
Introduction

In condensed matter the basic equation is relatively simple to write :

fundamental Hamiltonian ! H= He + Hit Hei

He = § Im. -1 [ { Vedi -%-) here Veeeñ) = f÷,p ,
Ji electron coordinate

i≠j

Hi = § 2¥
.

-t 2£ Vii ( Ex - Es) here viiciz-B.rs)= Z;¥{É ; R-
ion coordinate

£-1b

Hie = § Vei Cri - ED here Veicri -E.) = - hÉgpz,

what is missing ? spin (very easy to add)

spin-orbit interaction and other relativistic
corrections

because electrons

travel footwear nucleonsHsoc = Gim.ci#riFrili-si ✗ Z
"

Important for heavy ions

Fe : 20 MeV

ce : 0.3 ev

We usually treat ion of electron degrees of pm : lev

Ir : 0.5 eV
freedom differently heroine Ma >> Me

.

7m¥ = 18h0 Mm÷= 25760 hence expansion in Mµ% is well justified .

Born - Oppenheimer approximation
"almost

"

ollrroyp works

Exceptions : _ conventional superconductors
- resistivity due to phonons
- electron -phonon coupling important

Beroun nuclei move much slower than electrons the nuclei positions can be from
when computing the electron wore function .

Born Oppenheimer on-sotz for separable more function It> = Metatron>☒ Him >



Born-oppenhaim.cn#+Hie+Hi)lXeeecton
> ⑦Him >

Beroun Mx >> me we finest neglect
P
'

Em
.

term for the purpose of

computing the electron were function , i. e. ,

How long is neglected term
<Kenton 1%1%1 Keaton > ?

Pion ~ peee.mn ⇒
<Hadron 1%2%1 Keaton > ≈ E%ñm M¥g ,

stained be mmoll correction in most cases .

[ He + [ Veil E- Re) -1 ,§m{ Vitae- End] treason> = Eeeetnm[Ñ}] Headroom>

Be one now fixed to the lattice
rites and are parameters

in electron Seh . Ey .

They are not operators
or physical observables

.

We can still determine best possible
tort structure by composing

E-electron [ { R} , ]
,

Eelection [ { 1232] ,
.

_
.

bee fcc cph
. _

-

closed - pocket beeagonol

Finally we can consider small wiener.ons around the ground
state lattice configuration

H I ✗electron > ☒ Him> = [Headroom 'c + § 2¥] Headroom>⊕ Him >

≈ [E-electronic [ { E3] + % É]/ Hadron> ⊕ Him>
A¥É-

fines phonon dispersion at the
secondorder expansion

as the nuclei move
,
electrons are

always in the ground state were function



ions ?

We
can expand E. = Egri lithium+ it.

↑ small displacement

Eeaohon [[I}] = Evian [ {RI] +284¥behalf"] it. +±§E§¥?#¥Ñ, + .

.
-

↑
✗ •

↑
"

↑
equilibrium should vanish Matrix of force constants

become force = 0
in

equilibrium If truncated .
here

,
we call it

the approximation

Yn periodic solids we will me more appropriate notation

¥small vibration ~ turn

µ
¥ all

③

Ñm&

tractor to the origin of m - th unit all
Ena = Tnt is + tina← small nitration

"

nice
,
+mÉ+ms Wikoff position

Eeeeomn [{E]] = Éeacsollk}] -112 Mmxi %É÷%÷?j Mmrsj ,mm,

✗ 2-

t.fi?jxigi2-IOmsj
Mai

Harmonic oscillators

then Hlx> ⇒ ⇐±ÉÉIÉmsj + Eeaiaon# Him> = E Him >
nai

ni i j

Instead of P2solve in Lagrange { zig
.

⇒ § EM. Ñ% ≤ T

formulation :

H= Ttv ; L = T
- V

We are solving clerical Lagrangian : L = [ ± Malini,
- [ I Mnai

" " I
Mmsj

mm
- Mai

mi ! f

0 A

Egnetion of median ¥t( 81in
.
;) = 8¥. ; gives M.mn. ;

= -2
n
??I Mmsj

mnj



0 A

EOIM.mn . ; = -2 Is:b
"

Mmg
. stopped 9/6/2022

mnj

phonon polarisation
We search for the solution

with annett : ↓

Unai = ¥ Egging,
É % - Wpt)

ohjfennFdifferent-x.ge
for convenience branches atoms

- TMI wjEP.iq)ÉÑʰ
_ "

P
"

my
. m , Hm qpg.gg, pilgrim

- Wpt)
= -[

•I different atoms-

'

Fri
. / f.← ✗ f-

£ Ñmj§ⁿˢi eijcrin-i.ms
Pm

= D- i,sgl§ )
mxi

Dynamical matrixmatrix of force
contents

D is essentially the Fourier transform of §
.

I [ - wifsdij-D.ipjcjifeh.jp = ◦
rsj

Is eigenvalue problem solved
by Det [ D- cp - wp2I] = 0

How
many

solutions Wplj) ? Dimension is Ki)=

# atom in unit all ✗3

-#= .
""" "• man
3 auntie branches

wpcoj ) are eigenvalues of D- .

polarization Epsjg> one eigenvectors of D- .



Direct method of calculating phonons

Fone : Fe ≤ - dÉ%↑f}] This regains solution of
Hea
.
boric and

↑ implementation of forces , which is
origin

usually done analytically .

In practice it is many
times easier to calculate force , i. e. , first derivative

because :

É<4111-14> = <Ftl Hit> + <41HIFI> + <✗ I §¥1x>

EKE.fi -1> + <+14¥ >) + 1418¥14>

=
EE <XIX>

= 0

because <✗ [ER]] /✗[{123 ]> = /

Hence in general force : Fma. = - £Eeʰᵗoie[[ =
_ < tee.at/oHeahoII~eaaoio>8 Rnai orRnai

is easier to compute .

We can create supercell and displace atoms
in different [f§

"
"i

is ◦""Placet

supercells and evaluate force Fini ¥-1
tone on atom

at In. ;

the matrix of tone constants 01in?i=µ≈⇒(Éµ;% ) when using small displacement
tlmrsj

This is become - Fm
, ;

=
{E_electron- [{R ] +Mⁿˢj] ≈ ÉÉeeecbm

etmrsj{Unai
Gamini {Mmnj



Most of this remaster will be overted to solving
He IHeL = Elte) with 18electrons

We miss day do

-look for universal behaviour of
materials

- Fermi liquidconcept
-superconductivity of superfluidity

-collective low energy
acitation such as phonon

and

magnous
- symmetrics new greetly reduce the complexity

- good momentum. To in solid one to translational imperience

- point group
and space group symunity of the loffice

- SUIC symmety of the spin encoded in Pauli matrices



simonsl.li

Simple example of a field : ID phonons

um-①-

www.0-uive#-0-.IFMrpotemtiolVcx)
÷

a-¥1
✗ <= n - e

minimum

H = & P¥µ + { ( Xiu - Xi -a)
2

Hamiltonian

L = § EM ¥- El Xiu - Xi -at Lagrangian

the low energy
excitations will be long wavelength

moves .

We do not need to care

about the discretion of the problem ,
but can define the theory in continuum .

Xia = i • + 4. a)ré ∅ cat) continuum field
"

014×3
2 i=o i= ,

I = 2

↳ § EMÉ - E#+ ,
-0:)

Transition to continuum : ∅;
→ To cat )!

.ie

has dimension of qr

¥ -0
.
. → Ta - e 8¥ / - a -

L ✗= ie

§ → ⇐ foll has no dimension
O

L L

< = £444M a # - EéC¥T]=fu[±mÑ - :(¥5]
o

o

Deline Lagrangian density L[ 0,0¥ .io ] = 1M¥
-¥ %¥T

Action is the functional of 0 : s[∅] = flt[de L [0,0¥ ,
:O]

S is classical action

∅ is classical field 0kt)



Eg of motion: EOM

The chemical rotation corresponds to the extremen of the action os=0.

s 20] = Ju(ok220,3,0]
If we sold a small correction 0->0+1 and y

is small S(0+4) = S107+0(e)
s(p+ y) =foutfou2(0 +y,3 +8,0 + i) =z

Note: f(P +M) =f(0) +jxex)o4
Follows from discrete enolog: f(0, +y,,02+1,...] =((0,,0.3 +[05:9:+..
For done core 2220i + 40,30 +0,0+ y) =2216,8i]+

+284.64i +238 +2016:3i + 0(u)
s(0+ y) =(fox2(0 +y,8 +10 + i] =SC013 +oufon0,8]M(x) +

+Sujrt30* + Soujono,0)i+...-of -
I T

*dtypoortanaly
by ports

-O

The boundary conditions are satisfied by and P(Ix + M(
(d = P1Y) become Protiofy b.c.

It follow O((0) =0

s20 + y) =3203 +Sor(xy(x)- g(5)3 + 0(94

Has to monish for evey (x)
voniation, has the following Eg. here to be noticfiend:

Lagrangian 3-5x(55) - 5(55) =0=OM.

We sometimes me 0x0 =8



E×: L[ 0,0¥ .io ] = 1M¥
- ¥2 %¥T stopped 9/8/2022

OL

5¢
--0 o¥¥◦)= MitE.FI#=-so%01-*E0M:8F-EiG-*)-E-lFio)--o} - M # + sé%¥=0 or ¥. - eé¥d∅=0

solution is
propagating more (x±vt ) become = v20

"
and = ∅

"

C- MÑ+ré)∅"cx±vt)=o end a- •FEI is the velocity of propagatingmove .

0=-01cxtvt)

m¥,=∅c× - ut )

off
propagating sound moves

1. 2 . Hamiltonian formulation

generalized or canonical 117×+1=00%-10,0×0,16]momentum :

t ) is a continuous function of
× just life field 0cx.tl

i

ylomiltomien density : ☆[QQ.IQ/Tt=1T0-L
[0,0×0,45]

Our example : Text)= Moi and Tl [0,0×0,1-1]=1-118--4#(0×0)<=27,11-2+1240×05

total H[0,1T]=§4[±ñT2+±&é@✗ 0T]

What is
energy contained

in a poundmore ? ④ = ± v01'(×- rt) and IT
= ± MN Ex- rt )

0

Hence HC∅,ñ]=fÉ⇐Mv2+±sé) '
ex -vtÑ=⇐MéF+±ré)f[ 01×5504

- - TIE
number

±
*
→ [∅ 'T



Excercise: Compute specific heat (for domical IP chain of phonons
-

We used energy olemnity: u = tocet-tostnJN5TH
for discrete systems ok= .OK: olp:
this system can he obisonetics: d

= TdPidMi

We will me the trick for gardnet's Hamiltonian
d =F0
π=E

then BH = knπ + [Ra=0xπ= F
then x = -dEsh((sJF (F)
-

Not x dependent

n=((ts) =5 =1T

G: oF == x obucity of phonon

Equivalent to eclipartition
those a

= E MpT+dRsT

T
↑

rinetic potential
-

energy of orcilator
r

But solids here axT3 Constant is 3.x (in3D)r
-- this is quantum effect.



Quantum chain of atoms

Aconstant is 3. M ( in 3D]

this is gwentun effect!
- t

Excitations are
given

tired and ÷ one

available at low T
.

In Q.tl . we have discrete states of homeroom'c

osatohor onailobee E=tw(Mt E)

Yn gwentun mechanics [Fini)= - ihEij when chemical conjugate variables notify {pi , xiforij
↑

poisson hoists

since Fond 01 one canonically conjugate variables they
must rot's tg
{IT(X) , (x

'

) ] = Ix- ×
'

)

Jm Quantum formulation we quantize the fields , hence [itch , 01T¢ ,] = - its fix - × '

)

commutators01^1×3 and itcx ) one now quantum fields
They are notjust functions of ✗ and t but Hermitian operators .

Classical hamiltonian H [ ∅
,
it] → isquantized to H' [ TO ,

IT]

HI# it] = £4 [±ñiT+±&é@✗ OF]

How to solve quadratic Hamiltonian ? ×

Derivatives can be avoided in Fourier space . ☒ (* = f-§ É&× hence # =¥ ④a) e- if×

First Brillonine zone only :g=Ém= En ITCH = ¥§ É8
✗ IT
I

# [ Ignite ] = EfEÉ£+%"⇐ II. II. + {sexy;ig.) 0%0%7=2 t.mil?giT-g+EeEgI0g0-gLife &

f¥É8"8) ✗= {
g.
= -g. §¥ = {g. = -8-

Define wg= Nlgl = effing hence { kég2=±wjM

Finally Ñl0g,iTg]=§±µiTgiTy + ±mwjogo.gh.ge guontmn harmonic oscillator



Recall olyero of guantum
harmonic oscilebor:

H:+Maix" with spectrum En=WSM+l) here t+

emidistant energies
can be interpreted as a particles in a state with energy we

There particles one horous become the
shots on he

occupied by many particles

transformation to loolder operator
e =w(x +inp)
at=(x - inp) [pi,xi) = - ioj
hence (a,at] = ma(x+nwP, x-up] = 1 as necked for loons
and etc = mw(x"+ intwrp"-ia) = mwx + wp--z
hence H =w(e+a +)

Book to

robing phonon problem H(eg, F(g) =EctFgFig +<MwyP,g
Define would operatom of: (Be +EweF-y) OT"= 0g becomeand

is

e=(π+-T)
chers (og,05) = MWs (Py +wgT-y, 0-y- EwsT] = MNo(0) - 1.3) =1
oOy =zw2(OTy - iwFg)(Ic +itwyT-1) =ENt(5-gOTg +rwIFsF1g +weCOGTy-TePel

&weey+ d =EtMar Myoe +ETTy+wT)+hw =EcFFs +aMwjBOP
#Log, F(g]= Ea FgFlg +IMwyP,g * Stopped31312022

N +Finally H =

Eaney(0j0g+1) with wy =(p) 0 TE



What is specific heatof aguontam chain ?

z=Tr(Éˢ# <m/ e-BE WHY Im> where 1m> = 1mg.> ☒ 1mg ,
>⊕ . -

- 1mg.>
↑

can be 10)

11> = Oj 10)
127=(0*210)
i.

