variation of the spectral function and
the electron lifetime along the Fermi surface [15–18].
We will show that this approach clearly captures the

striking feature that doping induces a sign change of the
difference between normal state and the superconducting
state kinetic energy.

Formalism. – Our starting point is the t-J model, a
lattice model consisting of two terms, a nearest neighbor
hopping term t, and a nearest neighbor spin-spin antiferro-
magnetic exchange J . An infinite on site repulsion forbids
the double occupation in any lattice site. We use an exact
reformulation of this model in terms of a spin fermion
model using the Hubbard-Stratonovich transformation to
decouple the spin interaction. The effective action describ-
ing the interaction of fermions with spin fluctuations takes
the following form:

S =

∫ β
0

dτ

{∑
kσ

c†kσ(τ)
(
∂

∂τ
−µ+ εk

)
ckσ(τ)

+
∑
i

Uni↑(τ)ni↓(τ)+
∑
q

[
Φ†q(τ)

2

Jq
Φq(τ)

+i Sq
(
Φ†q(τ)+Φ−q(τ)

) ]}
. (2)

The Hubbard U term in the action will be taken to
infinity to enforce the constraint. Here Φq is the Hubbard-
Stratonovich vector bosonic field which decouples
spin-spin interaction of the J term [19], Sq is the spin

operator, Jq and εk are dispersion of the spin and hopping
term of the t-J model.
The exact Baym-Kadanoff functional for this

problem is

Γ[G,D] =−Tr log(G−10 −Σ)−Tr[GΣ]
+
1

2
Tr log(D−10 −Π)+

1

2
Tr[DΠ]+Φ[G,D], (3)

where G and Σ are the Green’s function and self-energy
of the electrons while D and Π are Green’s function
and self-energy of the Hubbard-Stratonovich bosonic
field [19,20]. The Φ[G,D] functional is the sum of all two
particle irreducible diagrams constructed from the Green’s
functions and the bare interactions [21]. In eq. (3) G is
a matrix in cluster momenta and Numbu space. The
self-consistent solution selects d-wave symmetry for
the anomalous components (F(π,0) =−F(0,π) and zero
in other patches where F is the anomalous Green’s
function).
We use the Extended Dynamical Cluster Approxi-

mation (EDCA) [12–14,22] on a plaquette because it is
the simplest cluster dynamical mean field method that
justifies ignoring the vertex corrections of optical conduc-
tivity and has the advantage of describing better the
spin fluctuations by allowing the cluster spin to relax
more efficiently through its direct exchange interaction
with the bath. The only approximation of the EDCA is
to replace the Green’s functions in the interacting part
of the functional Φ[G,D] with the corresponding course
grained cluster Green’s functions Gk→GK =

∑
k∈KGk

and Dq→DQ =
∑
q∈QDQ where the sum

∑
k∈K is over

those k momenta in Brillouin zone which correspond to
certain cluster momenta K (see [12]). The saddle point
equations of the functional eq. (3) are ΣK = δΦ/δGK and
ΠQ = 2δΦ/δDQ which automatically give piecewise con-
stant self-energies. Together with the Dyson equations
GK =

∑
k∈K(G

−1
0 −ΣK)−1 and DQ =

∑
q∈Q(D

−1
0 −

ΠQ)
−1 form a closed set of equations. Few comments are

in order: i) The bosonic self-energy is simply related to
the spin susceptibility [20] χq = (g

2Π−1Q +Jq)
−1 and this

expression can be used to calculate bosonic self-energy
knowing local spin-susceptibility. ii) The Baym-Kadanoff
functional Φ[G,D] which depends only on the clus-
ter Green’s functions can be obtained by solving the
cluster problem coupled to the fermionic and bosonic
bath [14,22]. As an impurity solver we use the exact
diagonalization for the cluster and an NCA approach to
treat the hybridization of the cluster with the bath. This
method, allows us to access only the temperatures not
much lower than the critical temperature (of the order of
0.8Tc).
Within DCA, the vertex corrections to the conduc-

tivity vanish just like in single site DMFT. This is
because diagrams involving vertex corrections carry a
factor