E-¥%=◦<m£léˢY 'F'⇒ In,> =tI⇐ˢ%)% e-±ˢ%=é¥É;£ My ⇒ L

n = - I 8-sent = -E%§f±sy - all - e- ˢY))= -%
-

ing
- ,_Éiiy→ )

={ ⇐ wgt exy÷)Here generalize to any D:
21T 21T

1-
☐+1

4-Usa = -12 ±y+f¥÷,☐%¥¥i = u.tn#i-vy.fF:jHEsYI-- not -v☐ ! ☐¥,I ◦

zero point
_

generalized to
0

energy ☐ - dimensions V18 is Mr von'°bʰ swig I = ✗Hk :

%, ,z→
✓fÉ¥☐

00At low T :
u ≈ not 1-

☐+ 1.§
.

☐¥
,

G- %↑t = c. 1-☐
-

21TNB ZINS

1-
☐+115@vs)☐TDH .§ ✗

☐"

04 = Not ID IFPI =At hight : n=≈n. -1T¥
'

9¥ →
⇐ ii. + Tvs

.

⇔.

0
Not T- D

Cr = Ers 'D classicalÑmlt\
should not be sphere list

cube
,

hence this is only order of magnitudeestimation
,



Second quantization AtlondgSimons chptz

-
Let's start with the single particle

more function Xxir) : H'"% = Ex ¥
<it / a > = X.fi )
¥

- For 2 particles , the two possible move functions one
Xcx

, ,
*a = F- (¥.CH#cxa)T-XxdxiXx,cxa ) fermions -

bosoms
+

symmetric move function for bosons
antisymmetric - it for fermions

Ym Diner notation we would write

It,⇒ = ¥ (17, > ④ /XD I /⇒④ It, >)
- For H- particles we can write :

17,22
,
_ . - In> =CI GP/ Xp

,

>☒ /Xp
,

) . - - ④ /Xp
,

>
P

Here 9=-11 or -1 for bosons or fermionsⁿome §
?
is C-1) or (e) for odd, or even permutations for fermionsconstant

(1-1) for barons

É=-m H -

mum
her of all particles

Mx - occupation of each single particle
stele

.

- C-§
Example 3 particles permutations ↑%§- -

+ 1
I 3 2

- I

2 I 3 - I

2 3 I + I

3 2 I - I

3 I 2 1- 1

For fermions the same move function is conveniently represented rith the

Slater determinant :
✗
×
,

Ix
,
) ¥ ,

(xD
, _

_ . ¥
,

(xx)

<""
'
"

' "" " " '
"%> = C " At

" ' 1%1%1
,
-
-
- ¥1k. )

:

4.⇔ - -- ¥
.

There were function one often cumbersome to deal with
,
in particular when

the Mumba of particles is not fixed
,
i. e.

, superposition of stateswith different*.



n

1) Any giventurn state can be written as a linear superposition of some

product states written in occupation representation ( in a chosen single particle tons) ii. e,
I4) = £ ✗

on In> where /MS = In , Ms . . Ma> • ± /Mi >☒ IMD⊕ . -
- /Ma>

how
many times a state is occupied

for fermions M ; can be 0 or 1

These product states are forming the
mong

- body wenn ,
which spans the Fock space .

(M
"
bosons )

2) Instead of working with 2N many body .
states we wouldabhor most moth 2N operators .

We introduce raising / lowering ladder operators
•it/ •; which

increase/ decrease the number of particles in a given state
:

@ it 1 Mi Ma
, .
-

, mi, . .
> = Titi 9£ 1M , , my - . .

,
Mitt , _ . ->

(2)
Qi 1M Me

, . .
-

,
Mi

,
. . ) = Tmi 9$ I M , , My . .

. .

)
Mi- i

,
- -

- >

here si =É Mj
j=i

For bosom 9=1 hence sign is always positive ,
but we haveT pnefoetor

For fermions there is no prefoetor of to > = It > and of 113=0 @ill > = to> •i 103=0

however we have to account for the sign
.
The

nigh
counts all

thmiom which come in For space before
the i- th state .

We could

do choose the ones that come after the i
- th state ,

but we have to be

consistent once we make a choice .

- By repeated application of et it is easy
to see that :

1M my _ _ . > = t.TN#.6i-)Mi 10>
His extra

rigs
become the product is ordered out stands for

: lot)? . . .@ÉE↑"

to>{
, www.gny.mu, ,,µ man gag , , , , , µ , , , µ , , , . . . µ , , ,

hence If@i = Ñ i is number operator .



- Note that commutation relations for operators • i ,
at take care of the sign of

the move function ^ The state is completely antisymmetric become

[of
, of ] :-O and hence @it ojt *Ojai) 1M ,

na
,
.
_ . .
> = 0

The fort that fermionic state can not be occupied more than once is

taken care of by ten fact that of of = 0 ,
which follows from the

fort that [ei
,
oil:-O

- What did we achieve : Hustead of working with 2
"states we can war

with 2N operation with a maniple algebra .

sinnpleetowple-swpp.se we hone sites with electronsmk spin
-

We choose the the order of mingle particle states ! I 2 3 4 56

I ↑ I ↓ 2T 2↓ 3↑ 3↓

Identify Fork space : For
open is 26 large , i. e ,

nites ✗Horns

/ 0 00000> I 10>
1 1 00 000 > = I ↑ 0 07
10 10 000> = I ↓ 00>

10 01 00 0> E 10 ↑ 0)
:

¢
careful with - sign

10 10 00 1) = I ↓ 0 d) = of oof 10 > = -ofof10)

;
11 1 11 1 I > I / ↑t ↑ ↓ ↑↓ > = QFOÉ _ . . 0%+10>

rite ' Tiki rite#in this order no n'fn

9mW of dealing with 26 states we will me
12 operator QF, - - Oct , a, . . @ •



e) We need to learn how to change the single particle boris
173 = 0×+10> we snow in> ten> is complete, hence

§ A><H = 1

II > = 0¥ to>

II > =[ a> <HI>
= ? Rilo > <× /I>

×

I can be expanded
in X complete lion's

Hence •¥ = @I < ✗II>

example : 177=1×3

II > = Is>

QÉ = file cetcx) < ✗ Is> =fdeotcx) ¥ É
"

stopped here 9/15/2022

Repeat from previous lecture :

- From ◦definition @ it In , ma
, .
-

, mi, . .
> = Titi 9£ In, , my - . .

,
Mitt , - - ->

Qi 1mi Me
, . .

-

,
Mi

,
. . ) = Tmi Gsi 1M, , My . .

. .

,
Mi - 1

,
- -

- >

it follow that •fait mi - - - ni . _. > = Mi In , _ _
. Mi . . . >

hence Itoi = Ñi is number operator .

- By repeated application of et it is easy
to see that :

1M my _ _ . > = t.TN#@i-)Mi 10>
His extra

rigs
become the product is ordered and stands for

: lot)? . . .@ÉE↑"

/0>

- Change of basis of =§ at <HIS



of One booly operations:
exempter T= E28m = folp E0<p-pi) = Solp cMp

v =V(x) =fo4V(x)[5(x- xi) = f4V(x)M(x)
How does the IB operator act once state? You dissonal representation it is simple

v(n,n,...Mx =E0xMxn.m.- Mx) =20x150xn.m,..- M
↑

rizenvolve
=>xemple: E.2kmMp1rpcMpa ..- Mpx

To get general result we change the bois:
0 =0x0(x,(x)(x(x1)0xr

=20,Qx(x110(x2)
eigenvalue Ox

-

because[(x11x)(x10(x)(x(x2) = (4/15(x2)

x for x eigenton's

Example: T = Solp conceptOp = (ke+ix)(-cm)x(x) become - (c7m(x) = - dx-xy

Reminder 5= i5 => (x1p(x) =f(x-xIfiU)

- (cEm-(x) =dx-x))- zin)



c) Two body operators ( Coulomb repulsion)
in positron representation

Ñ 1Mt imz , - . . Mix> ⇐ É[ VCR. - %) 1m
, ma . . . Ma>

where 1m
,
ma -

. my> = a
#Cr

, ) @
+
Cri . . _ cetera) / 0>

i≠j

ghln
: Ñ = {foiñfdri @+(f) •+(E) VCT -F) QCPD @ (F)

can add s
,
s
' ly ri → Rs

and Ñ→r; s '

Notice that this is not Mir) MCÑ) :
check : etcñjotcry airDcecñ) = - d- (F) otcr-DO.ci)

air D

- -
off-F) - air] cetiry

= - otcñ>[ dairy _ ocñotcñi)] @ cñ ')

= - SCF-F) Mcñ) + Meisner 's

proof for fermions
:

Ñ Imma - - Ma> = Effendi ' Vair,éᵗEeIE0
>

air > otcñsocñecñ >•-É°
>

→

dir > otcñ ' ) @ CÑD Corr - r,) - d- (E) acts] cetera - -

cetera) to>

↑

first exchange on off) is mining in this
term _

otcñotcñ 's • cñD[§ ori-r.it ,}
"
écñ

, ) . .
. - Oteri,)

- eÉ⇒] to>
"

9 ↑
0exchange with any @it is mining for bosons the some *apt c- it → 4- it

otcrsotcr.sc CFD Iori- F) C- i)ˢ
" '

•
+(F) . . - cetera ) 10>

"

gIE i
↑

will be moved together , at is mining
hence no

eetheroighceTrJ2ocr-riIorcrt_rptDsi-t@tcris.e
-
cetera ) to>

"

9 ↑Ém
.es from the fat teat @itwas

@it is mining
mining

2 Sci -E)%- %) @ +
( ri) - - - Qtcri, )i≠j

Conclusion : dñolñ ' VCT- F) ater > otcr
' ) OCÑDOlñ > In . . _ > = {[Vir; - rj . ] In . . . >

i≠j
which concludes the proof .



2. 2 . Applications of 2ⁿᵈ ouontizotion
&

Electron Them .
in 2ⁿᵈfinalization

H =§ fat ester) [ fÉ + vcñ)] @scñ) + ±[ GoPro
Pr ' Veelñ- r's Oster)Q%ñ)osier 's @sir >

SS
'

1-E.)
e) Nearly free electrons Vee << F
-7

2M

ikr
Oster) = ¥% e @ +

SS

VCT ) = [ Vg e
iÑr note that for periodic Vcñ) ⇒ of

c- G reciprocal
L

H = 2 fair ↓ %,

É☒ ""@ is Ém •as + § Vgei
"

] stopped here 9/20/2022S

H = § otso.is/EmoEritVoi.jftoorperioolie=IQ+sOs+as1Emof,⇒ + Va ]systems .

&
,
a

S r
'

Exact diagonal nation of a
Mohit Tsai = Em of_ ¢ + Voi- a ; only Sir

+ ↳ Mit

MtT U = E =
/Er

\
Eh

-

-

.

. g.)
✗
F- M E Ut

hence 20£ Tsai @é =#HE Mᵗ)sé Or' ⇐[otrlsg Eg cut )ga, @ é =@£ Ey dg
rs

'
sa' sa

' g £

Where ✗g+= 20£ MegH = { Eg Ñs§s &

ground state :

In>= NIT tgts 107
EgSEE

If Vg is countout then fermi surface is sphere÷,In general Femi surface is complicated occupied
217 surface in 3D space .

Remember
✗[ = ? My #É

#

Oster)
g. → vfÉ:-p £

T.fi?T--Xgcrg=trv-¥"☒Mig = c.IE#zei&-Fiu;j

If periodic ñj=&<gas
-
-

'
☒[ g.

= ¥fÉ¥s°j•> = Vue f¥¥pgñ



Bloch 's theorem

Yt Coulomb repulsion can be neglected
( token into oceantime mean - field way) the solution

satisfies Bloch 's theorem

4m£ ( in) = Ei
£

teaser) where linear +E) = Umali)

↑
lattice vector

alternative form : Una is periodic

Yair +I> = ei
#
%
,
(F)

single particle potential this
is periodic in the

solid
,
i. e.
,
VCT-1£) = Vcrs

Yt's fourier transform contains only reciprocal
vectors , i. e.) Vg = Ego, V,

proof : Vg = ,-§ÉÑv⇔oPr=¥fÉ°Ñ+Ñ vcñ , ◦Pr

Vale

=#
•§ ÉÉR fÉÉvcr> ◦Pr = Vg §

ÉÉ
= ↳ deja

ÉÉ
Note that here vcñ) = You

""

VE

It then follows that H=2(¥meE⇔ + Va ) cetacean
,

and the meh"

I

Tsoi = zÉmoÉ + Vada -é=a mixes only momenta
that

differ by reciprocal
vector G.

Solution must hone the form Xp, =#
☒ +

Moira
I ↑

linearsuperposition differ eyci
then Veers = eiññ eici.rs

Mari → É£ñµ⇔
-

this must be periodic in lattice
because it only has

& components in
Fourier expansion



Nannies functions of tight binding approximation
two simple regimes !

- nearly free electrons
in Bloch bonds Cs g p orbitals )

-

nearly localized atomic
states ( for Mott insulating dork)

For narrow valence bonds the plane moves are not a good
starting point ( need too many) . The atomic orbitals are not a good starting
point either ( they are not orthogonal or complete .

)

Better starting point in this situation one
Monnier orbitals .

- they can be made exponentially
localized provided

they are made of bonds
with a gap

in
energy ,

and

with total Chem number
c- 0

.

E n
states in a solid

E.= 1/1/14 /4/1/14 ✗£"
'

p
pÉ%Efs

Veit (F)
- 2 S

f

- 2s

•NE y ⇒ ¥?
on

"
•

ion

⇐

[Éa%%pm• are
hard states semicore

(atomic states
orbitals) (atomic orbitals )

2s

Is

>

(lattice
sporing)

"

in this
regime Monnierorbitals for 301 or 3d-13s might be good .



Nannies orbitals

On cñ-E) = Ñ¥jf◦PeÉ%~m .ci ) Mmm⇔in - ↑
Bloch eigenvectorcan

go
bad "3-2

of #◦ x÷a%. oratory unitary transformation
M+M=l

Insects = [ ÉER Mm*m∅mcñ -E)
Em

I melt) / → 0 as Ñ-It is large

a) approach atomic orbitals in the limit •→ • and one looked

cñ-E) 1=>0 as trust >> a

b) constitute complete and orthogonal single electron
hens

provided by Bloch moves
. (The same Hibbert space

that is

spanned by Bloch moves is spanned by
Monnier)

214ms> <trial = [ ∅nñ-ñDL0ncñ - E) 1 ( just invent definition
✗
me
in)

me
mpz to prove

Proofs : e) Functional dependence

Olncñ-E) =Ñ÷;ife 2 e-
isi iéñ

m

£ tlmci- E) Mmm (E)
=

⑤_Éfoie {
"-E)
µmci- E) Minnis) depends onFIM

a) orthogonality
10m¥ -ED ∅mcñ- E)◦Pr=[V¥§(ix. ◦ios eiÉÉ-iÉÉ

mm
. §iUii%Mama:

IBZ

we snow :f4nq*cñ)Xm%(ñ)oPr = {mm {air haha

f.0m¥ -E.) 01m ( i- E) ◦Pr = van fÉ¥, ei
#←%)
[ Unit Mmm = 8mm of

,
- *

"

I
{
Riku

Monnier orbitals are life Fourier transform of Bloch moves
,

but

with added fleuihtity of Minnis) that allows lorolizotion .



Simpleexonin : Ym the limit of vomiting eternal potential ,
determine the

Monnier orbitals for 3D signore
lattice

this is bad example become it does not home fop ,
hence not

exponentially localized
.

Ym real materials in the gap , better behaviour can
be

expected.

Xmecñ) = tpgieii
E-

Me

( i- E) = FaÉ, folk e-
¥""

fg = ⇔%fd&×
"→⇒

× . . . × . .

I Bt
-The

%⇒=÷Éʳⁿ¥¥;^Y;:;¥:÷¥

*
fall off slow become there is no moron

bond with gop . g- him !



Why not constructing
Monnier orbital by Fourier transform each bond reponekly , i. e.,
set Umm Css = 8mm ?

highly degenerate point
creates hints in 4ms cñ) gouge

suppose we
sort bonds occurs this S

- path so

si bonds ↓ that

<Mmrci) /Mm 's+ •e)
= Inn , - OCAD

space , which guarantees localized
⇐

t.EE#E=-=+::::::::...Monnier functions . Any jump
in r

It we try to make the gouge
smooth across

degenerate points we come
back to the some

point and bone different
bond.⇒ We can

not treat every
trend

separately ,
but only the entire set of bands

that overlap as a
set

.

Then we try to arrange
the phone between neigh long

s- points meh

that the spread of Monnier functions isminimal , i. e. ,

D= < v2> - < v5 = min where < rm > =§i% ) rn (f) Opr

* turns out we need to minimize gauge dependent
port ( the one thatdepends

on U )

Ñ -

-2mm# ④m%-ñsroncñsoir#④mcñsiroirI
-

You¥ᵈp§rÉʳ"Lumi life Unr> = Ñmn Ftp
Ñ is Berry connection

Finding smooth gouge across
the first B.Z.

is deeply connected with

topology . Homely nonzero ahem number
,
which characterises

topological gap , comes obstruction for smooth gouge,
and hence

localised Monnier functions can not be found .



C. = 0
\

We can make⇐

!≠°
uranium

µ, a. my a.)
wonder out of

these bonds

Conroy C=f( A-↳ Berry connection

If we have completely flat bond with C≠o and flathers owe to topology (not- interaction)

⇐ÉÉ###p⇔ me www.nerhightcx
I ✗ 8 as opposed to Tex r e-FEW

r superfluid stiffen ☐ ✗ C as opposed to Da e-
¥"

What is Chem number ?

for 2D is simpler C
,
= É§R"(B) OPE C chem number

ZDBZ

R%ñ=Tr(fA÷ - 8¥
.

+ [MATT Berry curvature

Afmnlé) -- fum-jcisif-s.um.ci) ◦Pr Benny
connection

Funarothrees of the phone

If we have inversion symmetry , we
can determine Chem number by panty cheek

TRIM 's et
'premed in & , , peg

3=0 IE =-3 - £Yet
,

- F) = ± HEH ) for paint TRIMS ⇐ 190)
11 IE = Eta
G)
Psii (0,1-40)

(0,0 , ±)

(E
,
's 10)

(1,0 , ±)-111TGBP"
"
= ± 1

Trims i
(0

,
I

, ±)

↑ ( E
,
E

, ± )
it + ⇒ trivial
if - ⇒ topological



If loroliud Monnier functions are found, we can mite

tight binding Hamiltonian too the low
energy

bonds , i. e. ,

we will show that
:

Ho = - I Éijnotniocemja
ijz

mm

mm É rites /spins tij = - < Omri / H
◦

10m¥> = -FT[ MissGUK]
Monnier orbital type

creation /field operator :

£2 (F) = §, ¢0m ( F-I;) miz from continuous model to discrete model

↑ ← spin
hard lattice
index rite

Original Hamiltonian
is

H=§§Pr Oster) [ JIM + vcñs] @scñ) + ± ◦Pr
'

Veelñ- r's Oster)Q%ñ)qcñ >astr )

"

÷_
Ho

Ho = [ fir on on;p§r∅m*ñ - Ii)ÉÉÉii] On.ci- Ep
M , M2

ij -ÉÉ
a tuna Éig? = - < ⑦me;lH°/ ⑦me;)

mzs.fi) Uman#t.jE-E.fi#g-.fiaoPreiIEi4m*-rU*mm-il-Egg
,
!;]

e-
"¥
4-
-

-
-

foir~mfa.ci)%Ñ= funfair_
Éjⁿ¥¥¥,f◦Pe eiKE-EPMFnm.lkEmcee) Ummah) which proves

④Erm )mn
,

thot Éij? -FT[ Miss Greco]

Because ∅cir- I;) are located we expect < Omri / Ho / long> to toll off
rapidly with Ki - Rjl . Usually we consider m.at and natant !



Meet
/
the form of the Coulomb repulsion

!

Ñ = ±[ GoProPr ' Veelñ- r'S OFF)Q%ñ)Q ,
(F)@sin )

Ssl

with Qz (F) = [ ∅m( F-I;) Qmiz me how

Mii

Ñ = { [ Ummzmsmn
ss
, ijem QMTis Qmtzjs ' ②noses ' ②mums

ijerm

with µ
MMM> My

ijem
= §ProPr ' ∅m*cñ- i;) /QFcñiijVeeÑ- F) 01m.ir '- Rion,cñ- Rm)

= < ∅m
, Ri mzrjt Vee / ∅mzRe∅maRm>

The interaction in this representation tends to be short - ranged because

of screening in solids ii.
e.

,
in metals ✓ is not really ± but

door to ?
§;¥j=Ñe=Ñm

mannishThe onsite term is the largest viii.. and is called
Hubbard /Hands intonation

- For single hand we can unite F- 12
,

Viii QTSQT.si @is. @is

{§ Uiiii •is+Eis
Mis Mis

Ñ=[Viii Mir Mia
i

- For Jd orbitals and tag shell it can be approximately written as :

Ñ≈(U-spÑci¥) - zy5-±yE+EyÑ
elect for tag ol orlihels

where Ñ = [ eins 0ms loudly this forces
1) maximal 5

ms 2) nweimel I at mis
§ = [ 0ms ss

' @ms '

mss
' the liggesttem is changing energy

Lm= [ i Emmim" Qin's Omi's
m'm" s Ñ(Ñ number of pairs



Hubbard model of Mott
- Hubbard transition

% we hone a single trend and only on -
site interaction ,

His single bond
Hubbard model

H = -[ tijoisojs + U? Mi↑ Mia
ij

Exact solution exists for ID and • D.

- In ID the low
energy

excitations one CDW and SDW with different
velocities

m me

vs

Nc ≠% spin - charge reparation

The system is always far from. non
- interacting Fermi goes,

i.e
,

electron is disentangled into charge -1 ripim move for any
V30

.

The spectral function has no poles thatwould correspond to

the free electrons

Dcw)

F- Plw)

- Ju o D we have several phases
- Fermi liquid at small U ( similar to Femi

gas )
←#

- Mot insulator of longe U ( disentangled atoms )
- Norious magnetic phases at low T that one sensitive to

the precise form of tij
T crossgen

between metal and insulator

critical point with 2ⁿᵈorder transition

PM\;P°?- AFM rotate when HH only
>
u

coexistence of metal and insulator
1ˢᵗ order transition



- You 2D we do not hone e-out solution .

It is believed that the uniform phones roughly resemble capote 's

phone diagram . Numerical low-T studies seem to suggest that
various stripe phones win at low

T
.

Mott
r

U~ 8T

i
# Mendoza
'

:

>

{= I - M

No consensus of psewdogop
mechanisms and

conditions for SC .

- Is QCP at 1- = 0 , or first order
Mott homition wth very

ton T ?

- Are there two phases of lout
ninth different vices of

the fermi surface ?

- Is SC state more stable than stripe phases
?

for rvhic t,t
' parameters ?



Homework 1, 620 Many body

September 27, 2022

1) Using canonical transformation show that at half-filling and large interaction U the
Hubbard model is approximately mapped to the Heisenberg model with the form

H = J

X

<ij>

~Si
~Sj � 1/4 (1)

where J = 4t2/U . Solution is in A&S page 63.

2) Obtain energy spectrum and the ground state wave function for water molecule in the
tight-binding approximation. You can use the following tight-binding values "s = �1.5
Ry, "p = �1.2 Ry "H = �1 Ry ts = -0.4 Ry tp = -0.3 Ry ↵ = 52�

Homework I
-

1.) Using connoniud transformation show that at half filling
and large U the Glutton/ model is mapped to the

Ylieiasenbeg model Han = L§p§isj- t)
g- ¥

Solution page 63

2) Obtain energy spectrum
andground state none function

for motor

molecule in tight
- binding approximation

!
I a Hpzht

S Es O O O ts ts Es= -1.5 Ryp.is#-YEp=-1.2RyPx 0 Ep 0 0 tpasttpwsd
-

he Eh= -112g
Py Py ° 0 Ep 0 tpsinx-tpn.mx ↳ = - ◦ -4 Ry

tp= - O - 3 R

pz O O O Ep ° °

✗ = 520

&

his tstpwsdtpm.mx 0 Eh °

hi tstpw-x-tpm.mx O O Ea

Determine eigenvalue spectrum .

The
Ofgem configuration is 252ps and lugrogen

Is
'

hence we hone 8

election
.

Which states are occupied in this model
?

What is the ground stole move function ?

– Determine eigenvalue spectrum from tight-binding Hamiltonian

– The oxygen configuration is 2s2 2p4 and hydrogen is 1s1, hence we have 8 electrons
in the system. Which states are occupied in this model?

– What is the ground state wave function?

3) Obtain the band structure of graphene and plot it in the path � �K �M � �. The
hooping integral is t.

Show that expansion around the K point in momentum space leads to the following
Hamiltonian

Hk =

p
3

2
t (k�K) · ~� (2)

where ~� = (�x
, �

y) and �
↵ are Pauli matrices. From that argue that the energy

spectrum around the K point has Dirac form.