∑
k∈K vkGk ∗ Gk whereK is the patch in momentum

space labeled by cluster momenta K. In the 2× 2 plaque-
tte, all the patches are symmetric under k→−k and the
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Fig. 1: Optical conductivity across the superconducting transition for various doping levels from underdoped to overdoped
regime. Letter S in legend stands for superconducting state and N for normal state of the t-J model.

integral vanishes. The optical conductivity can therefore
be simply expressed by

σ′(ω) =
∑
kσ

e2v2k

∫
dx

π

f(x−ω)− f(x)
ω

×

[G′′k(x−ω)G′′k(x)+F ′′k (x−ω)F ′′k (x)] , (4)

where vk is electron bare velocity, Gk and Fk are the
normal and anomalous Green’s functions, respectively. To
study superconductivity we allow the off-diagonal long
range order by employing the Nambu formalism.

Results. – In the following we describe our results in
the light of the current experimental situation. Given the
simplicity of the model used, and the fact that experiments
probe the kinetic energy change at a temperature of
the order of 0.1Tc, we stress the qualitative rather than
quantitative results of our work.
Throughout the paper we use J/t= 0.3 and t= 1. In

fig. 1 we show the evolution of the optical conductiv-
ity for various temperatures and dopings from room
temperature T ≈ 0.09t down to transition temperature
Tc ≈ 0.034t and slightly below the transition T ≈ 0.76Tc.
We have representatives of the three regimes of the cuprate
superconductors, slightly underdoped δ= 0.14, optimally
doped δ= 0.16–0.2 and the overdoped case δ= 0.26. In
agreement with earlier theoretical single site DMFT stud-
ies [23,24], the optical conductivity extends over a broad
frequency range, and consists of a broad Drude component
at low frequencies that sharpens with decreasing temper-
ature and a higher frequency (“mid infrared”) component
with substantial intensity at high frequencies.

Upon entering the superconducting state no real optical
gap opens below the transition, unlike the standard case
of the s-wave BCS superconductors. However, a substan-
tial reduction of the optical conductivity due to super-
conductivity is observed up to very high frequency even
beyond ω > t≈ 2500 cm−1 which is ten times bigger that
the superconducting gap at optimal doping ∆≈ 0.1t itself.
The Drude-like low frequency conductivity narrows as

the temperature decreases from room temperature to just
above Tc and continues to grow even below the transition
temperature. This enhancement of the low frequency
conductivity as a result of the onset of coherence is
seen in many experimental studies [25] and should be
contrasted with the reduction of the conductivity at higher
frequencies due to the opening of a gap.
The optical conductivity has a very long tail of inco-

herent spectral weight that dominates the optics. Further-
more, the tail seems to have an approximate power law
σ∝ (−iω)α with the exponent close to α= 2/3 [26]. At
low frequency, optical conductivity is Lorentzian-like at
optimal doping with ω/T scaling. In fig. 2b we plot
(Tσ(ω))−1 as a function of ω/T which is temperature
independent quadratic parabola in the region −T � ω� T .
Similar behavior was noticed in ref. [27].
We also point out some quantitative discrepancy

between the present cluster DMFT study of the t-J
model and experiments on cuprates. In our calculation,
the location of the optimal doping is shifted to slightly
higher doping levels (∼ 18%) and the superconducting
dome is flatter than observed experimentally. Finally,
the peak in optical conductivity around 0.15t is the
standard BCS coherence peak arising from the excitations

27007-p3



K. Haule and G. Kotliar

0 1 2 3
0

0.1

0.2

[etargetnI
σ

,0,x{ ,xd)x(’
]}

ω

δ=0.14 N
δ=0.14 S
δ=0.2 N
δ=0.2 S

-2 -1 0 1 2

50

100

T(
))

ω(σ
1−

δ=0.16 Τ=0.028
δ=0.16 Τ=0.052
δ=0.14 Τ=0.028
δ=0.14 Τ=0.052
61.5 + 6 ω2

46.0 + 13 ω2

a)

ω/Τ

b)