1



3) Obtain bond structure of graphene Els ) in
and plot it in the path P→k→M→i

K
'E.i
ME. = elliot ⇔

? K
E- act , E) 1

,

1%? I
T

F-_ 5£,
-1b€ > b

,

1=38
,
-1 }e, > -

H= -Eptij@ibjtbjtcei7HE-yqt.j@i£%q+be+Éˢ¥b:o)
How to get hiii ?

"

( * fates)=zñId a: fcé) Ei - Ifan:O

bi f-Hr) 0 G= -1-1 first
* ÷ :|:(÷:

"

0
, ¥310 )

f-CI )= - t(ei£¥+ei£É+eiññs )b. = ( 1
,
- ¥ )

ls=2( 0
, ¥)

Ñ
,
= ri- ri = ({ , Ers) @

= ri -ri - a- = ( 0, - ¥;) aZm=±Ñ, -15k = ( E
,
'Fs )

= ri - ri - ie , -- C-± ,
Erica

rk=±lÉ-ñ+Ñ= ( 3,0)
f-(E) = - t ( eiˢ¥+iG•¥s + e-

is
+ iega Ers + e-

i Gets)
fcñ) = - t (zeiG•Éswsr + e-islets)

'

R×e=r f-(E) = _ t(2eiG•Easr¥ + 1) e-
'Gets

Sy @
= 2¥ /fall? É(4 -12ms usage E)It 4os4ˢ¥)rim%y•E ))
z - z É( It 405¥ + hwsk-Euscsyo.EE)) ws2¥= 1-1%0"

2 -12Wh,@

rñ-i

Finally G=±tfÉ+ÉusCEsy
1hr

B ±ññ
◦

K
'

:X M

K

T,, , ◦*÷, > µ
,

-☐

k
II iii.

☒

Let’s use the standard notation

~a1 = a(1, 0) (3)

~a2 = a(
1

2
,

p
3

2
) (4)

~b1 =
2⇡

a
(1,� 1p

3
) (5)

~b2 =
2⇡

a
(0,

2p
3
) (6)

Here r1 = 1
3~a1 +

1
3~a2 and r2 = 2

3~a1 +
2
3~a2. The K point is at K = 1

3
~b2 +

2
3
~b1 and M

point is at ~M = 1
2(
~b1 +~b2).

2



Homework I
-

1.) Using connoniud transformation show that at half filling
and large U the Gln blond model is mapped to the

Ylieiasenbey model Han=L§,@ isj- t)
g- ¥

Solution page 63

amid idea is to me similarity transformation
in the

many body Hilbert spake
:

to transform Hamiltonian

Ñ → H'= e- ᵗ°Heᵗ°^ = H - t [O
,
H ] -12¥[0, [0,1+7]-1 - - -

É is Hermitian 0 will be of the order t so that t0

H
'

has the same
way

- body spectrum .

We read : HI Hu * t Ht and Hu → the

then : H' = H - t Lo
, Hittite] + É [ 0, [ 0, Hut this] -1

-
-
-

4-
Hu +

ᵗHt#Hf - t [0,11-+3 + Elo,
[ 0

, Hot] -1 OLE)
0 mortem proportional to t !

We
refine HE [0, Ha] this is egnetion for 0 !Tbh
It

'
= Hu - ECO, He] + ¥ [0,1ft] = Hu - EÉ [0, He] -- Hu + É[1+40]

Here

Ht=¥j,CiEcj, end our

gear for
① =§.pl?HtPiii-PatiH- B)a

1) Prove [0
, Hu] = He 13 projects to n'ugly occupied state2) Heon

-

energy
= Ps H

'

Ps =
"
[ ⇐ % - ;) ↑ ↓ ↑ ↓ ↑ ↓ I ↓
ajj>

↑ ↓ ☆ ◦ it ↑ ↓ Pati
j

i

honey
"
hole



2) Obtain energy spectrum
andground state wavefunction

for motor

molecule in tight
- binding approximation

?⃝
I a. tspxp-pz.ES

Es O O O ts ts Es= -1.5 Ryp.is#-KEp=-1.2RypxOEpOOtpasdtpwsd
-

he Eh= -112g
Py Py ° 0 Ep 0 tpsimx-tpn.mx ↳ = - ° -4 Ry

tp= - 0.3 Rypz O O O Ep ° °

✗ = 520

his tstpwsdtpm.mx 0 Eh °

hi tstpw-x-tpm.mx O O Ea

Determine eigenvalue spectrum .

The
Ofgem configuration is 252ps and lugrogen

Is
'

hence we hone 8

election
.

Which states are occupied in this model
?

What is the ground stole move function ?



orhoheeofomel3) Obtain bond structure of graphene Els ) stun in
and plot it in the path P→k→M→P

✓ T K
'

ET
M£

,
= Q ( 1,0) ⇔

i k
éi-aC±iE) I

,

1%7
.

5=55+18, > b
,

%= }@
,
-1 }e,

H= -2tij@ibjtbjtei7HE-q.t,j⇐i£¥o£be+Éi£ÉtbEoe)< ip

How to get Ñ
, ,É ?

only nearest -neighbor hopping ."

1T¥)# fates)=ñId at fcé) Ei - Ifan:O

bi f-Hr) 0 G=± / first
¥= !):(

' - ¥ ,
◦

^

%
,
? :?) iñi

,

f-ñ)= tf + ei£É+eiññs ) { = ± /fast
b. = ( 1

,
- ¥ )

ls=2( 0
, %)

B
,
= E- ri = ({ , Ers)e

E- ri -ri - é= ( 0, - ¥;) aZm=±Ñ, -15k = ( E
,
'Fs )

ri - ri - ie , -- C-± ,
Erste

Rk=±lÉ-ñ+Ñ= (2-3,0)
f-(E) = t (

+ iG•¥s
+ e-ir-E-iego.IR, + e-

i Gets)
= t(zei¥És WEE + e-islets)

'

R×e=r f-(E) = t(2eiG•Ewsr¥ + 1) e-
'Gets

Sy @
= ¥5

Ifk't ? ÉCI -12ms usage E)It husk¥)ñm%y•E ))
z - z É( It 405¥ + husrEuscsyo.EE)) ws2¥= 1-1%0"

2 -12Wh,@

rñii

Finally G-_ t.tt#s-wEdusCEsydE---nEs in

☐

,

"
⇔." "

:X M

K

T

◦ 'skies > lr
,

-☐

k
II iii.

☒



Show that Hamiltonian around point I = C} ,o ) can be written as

f) = Byte § -E) . } where 3=(2*3)

g- = 1k -Ise ⇒ 3a=( +

F)Expand around Ñ~K=¥(¥10) +g,

we could expand & ,
but it is easier to elford fist = _ t(zeiG•Ewsr¥ + 1) e-agate

- t(zÉ8JEws( 2¥ + E.) + 1) Éi$¥ =
- t(zei%E( - ± as (E) - rzrim(¥)) + 1) ei°¥s

↳ (E) as (8-2) - rim (E) rim CLE) ≈ - t( ( it '

Eigg)( - I - Fs 8¥ ) + 1) ( Iti 8¥ )÷ "

E =
- t(- ( I + Baig,)a+Eg×) + 1) ( Iti Ffs)
- tf - Elgxtigy) -11 ) = Et Cgxtiyy )

f-(e) ≈ Eat Cgxtigy) hence Hg be ←

at 0 E or Hg=Eᵗ◦jE
ai-E-tg.io where 2=(2×121)

ej-3-ECfitg.ci)
g=±Eᵗ 1ft
✗



Quantum Spin Chain of main
0ns (2.2.5 AS lool)

Here we freeze the charge degrees of freedom and consider only the spin
degrees of freedom .

We are interested in magnetic interaction
between localized moments

( for example in Mott insulator ) The process of virtual exchange

happens because of quantum tunneling even if
there is a gap for

charge excitation

rite i $ time ☆

◦

¥
rite j
→

8

t U t → y=ʰ¥ according
to SOPT

virtual even if gap in charge
e-citation

H = -JIE - Ij
< :p

[sit % ] = icij Ears? only on the same nite
it does not commute

total spin s ≥ ±

y > 0 ferromagnet
geo antiferromagnet

Here we will solve the problem in the limitof large spins .

( eeoct solution in ID ly Bethe ansett
,
in o Dey mean field ]

How long one spin fluctuations?
D8AS" ~K[ ST ST>I = Exsrksir> I ≤s

%ᵈ ←§ ≤ § conclusion ¥ ✗ fg no for longe s are small !



Holstein - Primosoft transformation :

Si = OF (2s - QTQ¥ here [Oi , Qjt ] = orig. one bosom

Sti = (2s - olio)i%Qi
SE s - otic- i

The following identities sufficiently characterize the spin commutation relation :

[5+15]=252 Proof : [St , s
-

] = [54 is'
,
5- is' ] = -21

'

[5,51--25
[SZ

,
St ] = St 1st

,
St] = [SYS

✗tis's] = i SY + i c- i)S× = St

[5-
,
5 ] = - s

-

[ SZ ,
5 ] = [ ST 5- is'] = is's

_ if i)s×= - 5

Holstein Pnimnehoff satisfy these identities , hence they faithfully represent spin
Proof ! [5,5 ] = @ s - d-a)

±
@of (2s - @to)± - at ( 2s - ate)

"
-

(2s - ate )±a

= @ s - Ñ)±( I + in) (2s - in )% - otczs- in)a
↑

in commutes with fcni )
4+Ñ)Czs-n)# -2

d-( eat -1) a

ññ - ñ

= 251-(2×-1) Ñ - MH -☒ + in- ni = 2$ - Ñ ) =2SZ
[5,5 ] = $ - @+e) (zs-otejka-zs-o.to)

"
-

a ( S - d-a) =

Fi ¥
en

Es- in)
"-

[* d-a) e - e ( g-ate] =@s- Ñ)
"
-

[ñ]
= St

-ate a + • ate
- nice + evi

when 5 >> ± we can approximate (zs- my"- with FE beam

② s - ink - Est 0 ( Es)



1) We start with Ferromagnet we are looking for low-energy
excitations

nite I z 3 - - - m Milgrom
.

Ground state is to > = Is> ☒ Is> ☒ IS> -
- - Is>

maximal s on each nite

H= - If.j§Fsjᵗ + {(stsjtsisj )] si ≈ • it
<ij >

Sit ≈ Fiori
5- = S - Ñi

H ≈ -2Yij[ § - Ñ ;)Cs - Ñj ) + £2s ( a- of -10T@j)]< ijs
-

y§Yij[5- S(Ñi+Ñj)tÑiÑj + scoiojt + atop ]
monguaobotie ( interaction )

§pYij
¥

'

E'" 2-J where 2- is connectivity .io#.-
= "

His # rites
.

H ≈ - {*y5+s§ifij @ it _ ojtlcei
- ej) - §pYijÑiÑj

015) OCS) Oct )

Fourier transform @
g-
= #{ ÉÉÉ a;

and Oi = #[ e-
ifÉcg

g- c-BZ

Where [og , og:] = Egg, because of [Qiijt ] = {ij
H = - ÉNZYSZTS yij *⇐

FEI
- eiojkj ) @g+( e-

iÉÉi
- e- if "É ) @g ,

gg
'

52€ y.j.ly?ei&-fDRi(i-e-ifRij)(1-ei8'Rij)oytog ,

actually yij
_ 1+1 - e

""
- e-it? zc , - aye,)

Egg '

totes care of m.my hence

jammin everywhere :
ÉSI Yij2( 1- wscjr.jp cegtog
f / Bij

H=-ÉHᵗy5+£⇔wgegᵗog where wg=S2Yij( 1- ↳ cjÉijD¥

ID : wg=2sy(1
-

urge)

2D signore !

wg=2Sy(2- ascgxos - ascfge)]
3D lattice :

Wg
=

25g [ 3- cosy.ie
-

woogie
-

wsgza]



Generically we expect wgcg << 1) ≈ (syé)•g2 wig Faylor
e-pension of ay ,

%

✓ Magnon dispersion for FM .

Magnon
one 9+18> =¥§Éf¥ ¥; /g. s . >

£
2) Anti ferromagnet

Bipartite lattices can be solved with H.P.bksmall

fluctuations (magmas ) from
the Hell ground

state .

Non - bipartite lattices one frustrated and do not order - Typically hone

only porornaguons.si
_ e.) diffuse scattering

and no sharp excitation .

Example of non - bipartite lattice : triangular
lattice

\

On bipartite lattice we just double the ↓ ?

frustration on triangular latticenice of the unit all

↑ ↓ ↑ ↓ ↑

É

↑↓↑
new unit all

All spins on snbblotice B will be flipped ↓ → ↑
↓ ↑ ↓ ↑ ↓

↑ ↓ ↑) ↓ ↑ But this is achieved by cannons
-al transformation

B with spina rotated along ✗ - Otis .

Therefore 5£ → Spf

545> - Spf } Sits → 5¥ - is = Sj

55 → ⇒ + is,§= SpfSZB → - Spf

Now groundstate/or vacuum)
is like before : ∅- Is> ☒ Is> ☒ Is> .

- - -④ Is>

H=£pYij$iᵗSjᵗ + { Sits,j-¥isj ) = [ €Yij[-sits; + Isis'j+±sisj ]i c- A JEB



continue
H= [

*gun,→*j*Yij$iᵗSjᵗ+±siᵗsj-¥isÉ)=%a¥§⇔Yijf-stsj-i-Esi-sj-ES.is;]
choice

Holstein. - Pninosoff : si.a-FEO.it si,☐≈ BE bit to remind us

that we have twosit,a≈ FI Qi sit,,≈ FI bi } interpenetrating subbettiaes

SE s - in! 5-
☐
= s - in?

H= ¥2 Yijffs- init ) (s- Ñ;) -1s of bjttsoibj]i C- A

JEB
-

-54 scmitmj ) -Mimi
H= - ±xzy5+ ¥2i⇔Jijs(ÑitÑj? + Qtbjttoibj )

JEB qEifom.eu ,but
not mind #-

°
.

Con be turned in H.o.ly
transformation

Meet oi=¥IÉ£ÉQj ⇒ * = - ¥zy5+ #[ yijs ( mj+m;¥$É"Ñ Qgtbgt
reduced 2- Bij

~ + ;gijÉi - i§Rj
b. = #[ e-

if# try } ig , Qgbg ' )
g- c-

RBZ ,¥÷¥¥"É e- if'Rij

H= - ¥Zy5+¥¥☐Yijs( Mj -1M£ +
É$Ej Qgtbtgt e-

it
age,)

g.

Introduce structure factor : Ng=¥£YijÉ¥ it Éj distance to am from
☒
ij

one mbhettio.to the other

It crystal has inversion symmetry Nj=±s§y,#
it}

+ e-if
}

)=¥§sy , wolf . :)
hence Ñ-g= Nj ; No =#szy

H= - ¥zy5+ E(Rmj -1M£
-1 Ngqtbtg-N-E-gb.gl

8
commute flit- btf = I

H= - E-ztf5-IN.cgtog-rob.j.b.gtrgajbt-g-N-f-go.gl
Fit

H :-#✗zy5+ 2K£ ,
b-g) ( M ' Fi )(%) - µ }

try
&

¥,+ N% ' %

☒
↳{ irszy

H= - ¥nzy(Ets) -14ft KY, I

with K; (
"

' %)Nj , No

We will solve this H by Boyolinbov transformation



Bogotinbar transformation
2-D opinion 4 =(() 4= (00,b-g ( with which H = 4

+
k4 + const

We will try to solve this with linear transformation ↑ is notfermion or hown,
instead

[x,x+] = zz
dg = Mp4g with My is

2x2 matrix

We need to proverse
commutation relations. Since these or herons, we have (Mg, 4g) =23

Note that for femions (Ty, Yyt)=1 (end moth is simpler)

evc: (4y,+y)) = ((e)),(eg,vy)) =p0g,0g),
0

·(ay,(y)) =( -j) =23

Requise:(Pg, 0."]2** (P);j(Mglie[ge, Pyr](gYmj = (MgClgij
To preserve communition relationalgl, lt=2 For Losom U is not underin
We defined before Oy = MyTy = M = MjB,

elt= dy((j we went

Where diagonalizing F = 4.*k4 = 0(N"kUP,Btw O
~

Need to obegonian (M)**M"=& diegone- not similarly "news formation
because Es=MIgUT =) 1 = 2gMIgUT = (M+

"
=2stEs like =.T" KT

Hence we
diegonotice ( =2gM2kU- Yes, now it is simitoning~ treeformation,
or equivalently is 1 = (re"wi =M(2,14 U"

L

An eigenvalues/eigenvection of Esk are simply related to eigenvalues of I

Reall our original problem 1=(N01N2) and 23k = (501 M (Ny1 No - N1
=No

No=x
Eiyenvolves:

Det 1,0) =0( - Az 1- 5 - x8 - (No-xy)(No+xy) + by here NjSyzag
n
=

xz=N =xy
= Irg

Hae u3(n = (waiws) Wy =NNj2

i =(04)(Yi (w) = (r5nd



What is Wg in
real systems

Nj=¥y2 asj: and wg=ñ-rjf3

I D: Ng
=

Zsywsga
WE zsjFig = zsylñngol

generic smallj : Ng ≈#y § 1-{*it = roll -É%%ñ)

w: ri- rj-ri-s.io - ¥g%Ñ≈z§§ñ5g

WE F÷f§E
'

anemia
^

AFM2 Disguise : ¥ ☒tgj = ¥218T
3D

ignore
: ¥3Figg: = ¥318T✓

"

g. ◦
j
"

- valid even for 5- ±
, and very good to 5- E , E ,

-
-

- at integer spins 1,33 the tiny anisotropy
tenets to open up the yep



Mlhotisamognonz
Eigenvectors ?

M Zjk . µ
- "

= 23 Ñ licence 23km
-'
= U-12315--23 IN -1 become ZE is diagonal

egnivd : ( 23k - City)) it
'
= 0

" " & " "

so that µ:[, µ
,

ᵗʰ " " "%Ñ -Y = ,

( - rg ,
-a. =,wp)( = ° %EF-lri-wjr.org )=o ✓-

My ¥
since

wj-ri-rjik-EY.jput
-

a)
Requirement for ME - it? = I

ii.=E:;F a- ( ut n _ ) www.?-w.-i:-:I=irM
- Mt cheer : No -19

H -_ ✗+KX

1-1--0+5<0 = {Hj,syÑ§°wg)(%;-) --2%+2, wg+ÑÑ-gwg+wg&

A- MY ⇒ %;) -1%1%+119;) or E- :÷Fai+F;¥a,&
→ T Tcoherence

factors ¥s5a ¥sSÉ
close to-

g-
so wg ✗ left <<

No

Ston mblottiu A and
S
-

on
nnblattia B

then M+= M- ≈ Fyi propagating in opposite
directions .

gruel omontofegbt
↑ ↓ ↑ ↓ ↑

↓+↑↓
#É↓↑

↓ ↑ ↓ ↑ ↓

↑ ↓ ↑ ↓ ↑

Homework : Su - Schrieffer - Heger nwalel on page 86
The Kondo problem page 91



Construction of the path integral Cchpt 3)

This chapter is about single particle dynamics , repressed
in terms of Feynman

poth integral .

Next chapter is generalisation to may body problem wing functional field integral

Particle starts at position gi (coordinates
and ends atgt .

What is probability Pcgi→gf ) allowing all QM .

allowed tomitious

Schnioolingor Eg
: ik E- HAD = HI HAD

,
which can be formally solved as

14A 's > = ÉÉH"
"
-⇒
①( t

'
- t) 14 (H)
-

Ult ' - t) is time evolution operator
Note QCH ={ 6 ¥29 introduced for carnal response

<gH/Sch.E→ <g.+1×(1-+1)
= Lytle

- ¥ #↳→
-0cg - t#44;D

fdgi Igi > <fit = I

< 8+144--1> = ✗cgtitt = fdgfgst e- ÉH" It, - t.jlgxg.tt it:)> become I> <* = I

#

Fight:)Ulgtttifiti )
§,Ñ€•g+ time intention for the none function

Plifi →ft ) = IUCgs.tt ,git;) /
-

probability that
the system goes

from Xegitis to ✗Igt tf

Let's make
many small steps rather than one large step

: Trotter - Suzuki decomposition

Ulgttitigifi) = <get e-
É #At

e-
ÉH't

. .
.
. e-

¥ Hat
1g;> with at . /✗ = T andN-so

crucial point e-
¥Hat

= e-
ÉV•ᵗ

e-ÉT•ᵗ+O(☐E) where H-=V+T

Because ¢A ¢3 = EA
+B [AB] + ¥ [A ,

[AIB] ] -1 " .

Baser - Compel - Heundorff formula
we will neglect termof of @tJ, so

that it will look hee Temir
commute .



Ugttg-igifij-C.gg/e-I-T*t-i-n-ihte-iETste-i-vst e-
É Tat e- É

'✓at

1g;>e

↑ ↑ Iffg.dp.ly/.ssgalp.Kp..i ↑
f*iᵈpHf"- i><failpampa, , §%%fi ><ftp.kp , , 1%18><got

Ulfttt /fit,t=⑤g+=g*%=g. <g. Ipa> <pal e-¥"PʳˢᵗÉÉ%"""ᵗlg* ,><ya. /pas . . .
. <g. Ip .

> <p.ie
-ÉTP '"ᵗéÉ%"ᵗy. >

Note that f-(f) Ip> = fcpslp ) and similar for f- (f)
Eigenvalue

Also note
Lgilpj> = ¥, c-Éfipj plane more in × - representation

Ulftttifiti) -1dg. !§gidp:<gyp ; > <pi , e-Étcpi"ᵗ¥ʳf" '°ᵗ1fi.io?gi=g.Fg+--g,.
≤§f•(!ffdgiyp-ziorgi.y.fgs.g.es?-=fI-Jipi-i-a-pigi-i-Étcpisst - Évcgi -dat)

I
¥

,

É•ᵗ(fij;# pi - Tcp:) - Vcgi-d) → É§¥jp - Tcp - Vg )]
Finally tf ti

Ulgttfigifi )=fD[g. p] eÉfᵈt[JP
- H'

Pig '] where fDLg,p]=f!Édgi¥¥-ti

I
ft=fx
fi
-
-

go

4-
We just derived : Left / Ulgi> =fD[g,p]eÉˢ with 5- fou-ljp-Hcp.gs]

ti

Example : Hcp.gl = Em + Veg )

U'8-4-18ifikorgi-y.org.eg.◦gi¥p÷eÉbᵗ;É%¥Pi -1¥ -

rig.;)]



Gaussian Integrals
A

Note : 0 can be a complex number ,
but Re (a) 20 !

Real : fate e- ¥
"
= FE ; Re

•> o

-

ao

ao

Jou e-
¥-1b✗

= FÉEÉ ; Rea> ◦
--

- Ecx- Ett Ee

complex :

fdcz, E) e-2-twZ-fdedye-cx-iytwcx-iy.ge,y e-*+ y
'

)w
= Ew ,

'

Rew >o

2- complex innable
Zt = z*

fonz, # ) e- Ew2- +

M+ZtZᵗw=f◦yz,z+, e-(Z- Fr+)+w(Z - Ir)%= ¥¥ _

,
Rew> 0
-

ay e-
' ×- if - Ew )w(✗ + if - Er )

= going e-
( I- iy waiting

= Ew
✗- ing -¥ -- I- ing } E- ×

- ± n¥r
✗ + iz - Ev = I+ ing j=y+±iv

Higher dimensions :

Red : gag e-
≤ñ+añʳʰ

" ⁿᵈ "h that can be diagonalized A too

=§ñ e- {⑥Ñ)ᵗD ◦ñ = fiñ e- ±#☐ñ=iI¥F=¥¥
Ñ is real vector .

I O0ᵗ
A is real positive

'

definite symmitricmotiie ; yt is sufficient if symmetric port is positive obfimk .

di-agomalia.mg A : 0 AOT=D ; OÑ= Ñ
; dÑ=dÑ because Det0=1

going e-
±#Añtj - ñ=f◦w e-±

- A-
'

j5A(ñ - A-
'

j) +±jA"j=¥¥we±jA"j
j A symmetric

Important identity for perturbation theory

% 8-jmlfdñ e-
± #Añ+iñ=¥fjm¥÷,yÉI

"'t

j=◦
f-◦

foiñ e- ±ñ+Añ Nn Vm =

⇔)%
(DetA)

"_
{((A

"

1mm + (A
" )m
.
)



If we ofine the following:Bettsgate tatto <02 then we can write

<Nnvm) =(t-)nm for symmetric A

we could also prove: <wr.Wenwoweeh

aaSensCASarnnCAmne
A

ret
can be generalized to any number of pair-product

&10 (1112022

Complex mult-D core

S

S
- vAr

-π"Det(At) here o(et,n) = on; de"
d(v+,v)c

A has to have a positive definite hermition part: A=tAt
+ICA-At

herition

part should be

Easy to prove for
A positive definite hemite metric positive definite

-i+Ax + w+ + wti'

=x"DetSAT) gNtAwoJo(v+,v)

Finally the identity: <et....wiB5... Ng) = ECAjie CAjuie.CAljoien
by foring dentative withrt

w,w- has permutations
where (...) = +Det(A) (ol(r+,v)x

- v+Av

Proof for 1st order: (v
+

(j) =(f)ji
-
w+
Aw + j

+ v +v
+

j =fosset e) NANvi+rj·ojJolrv)c

⑤CHA=oSALji



Back to our example Ulgttfigifi ) -= orgy.org,g. ◦yi¥÷eÉbᵗÉÉ%¥Pi -1¥ -

kg.;D

Integrating :

Needs regularization → A = Em . I

j= at 3¥ } jA"f=É•ᵗ%¥-jm army
. _

A-= Em + 8) I

with 8-so ⇒ gomirion
integral
applies

we me :

fdñ e-±ñAñ+J÷¥¥,e±jñj

Finally ¥Ffqp÷eÉ•ᵗÉ%:#Pi -EI)=÷;⇐÷gg%É⇔ᵗⁿÑ
Det

IN

✓ 'F- 4- ' fit:) -=Egi=gFg+=g. %
' I◦g;eÉbᵗÉ[±mji - kgi.is]i=/

We
can hence also wife

4-

Ulcfttfigifi ) -= fD[g ] eÉ¥ᵈᵗL[gig
.