ω/t

Fig. 2: a) The integral of the optical conductivity
∫ ω
0
σ′(x)dx for normal and superconducting state at T = 0.028t. The optical

weight in SC state missing in the finite frequency region collapses into a δ function. The spectral weight is restored when the
integral is taken up to ∼ 4t∼ 1 eV≈ 8000 cm−1. b) The inverse of low frequency optical conductivity 1/(Tσ(ω)) vs. ω/T is a
quadratic parabola independent of temperature in the optimal doping regime. Optical conductivity is thus Drude-like at low
frequency up to ω∼ T .
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Fig. 3: (Color online) The difference between the superconducting and normal state energies as a function of temperature.
The following curves are shown: blue with triangles up - Ekin−S −Ekin−N ; red squares - Eexch−S −Eexch−N ; green diamonds
- Etot−S −Etot−N ; black with circles - µS −µN . The meV units on the left side were obtained using the usual value for
t∼ 400K∼ 0.35 eV.

across the superconducting gap in one particle density
of state and is not visible in experiment which is closer
to the clean limit than our theoretical calculation which
overestimates the scattering rate.

Transfer of spectral weight. – A surprising aspect
of the physics of strongly correlated materials, is that
low energy phenomena affect the spectra of the mater-
ial over a very large energy scale. This general phenomena
is illustrated in fig. 2a, which shows the integral of optical
spectral weight in the normal and the superconducting
state. Low energy phenomena like the onset of super-
conductivity which involves a scale of a fraction of J ,
involve redistribution of optical weight of the order of
4t≈ 1 eV which is 40 times more than the gap value. A

theoretical insight from our calculation is that the high
frequency redistribution of weight comes from the anom-
alous Greens function F ∗F in eq. (4) and hence cannot
be observed in the density of states or ARPES measure-
ments. The large range of redistribution of spectral weight
was also measured on cuprates and pointed out in [2,4];
however, in experiments the redistribution of spectral
weight drops very fast with doping and in the slightly
overdoped regime, the spectral weight might be recov-
ered even in the conventional range. In our calculation,
the redistribution of weight decreases on overdoped site as
well, but the rate of the change is slower than measured in
cuprates.
In fig. 3, we show the change of kinetic energy of

holes, the superexchange energy (
∑
ij Jij〈SiSj〉/2) and
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total energy upon condensation as obtained from our
cluster DMFT calculation. The kinetic energy can be
directly calculated from the spectral function and the
superexchange energy from the spin susceptibility. Most
of the condensation energy arises from an increase in
magnitude of the spin-spin correlations 〈SiSj〉 when enter-
ing the superconducting state in agreement with strong
coupling [28] and weak coupling [29] analysis.
In agreement with very recent experiments on

cuprates [3], we see that the change in kinetic energy
upon superfluid condensation reverses sign between
overdoped to underdoped regime. In overdoped regime,
the conventional BCS picture is applicable where kinetic
energy of the system increases while the superexchange
energy decreases just like the interaction energy in
conventional phonon mediated superconductors. The
later difference is much larger such that the total conden-
sation energy is positive. In underdoped regime, the
superexchange energy still decreases upon condensation
and gives the largest contribution to the condensation
energy [14]. However, the kinetic energy of holes is
gained in the underdoped case so that the kinetic energy
contributes to the condensation energy gain.
In fig. 3, we also show the change of chemical poten-

tial upon condensation. Similarly to kinetic energy, it also
changes sign with doping and it increases in the under-
doped regime while it decreases in the overdoped regime.
This is a consequence of the asymmetry of the normal
as well as the superconducting one particle density of
states.
While the vertex corrections vanish in the simplest

mean field cluster approach (EDCA on a plaquette),
they are nonzero in the real space cluster schemes,
Cellular-DMFT [30] on the plaquette. By computing
kinetic energy directly from the one-particle Green’s
function in Cellular-DMFT, the short range vertex cor-
rections are fully taken into account. We have checked
that all our qualitative results are captured also in
Cellular-DMFT, where the cumulant periodization
[31] is necessary to capture the Fermi surface shrinking
and correct kinetic energy change from underdoped to
overdoped regime.
In conclusion, we have studied the t-J model at finite

temperatures using the cluster DMFT on a plaquette
near the optimally doped regime where the maximum of
the superconducting temperature is located. The mean
field theory captures the main qualitative features of
the transition from the overdoped to underdoped regime
and how it effects the delicate balance of kinetic and
exchange energy between the normal and superconducting
state.
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