]
where Dlg]=(!¥Ñ"Egi=g◦Fg+=g. #%

Free particle can be computed in closed form because if = const
= 85€
4- - Ei

4-

É±m£yi_5Ulftttifiti ) -=

%
'

oyiof-y.org, =p. c-
¥ / ±mÑᵈᵗ
ti = court . e tf - ti

and Pcgtig ;) = 1012=1



¥5m' chemical approximation regimes is
= 0 ,

i. e.
,
the system goes through path

where
Feynman integral

contribution is longest become the exponent has saddle point

Left I Ulfi > =fD[g,p]eÉs≈≈ É Schenkel + . .
. .

4-
With definition 5- fou-ljp-Hcp.gs] than 85-0 regains

ti

ors-fou-florjp-i.jp - #pop of ]

by parts fat [ - p - 8¥] + Sp [ j - 8¥ ] ]
--0

hence classical Eon :

g. = and p*= -¥

Meet step : Fluctuations around the saddle point

g-_ galenical 1-
rct) where rct ) is small

We can expand the action
5 [{geom.ae +

r}] = Sceoniaeettffttdt" §g¥Tgg, ✓A" ra
")

Kemple : L = M£ veg) ⇒ 5[§+r}]= fdtltzmkg-rti-V.fm] =

fat[±mj+mg + Emi ' - Vip -¥g_r¥r :-. .]
I

Sl§+B]≈SuHg]-1 fat [Emir -_¥rz]
Manilas become Lagrange
Eg . one satisfied✓

by pots - {mr.ir

=

Scarff ]
+ fit[-{ rcmñ + ¥gr)]

=

Scanty] - {Jolt ra→[m¥É+¥%rcH

<

ftlvlgi >
= [ e-i-skoniaefggqye-I-zfdtra-fmFE-Fgtt.ru
all classical #
solutions

Garnier integral , which can be voluted

matey . . _



Functional field integral Capt 4. ABS

1) In Feynman path integral formalism we were dealing with a mingle particle
characterized

by path

In functional field Interpol formulism we deal with a field tile

¥-1 defined in Cdtijdimennionolrpaees

-

4 In Feynman path integral we formulated Interpol on eigenstates of
eneton , namely pandy .

Yn
many body problem of 2ⁿᵈguontireol operators we want

to work in the eigenhasis of the operator ce
,
which is

called coherent states .

Coherent stoles for bosons
the coherent states one to> ± eiᵗ¥ to>

↑

bosonic creation com,µcewmoperator number

we will prove
: • i10> = ∅; /∅> hence to> is eigenvector and∅

,

'

↑

complexnumber eigenvalue of operator a;

Proof
q.io > = a; e%0jÑ to> = eF≠i∅i•É •; e∅i # to> . we need a e∅£to> to continue

.

↑
ej for j≠i commute
with a ; and each other

what is a c-
∅ • +10 > ?

Define •
•+

≤ ×

multiply with e-
∅@+

on
both rider :

e-∅•+•e∅•+ = e- ∅•+

×
-

,
because e-∅%e∅¥ • + ∅ ⇒ e-

* d-
✗ = at ∅ ⇒ e∅•+ e- 0£- ✗ = e∅£(e. + ∅)

d- 40 lot, a] -1 ¥[at, [at, a]] + . .

%
I

check :
(1- at + ±

.

026+5-5,103 ( •+P+ .
- )a( It loot -1¥. #6+5+15! let}+ .) hence ✗ =

•
+

(• +∅)

a -101 - d-ateE) + ¥04k
•7+ - -

'

= • + ∅

d- late - eat) - feta-eat)at



How we answer what is a c-
∅ •To > =

#
(eto) 10> = e∅£∅ / 0>

÷
Finally :

@ ; / ∅ > = c?É%% •; e∅i•t 10> = §.

¥910> = ∅ ; / ∅>

which concludes the proof .

Important properties of coherent states

1) ai to > = ∅; 10 >

2) < 01 at = < 0107=-241 0T
3)

☒0> = ftp..IO>

proof : at eÉ•É% 10> = e¥i•É∅j
g.
+eat i

,,
-

4) <v1 ∅ > = e?ñi∅i ∅;(e•t∅i ) / o) = feet# +¥59
"

#
µ,)

<01 V > = e
? # Oi

proof : < v1 = < ◦ 1 EFF %

(v10> = < 01 ÉÉÑ to> = < ◦ |ÉÉÑ∅i to> = eÉÉ∅i<◦¥
a. is eigen operator 1

5) <of e∅£ 10 > = <01 1+00++20*+5. _ _ to>

f !IᵈÉ¥ʰi e-?# ∅i
/ ∅ ><∅ , = I

1
"

o

"

◦

Here dÉd0; = ¢120: dYm∅; ; Note ,
we also mite ᵈÑi¥∅_i = fdl0.TO;)

We are Schur lemma : If Olle: and of commute with a certain operator , thou
the operator is a constant.

Discussion :
Any operator can be expressed in terms of a ; and OT and complex members .

If operator commutes with all eionole.it
,
it does not contain any operator ai

or of
,
hence it

must be a constant
.



Proof that identity commutes with all oi :

• 0114410) e-%
# &

10 >Lot = fill:O) ∅; e-%
# #
10 >Lot
-

(-8*-55%4)
= 04.0)fqÉ? # # 10>401 = facto;D ) e-% # $10 >8¥40 D) =

T

bypass IIa ;

crucial point ∅ is periodic
101--3--014 ] bosons = fd(0+10) É? # $ 10>101a;we used the fact : ∅> = ftp://o> 0101=041

hence conjugate :
< 1010-1--0%-1:< 01

Similarly we can
prove I

- • it = a;+I
,
hence I commutes with all operators , and

itmust be a constant .

For the constant
,
we know <01 Clo> = C

,
hence we should show

that < 01-1-10> = 1
. Proof :

<01 follett, ∅) . e-% # % 10 ><0110> = fd(040 ) e-% # % =

Y
= ᵈÉj¥∅_j e- Fi %) = 1

Note that f¥ᵈ°Ñ¥∅_j / ∅ >< 011 ≠ 1
,
i. e.
,
we need the echo exponent in between .

This is because
I ∅>< ∅, form on overcomplete boris .



Less essential properties of coherent states :

1) The Heisenberg uncertainty achieves its minimum in a coherent state ,
i.
e.) b✗dp=É .

Heisenberg uncertainty on fluctuations of moiobles
A

,
B

AADB ≥ ± K[AIB]> I
"

LA2)-<A5✓

Coherent states satisfy the minimum uncertainty relation .

To
prove : at ) / ∅ > = 0+0*1

<01 at = < ∅ / ∅* • at *ate = I

< 101 ce - et / ∅>= - ⑦*

< $1@ +at)4 ∅> = <∅ / a-+ eat + ata + @+510 > = 042010*+61*5+1 = 10+0*5+1
↑ I +

"
ata \

02 1+0*0 0*0 ④* 5
<41 @ - 0+14 ∅ > = < ∅/ or - eat - @+ • +@+ Tl ∅> = (0-0*5-1

¥2 - i - ate
✗ = Fmw @ +at)

p=iFE cat - a)

<☒2) -4×5= ¥mw Lot@+ @+544> _ Eww4010+0+10>5= Fmw ( (0+0*4+1 - (0+0*5) = Émw

(f) - <p5 = _+1101@t - •510> +1mg (Collet - • ios)! - "¥ ( (0*-05-1 - (0*-05)=+11

DX - ☐p=Eµwʰ%f' = E

2) They have time evolution like chemical onihehor and are the closest state to

chemical harmonic conciliator

:



Coherent states for fermions stopped 10/13/2022

We are looking for state that ratifies
: oily > = qiiy >

↑ ↑
cementation

state eigenvalueoperator

the problem is that a's on L
' commute :

Oi g.
= -

Ojai hence Mi Yj = - Yj Yi
-

not true for complex
How to solve the conundrum ? numbers

Mathematik cons invented Grossmann numbers .

Properties of Grassmann numbers :

D Mi , yj c-
I ← means grossmann
>
to be on the safe side ( I

do not think we need thot. I can notprone anti
commutation rule )

with that !
then ¥ ciqi-ciyg.ch where G

, ci , CÉ c- e

↑ lutc,=oG=oisnotollowed_
complex numbers

we can multiply gross .

with complex numbers and mm
them up.

2) The product of grorsmonn
numbers is

a) evocative think 15 Milk Ms )

a) anti commutative YiYi
-

ha Mi

for any pair of 4.
and
if we

have [yip]_
= 0

↑
no
delta function !

c) [ = 0
become

g. y=
- my ⇒ 1=-0

d) three number highs = qq.my behave life fermions ,
but no or fruition .

they behave similar to fermions , but it is much simpler to manipulate
because we do not need to keep track of retro term erringfrom { function



3) we will extensively me functions of Grossman numbers :

f- 1%1%1 - " 9.) = [ 2 m÷%¥y!=_¥ Yin % ,

- -

Yi,
m=o ii. iz, - - in ← the order matters !

example : e- 1%+94
= I - (9,1-92) - I:(9,2+91%+9<9,

+ 9.) + É:(9,3+9,4%-1 - -
- - - )

= 1- g. - y,

"

◦ ¥ 8 ; I

ID function f- (g) = fEyt If "c→Ñg+
- - '

I
9) Differentiation

we define ftp.mj-dij-hjo-qi )
differentiation is onticommtokne example : f-y.ly , ya)

= -fydy.it ) = - y ,
Fyi Yj = - Yj Fyi = Yi(¥yDY-- - y,

5) Integration
We define fdyiyi = I end fᵈYi=_ ◦
From definition it follows that integration and differentiation

is the same

operation :

filth =

ftp.#t-jcnqJ=fio)o-ylfcH=f-yCfHtfhsq)=fko)
G) In physics , we

need to mix
grossmann variables

with fermion operators rfioj
We define : [Yi , aj ] _

= 0



7) Fermionic coherent states one :

ly > = EYE Yi
• it
to> = e

? @Fyi
10 >

i
note the minus mfn here it look like bosons

compared to bosons

Proof :

oily> = @ i e- Eli 9-1-10> = e- ¥Mi°j+ • i eat hi
↑
It @ Fyi -1£ :@TY;)

≥

-1 . -
-

*

-@FINE
-

,@itoietyi)==
Milo>

tuna :

oily>
= e- §≠◦4i°j+y; e- Yi @ it

=

Yi Il - Yi of) 10 >
= Yi ly > =

qi
e- hi •it to >

More
on properties of coherent stokes :

1) oily> = Lily>
↑

clponmenn
2) <Wait = <Whit

Here It is new grenmonn number
. (Lise toting ∅ and ∅* as independent variables

instead)
of Re ∅ and 7m10

Become <
y,
= < ◦ 1 e-

? @ i hit

3) oily > =
- 8-q.ly? (for

bosom it is otto> = 8,0; 10 > here )4) <
qty> = e ? gitqi Then" ditty> = ggg.iq>
Proof : < ◦ , @

7%+9 '

↑ 11> = Cole
? %Ñi1q> = e?9iᵗyi <dip

÷
y eigenstate of ai → Yi I

<0 / e-
Fyi @it

10> = 201110> +5)
dyitdyi ÉFÑ%

'

ly >< yl = I for boron

d∅ ; e- §∅iᵗ∅i µ>< 01 = I hence

we could we dyidyi=fd(yTy) ( generic facet, ∅) e-
?# ∅"

10 > <∅ / = I ]



Proof identical to bosons

•II = fdlytipe-EYMeq.iq > <µ = fitdyg.to/yjfEyi+e-EYMeiys)ae1--eypwbf,.Tdyj+dyjÉEÑ% 19>(8%+91) = fjtdyjtdyj e-EÑ%iy > aye ;
= Ice;

↓
see below

a

Oyt
{if /

= 8-y.ly (Ole ÉYÉ % = Lol Fyi eÉ%t% = < ◦ 1 ej&i4F%
,,
eYi+•i

qiIT-y.to :)
ly> =

e- Elicit to > -

<21 = Col e- Fei qt °eÑ•i
= • i (1+474)

= <◦ I e§Ñ% a; = < yl @ ;

"

0

From Schum Lemme it follows I = const.

The correct constant :
< 01 I 10> = fjtdyg.to/yje-EYe+%40lyscy1os

"

i

"

,
= ( ftp.tdrjli-yiyj)) = II. 1=1

0 -1 I = 1

Alternative ( useful ) proof :

Let's limit ourselves to one component .
The generalization is simple .

fdytdy EM ly > any = I

where
ly> = e- 4£10>

<YI
= < ol e-

•Yt

then Lol I 10> =/ or proven
done

41 Ill > = I become fdytdy e- 4+1<11152411 > = fdytdy e- 4ᵗʰ qqt = 1
4

41 ly > = < 11 ( I -10+1110> = < 11 of 10>4--4 ( ltyyt)

careful : < 11 - yet to> = < 11-7-11 > ≠
-

y
tesimilarly < 1 II / 03=0 [

<01 I / 17=0 hence this is identity .
cannot pull font
from stole 11 > without
-

rig ! !



stopped 10/18/2022
Gaussian integrals for fermions

1) fdytdy e- Hey = a ( proof : fdytdycltyeyt) = @
Tnotiu the order !

2) fy-dy.tody.ci?jYi+Ait4i-=fdCyTy)e-EAt=Det(A)
A Hermitian : A = U+DM where D= dig@

it

dy? dq.ci#M+DUt=fy-d1..+gg..e-%F9i&=fdgi-dq...dyiidCity,yiD, )G+qgtDd -
- . - (1+4%+4)

pains jump ,
no euhoa minus

nigha-[ = } i. e. , §Mijyj=q,
Deth'DÑ=I =D

,

-& . . . @ =Det(A#

Ñ1+=§ᵗ i. e. , § qjU*ij=9i+ g- qty, An
- Yttf An - YEYiAziYÉfAzz

Valid for non - Hermitian matrices Proof for 2×2:X
*ample 2×2 : ffffdq.to/y.dyEdy.4i-yi-y.a,,-yi-yzAr-.- + ±

+ YtAn%+Ñ A" Y' )% "]
T

£14TAif YEAH -1 { Aifift Any + other term vomit

+ YEA" Lift A " Y ) qi-A.iq, qi-A.it ) offer integration
→ =
YALE NYT An Au - qq.tq.IT An Au

dltdyidytdyaqytyiyi-CA.it" - An Aa ,) = Det (A)

We can prove similarly that the alone formula
is valid for arbitrary A. It

does not

need be Hermitian . not +A-
'

ÑtA"w '

Deka )
for boom ¥,3) foyyyyge-ifAY-not-T-ni.ir

'

-

= C-

Proof : qtaiy-nrt.iy-iyt.ru
'
= (qIñᵗA ' ) A ( if - A-

'
Ñ ') - ÑᵗA"Ñ
-

4-Ay- Ñᵗy-Ñw '
+ Trt A-

' Ñ'

go, ,y+,q, e-
( if- Ñ

'-

A-1)ALTA
" Ñ') + Ñ Ñ

= fy-qeayee-%AF.eu#A-'nT=peta.enr+A-'w
'

7

if - Ñrt A-
'
= g-+ note [ g- + A } , wit A-

'

Ñ' ]=0

g- A-
' Ñ '

= 9- mags in pain .

non-trivial step !



a) Chiditoe...41=27aio...sAtijo
offerent from torsous!whes0) =o

Proof of the lowest order:

fo((y+,y)c
- y
+

Ay + w+ a + y+ i
= cDet(A)
-

↓
expenil left -> expondnight ->

·ASoyetlo c+A (1+i+i + (w+

y + + i(Y...) =1+ r+Aw+Ew("...
only one y -> rmilers

first order: (Tolopoly c
-+*
n
=0

#olgolp(1 - by+A+ i(y+A((+)y,
↑
will never

have a poin

ooll number of Y's => veniles

recond order:

↓OEASToyetoc-Y+Ari(w+y+ G+ i)= =1+ r+ Aw + O(n)

inwj+ yjww,yi) + ...

yy,w,wj

witej <yi =w,(AYjwj => <yyjS =(AYj
left site right site

To prove higher under we need to expend to the appropriate uroker.



Field integral for the partition function
We want to evaluate 2: Tr(50(***) or equivalently z= <M11(

- *(H-p(),n)

Reminoter: coherent states (4): 20.4. 10) met for with homecolnious

4: one either complex number orgross
anumbers.

--

I =(0114+,4)524."4: 14)(*) veliol for both furious of tons

peering <M) though*gonou niebles on give-L

z =2(+++)c[+i++i(m)+ xc+ 1c (n)
rign,

but here apoir of
garmen -> sofe!

we want to elimmate 2. (M>>M) which is also 1.

M

- s(M-jπ)-

st+1cz =9034+) @ [m)(n)4)
for perious - > the origin of entiperiotic loumolery condition for ferrouse,
It is fully symatic (itelwaystransforms like a number Aig) hence we can forget it have

entry- ? <M14) <4(m) = <-41x><M14) for femious

Proof. We will prove that
&<M1x3<+(n) = (1 + 4.4.4) while
M

&(x(n)(n(x) =T(1 - Yixit)
tance we need to flip myn

on one of!

&O,4; &tte:
(n>start with: ECMI 10XCO19

T

- n,ma... M,
↑

0 or 1

concentrate on single state here)become at believes like loon for
all other stoles and

a4, 40; commutes (
<M: (10) (O) @ (Mi) =
Mj

=CO1<@,4;-10010 + tC01ctito:11
1wi o

= 1+
-

& 1 1 +a4; 10) (0) 1 + 4Oil1) = 1 + 4,4,5
no

2014; 10> <01 4+10]



Meet @ XI Mi > <Mi 145--2<01 exit
@ i
1mi > <mile

• it #
to > =

Mi Mi

< ◦ 1 exit
@ i
10 > < ◦ 1 @

• it #
to > + < ◦ 1 exit

@ i
1 , > < 11 @

• it #
to >

Lol X.to ,
'll > < 1107410 >
u w

107 Lol

2014-1-10> < 01410> = It Nitti

= I - tilt
-

Why can we concentrate on single state ?

<Mina. - in
, / C-
& %

to> = (M, Ma . _ . My / IT ÉF# to> = oh, /☒ <nd⊕ . . <n
, /
t¥ e¥%

.
.
. / 03 =

→ → -
become [0TH

, of Xj ]=O for i≠j city. commutes, tune me here

= II knit e-
•Hi ) to>



Bock to partition function
<got! e-
""T

""
where g = ± / for tendon/

bosom
2- = folly É?

#%
µ
.
>

I ↑

9×101=413) we will have antiperiodic boundary
conditions for fanions and periodic for

bosons

there ✗ hone certain time
life t=O

. Later we will introduce

them for every time rice .

Nett Trotter - Suzuki D= ATM and it> •

2- = fdcxj-ph.ge
? "# '

°
-
• TCH-TH)
I e-

• TCH -8
" )

. .
. . I,ÉcHÑ

"
ix. >

< 941 e
A- I

↑ ↑
IX. IÉ? Yi

ix. sax, Iµ#I. %. .
)É?%¥%"i%

.

.sc/y...tZ--fdl%f4.)--.dCX.!-%,
) e- ? % -1 - - - + Xiii %,;)

✗

g-
'

time slice *yy , e-
'"T
"'
/% ,

> <%,
/ e-

'"'"T
"

/%
..
> .

. . <×
,
/ e-
'""T

"'
/% >

÷
% = ✗Ct = B)

-É! 4+4
E- dC¥+

,
%) c- i. t=o

it it
''- '

✗ IT <¥, , I
"#ÑÑ' 1¥ > stopped here10/20/2021

E- 0

% = 944--4=4(t = b)

% = ✗ (-1--0)

We need :<4-
+ ,
I e-

"""T
">

He > ? We
regain

H has the "normal order
"

form

H --[hijoi-oj-S.ge! e om
ij

Then <4€
, /e-

( "T
")

1¥ > = <¥ , / e-
( H [4%1,7] -f

" #+¥1 ) 14
, y

coherentstatesone#%operator,
hence

acting on the left or right give numbers !

Where 11-[4++1,7] =@ ij~t-ii~tj-sfijem~E.in/f!ij%e4tm-hij4TiHcT)- VijemX¥H¥⇒%⇒ij ijen

Then <¥+
, /e-

( "T
")

1¥ >= e-
AT# 14++11%3 -put:#¥ ])

<% ,
/XD = e-

AT# 14++11%3 -4*[14-+17])
×
Éf¥¥,# ±

-
Tom properties of coherent states !



H - I

copy from previous page : E-fx¥+,
%) e-É÷FÉ¥ᵗ × <¥, , / ÉcñTÑ

'

1¥ >E- 0
E- 0

% = 944--4=4(t = b)

% = ✗ (-1--0)

- ÉÉ(H[ 17++4+3 -81×1%+1,4 ]) + ÉÉ¥É#it -4¥ ✗it
Finally put together E- fit 'd %) c-

⇐ ◦

E- 0

4, = His]
✗
◦
= ✗(o)

H - l

exponent : £ AT[H[%¥± ] -gNH¥¥ ] - É %)
i
,
-2=0

-1=0
~

B

him /✗ → • : _ fat [ H[✗to> item] -gM⇒ - +14cm ]
◦ %
n r b B

for F¥xo→ = -1++1 - fit ✗ = - fix ✗

O o
O

°

x+(B)XIs) -✗ 1-Costco) = O

B

etponent: _ far [ H[✗to> Men] -gM⇒ +4%1%-40]
0

define : IF DHE if;) =D tix]
-1=0

s

Finally :

z = gD[++, +] e-
{" ' ¥4 ¥ -Mi + """"*)

• ✗ ✗+ are time dependent
!

We had to define that Xli
) is periodic /antiperiodic for

bosom /fermions

fermions
bosons

""HIM
.
⇔¥T

.-

s
-

s



(Anti) Periodic field ⇒ Fourier transform is discrete :

B

✗E) = Fg 24in e-iwmtxn-fgfxo-seiwmtd.in
"

X
Wn

Matsubara tregnencia :Wm={
"Tks for honors

km-11)% for fermion

Ched hits)=fg§% e-
iwn '

e-
iwmns

= gta as expected.

7--1=1



Non-interacting electrons

Y

z =SOL4] @ S S4
IE-p TNCF,Tr

Double Fourier tranform: tirt:Fire Magim
die -wat

In the lattice ge1.B.E.
transformation unitory, sense SL*] =50Mntu)

zo--o-z eijer
- what

↑
Cyz, Wudhexponent: Sofor the guns eisgir-wet

a

M. Mz

&o Ngwitsgncne -iwee-p+] ngigi
icmansonI
-

Bu on = Ma
exponent: -4g,wa)Rsgun [iwety-]

=>Soctnita] ePatg
tye Liwnto-ft

Fpit
(Solstynita) itjarge(ap-iwel

each Egc-j
independentcontribution

-T(egiwe3.[itrioland
demons: Solysty EMA=Defs his definition.
lovors: SolE C -BOTTA)

z =GBF=F = -Thz = 3T2
In (ep-in



Matsubare summation Juz stopped there 10125) 2022

5 = To pliwe)= getGetSo ReE

↑
-

eonthe

wie
a

rescontour which
avoiok all mingulanties
or trench-cut of GCz), but

that gives Motswhore frequencies
contains well Metantone frequencies convergent integral

Prof by Residue theorem: 80tzgSE) = LHReto).fliesa reviles, white of isenelytical
Renone of fzL=gEtT of z= iWm=RUT

↓
-* =ies (fiwe)=

f12): fliwntx): its Tx+, -1-ex+
↑ I

f72): fFinn-x)=cXT ".II #x+
is x =ResSfiwnl= 5

- s4

Revioice of MCz)=T of 2 = TWn= EAT
B

MSE): Miwntx) =- =
I

IMT+BX 3.x
C - I

M5z): Mimmx) = - = - Exani-BX_E

Conclusion

001fziget= 2+1 fliwal
80 57-2)gSz

= 24iE( gliwn)
goleMz9(z) = 242 gliwa)
jolt M1239(z) = 2412 Fs) gliwn)
"contous rach that

get is onelytid!



Bad to free energy

F- GTI ln( g-
- iwn) = §%¥µ¥,}lnCg-z)É

's

fin

2-→ - fcz) ,
MCH → Éˢᵗ→O converges

2-→ - • fcz) , Mlt
) → 1

,
- I

bul Ey
- Z) → lncz) diverges !

f- (Z) bul Ey
- z)Éᵈo → hazy e- 'HE converges

!

We could me

{
-fi-4
-

m⇔}É
"

also converges
contour <¥✗

hCG -t) has board - out on the
real otis

own,
actually poles at z=q , lntg can

be continuous . - -

✗

real axis

eltwoys mods for fermions,
become the first Matsubara point

isatt.T

F-= [ Fg
&
•

2- = ✗ + iq ; 4<21
→

Z= × - if 2- = Rei ∅ ; Rs
> I

F = fz¥; fix)ln( Ey - × - iµÉ%f◦¥;fcx) hcg -✗ + iy)Éᵈ + should month become
&
-

• • fcz)¥ln C- 2) → 0

•

= f:¥ .fm/lnCg-x-iy-enCg-x+iy ] #
↑→

• It
converges

now even for {= 0, hence we can

F- f :¥Ksln(HE"D(g¥iy-g;y neofeey set it
to

whyparts
-_

for boom: next ¥5bn
/ 1- e-
" )

fix)= - ¥5bnCHE
"

)
00

F=9[¥ñÉln( 1-GE")(¥iy - = gfkgi.j-lncl-ge-r.DE#Eg-H=qTlnCi-ge-sE )
f -

ao

- n y X

P + iñoTEg - ×) ; P¥ - i Frey - ×)

Finally :F= -2Tbull -1 e-"t )
f

for boons 5- = Sgt b. ( 1- e-
"f)



Homework 2, 620 Many body

October 13, 2022

1) Problem 4.5.5 in A&S: Using the frequency summation technique compute the following
correlation functions:

�
s(q, i⌦) = � 1

�

X

p,i!n

G
0(p, i!n)G

0(�p+ q,�i!n + i⌦) (1)

�
c(q, i⌦) = � 1

�

X

p,i!n

G
0(p, i!n)G

0(p+ q, i!n + i⌦) (2)

where

G
0(q, i!n) =

1

i!n � "p
(3)

and i⌦, i!n are bosonic, fermionic Matsubara frequencies, respectively.

2) Problem 4.5.6 in A&S: Pauli paramagnetic susceptibility occurs due to the coupling of
the magnetic field to the spin of the conduction electrons. The corresponding Hamil-
tonian is:

H = H
0[c†, c]� µ0

~B

X

k,s,s0

c
†
k,s~�s,s0ck,s0 (4)

where H
0 is the non-interacting electron Hamiltonian with dispersion "k.

Calculate the free energy of the system (in the presence of the magnetic field) and
show that the magnetic susceptibility (� = @

2
F/@B

2 at B = 0) at low temperature is
µ0

2 ⇢(EF ), where ⇢(EF ) is the density of electronic states at the Fermi level.

3) Problem 4.5.7 in A& S: Electron-phonon coupling.

In the first few lectures we showed how we can obtain the phonon dispersion in a
material. The quantum solution in terms of independent harmonic oscillators has the
usual form

Hph =
X

q,⌫

!q,⌫ a
†
q,⌫aq,⌫ (5)

where q is momentum in the 1BZ, and ⌫ is a phonon branch. The Fourier transform
of the oscillation amplitude is

u
⌫
q,↵,j =

1p
N

X

Rn

u
⌫
n,↵,je

�iqRn (6)

1



Here ↵ is the Wicko↵ position in the unit cell, j is x, y, z and Rn is the lattice vector
to unit cell at Rn = n1~a1 +n2~a2 +n3~a3, and N is the number of unit cells in the solid.

The solution of the Quantum Harmonic Oscilator (QHO) gives the relation between
operators aq,p and the position operator, which is in this case given by

u
⌫
q,↵,j =

1p
2M↵!q,⌫

"
⌫
↵,j(q)(aq,⌫ + a

†
�q,⌫) (7)

Here "⌫↵,j(q) (or ~"
⌫
↵(q)) is the phonon polarization, and M↵ is the ionic mas at Wicko↵

position ↵.

When solving the phonon problem, we wrote the following equation

[He +
X

i,j

Ve�i(rj �Ri) +
X

i 6=j

Vi�i(Ri �Rj)] | electroni = Eelectron[{R}] | electroni (8)

which gives the solution of the electron problem in the static lattice approximation
(Born-Oppenheimer), where Ri are lattice vectors of ions, He is the electron Hamilto-
nian, and Ve�i and Vi�i are electron-ion and ion-ion Coulomb repulsions, respectively.

Due to ionic vibrations, the displacement of ions creates an additional term in the
Hamiltonian, which according to the above equation, should be proportional to

He�i =

Z
d
3
r

X

n,↵

[Ve�i(r�Rn↵ � ~un↵)� Ve�i(r�Rn↵)]⇢electron(r) (9)

where Rn↵ is position of an ion at Wicko↵ position ↵ and unit cell n.

– Using above equations, shows that for small phonon-displacement u, the electron-
phonon coupling should have the form

He�i =
X

↵,j,q,⌫,�,i1,i2,k

c
†
i1,k+q,�ci2,k,�(aq,⌫ + a

†
�q,⌫)

g
k,q
i1,i2,↵,⌫p
2M↵!q,⌫

(10)

where the electron field operator is expanded in Bloch basis

 �(r) =
X

k,i

 k,i(r)ck,i,� (11)

and the matrix elements g are given by

g
k,q
i1,i2,↵,⌫ =

1p
N

X

j

"
⌫
↵,j(q) h k+q,i1 |

X

n

e
iqRn

@Ve�i(r�Rn↵)

@Rn↵,j
| k,i2i (12)

Explain why the above integration h k+q,i1 |...| k,i2i can be carried over a single
unit cell, rather than the entire solid.

– Now use the following approximations to simplify the above Hamiltonian

2



∗ We have only one type of atom in the unit cell, i.e., M↵ = M .

∗ We consider only one Bloch band, i.e., ci1k = ck in our model.

∗ We consider the longitudinal phonon with !q,⌫ = !q and approximate form

g
k,q
i1,i2,↵,⌫ ⇡ �i1,i2 iq⌫ �. (13)

Show that He�i is

He�i = �

X

⌫,q,�,k

c
†
k+q,�ck,�(aq,⌫ + a

†
�q,⌫)

iq⌫p
2M!q

(14)

– Introduce Grassmann field  q� for the coherent states of the electrons ck� and
complex fields �q,j for phonon operators aq,j, and show that the action of the
electron-phonon problem has the form

S =

Z �

0

d⌧

X

k,�

 
†
k�(�@⌧ + "k) k� +

Z �

0

d⌧

X

q,⌫

�†
q,⌫(�@⌧ + !q)�q,⌫ (15)

+�

Z �

0

X

⌫,q,�,k

 
†
k+q,� k,�(�q,⌫ + �†

�q,⌫)
iq⌫p
2M!q

(16)

– Introduce fields in Matsubara space ( k�(⌧) !  k�,n and �q,⌫(⌧) ! �q,⌫,m)
to transform the action S to the diagonal form. Next, use the functional field
integral technique to integrate out the phonon fields, and obtain the e↵ective
electron action of the form

Seff =
X

k,�,n

 
†
k�(�i!n + "k) k� �

�
2

2M

X

q,m,k,k0�,�0

q
2

!2
q + ⌦2

m

 
†
k+q,� 

†
k0�q,�0 k0�0 k�.(17)

Notice that at small frequency ⌦m ! 0 this interaction is attractive, which is the
necessary condition for the conventional superconductivity to occur.

Explain why ions with small mass (like hydrides with Hydrogen) could achieve
high-Tc with conventional superconductivity. Somewhat counterintuitive is the
requirement that the phonon frequency should be large (and not small), as naively
suggested by the dimensional analysis. Comment why you think high phonon
frequency might still be beneficial to superconductivity?

3

I (



Homeworld

1) Freguenay summation Ags p . 185

- Cooper instability regains the following particle - particle susceptibility

at nd

f- \ - pigE- FEE ,
- iw.ir Xcgiir)= -É[Yip , iwhljc-p-gi-iwn-i.ir)

↑
if ✓ boronicRY

-

ptfi ↓ fermionic

being
iw

,
- iw

,
-1in

repeated
Use Teflonmy

summation to evaluate Matsubara scum .

Here ejcp ,iwm=Ép

- Density - density response function (dielectric function ) regains
the following

expression ( polarization )

ptggiwtir
✗ ~ ~ ~

gin
<

piw

✗girl = - f.[ Yip , iwnvljcp-ij.iw.ir)
iwm

p

2) Pauli paramagnetism Ags
186

H=H◦ -job _ § = Ho [Ctc ] - go BzᵗdÑ↑
- Ñ↓)

Colalate free energy
F- (B) and show that susceptibility is :

*= %¥z AE fleet
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Electron - phonon coupling

Ha=2 Wr Oi Ogi
- i8.Rm
G Musa;Maj
Sit

is

a S= m.e, +Man+Mss

o= mt, ie the+ MrAs:
IBE

as"tg. [djcg((@pr+@tyn) for *ofQH.O
M

I
polonization
unit rector in direction of vihotion

From this it follow Majy
**

TewrEdpp/egotot

Heri=SoirEs[Ve Cr-ma-Mna)-Veri(-Rna] freedom
(

Hei=joirSaySremaleaj-2 Pitalis are tusisEtaisis doingto
tHe=Cfoir (fer-Rna) WsE chemicaleculentstaiscatis cas-2 m

S

jointl2(final come tenners- joine
isea-artige

MagicsTriad Mazia (r)

Peisi) =

Maicins
die in

F = Ru + i - within one wit all
↑
can be split

Soir &gisa, to
Ru +iPer

e.*in()O.Rnd MorilisM
-m

forces -> oce- acty)

<torgi, (EqigInOsirind/fai)SoirECtefyincaseredelici
this function is periodic in 10.C.

↑

-FAR and Ruf RmR



He-i= 2.CagicGris (OyutCF) TEEdjip <foyi,KEgigRnosrindtri2 Mangr
&

a e, azi, in

-
He-i= Ering Cripiz Grid (egot@fol gear

&

a e, azi, in

Simplifications: Hei=Eigh Her CitysCan (ep+@g Note

Chec Buty
->

~
SC4, 4] The frie

-

gz =J8L+HDC09Se
Sc+.Oz=f2PpjSte+wrd Ppj+riE frultor+eatestforRepair triteCOgo+ Pro
F.T.: Opph=2 Opin Sidne

↑gpst: If I too simme

S2403: En PyjiC-ientNeph Ogjo tCenterim [imentar facentsaid if frgmatem (ObjetOgja)

Integrate out borons: (Cry-idn)
= ApjenI Mgn=Ltaimen tam

rifha

·SolPain,Pain
Pern (Wyj-iMeOpin - OpEnMUgi-OgnMetis

N Not

othkir)or tiereiNat = hatin E ntire manage

mming:S01SOP)
*TA+B + BTN POISE) PWTA

2 fowars] JOCT
-
See +Gin wood Meg.m Mgin

Se(tit]=Ententime+Eaton isLetteries tailmentee thingmine trial
sye



synmnetic with respect to Rn+-hn
-

Ser24+,+] =Eat(iwn + ea) Ton =Eci-ireMguttin
Itien totien) =a

-*
become of longitudinal-r

--Sep 24+,4]=Etatiwn +2a)Yes-E wtrMyel-you
choice

smote a better, become
intraction shronger

realoxis: no I negative up
to cry

hence large we
letter

On red at is limitor here ign change of t
= wy



Perturbation theory (5mm>in Ags) s topped 1012712022

- Existed before functional field integral
- Well covered in Mahan's book, which does not me finnational integrals

We wile 5 = S0 + 1S

↑ --
here geodetic any type of interaction

I can be developed for typically
4++ ++ but

it meg

any
solvable so, but elso contin

44 or 4x(0+0t).

Feyenenohiogume orthe
#inAS
To proceed are need to introduce the lowest possible correlation function, i.e.,

the single particle Green's function

phyriaf Gretevoer Ht-t = -i0(+-t') < (ait), ajC' Jo3)-+ for terious
1

observable ij
M T -

for locons
t is here ican be momentum to pin (p,s)
red pine or position and pain (P,s)

imaginary Gj(r- 1) = - <TrRiM@j(l) in imaging
Lune To replaces↓me Tit

comn befor

But what is list? We are used to fields being t-openolent.
What about operation?

It is defined is Reissenberg representation.

schoenager representation:
i814) = H1t) => 14H1) = GHOC ICO1 Freel time).

Heissenberg representation: Itis not time openient, but operators are

Operators evolve os: O(= E*p gift

lunce BH =c'Ht iCH, o] siHt=iCH,0())
The two representation are equivalent, became they give the some
physical response function:

schroedinger Heissenberg
*(42H1) <4, IgiHtO giHt14n>

<+1c/H+0 #Ht14101) 74.Col *c023



There is a third representation, interaction (Dirac) representation:

11H =gHot 14g () = eHot gift @cth14cos2

DC =cHot p iHot

hence both (EC) and B2C one time dependent, but of hostinal time dependence.

It also
gives the

same obemobels.

<H102C1414K = <4SH)1 EtotiHot O cittiHot 4oHi
" "We will not me this representation.

Heisentry representation is most useful for us, become
it is easy

to

translate to functional intered at4K

How are quendifies calculated in Hisbng representation?

z= TWGBH) Here I might be- for ground potential

We introduce HIA = Phpet@h
+GeVipnetathenae fhaGe

here Holo not need Ast become HE = **Ho **T= H0T

z= TNCTEGOTAST ThAStrHSod of His trim
perpent, we

did not our anything senomeSpitts=$H

TrCGH) But this found is relid even for him dependent I with(
sonve fills jo +otj

Define time oroking operator: T4, (v) @rC)=S
TIE: 0,17(@2()

↑
5 <52: 90252) 9151)

alney order all operator in tim



For example the combation functions in imaginary time are
derived by

ans--Ettia == Sttair(E@-SOG-ejeon+omgmt) (
j=o Fo

-ETr(T. GH acitati
=
- <T=QiGiLOTC)

Why do we need time oroking. orue 4) E

↑
Giitis = -<T@isiQti) = "-ETr)$HOi -HiteratHei&

T
4

Definition of Heisenberg #here is t-independent
operator

T

=-ETVCS
HOM
a
afroa stor

=-ETrCTcHO GiLiREAK

Iz

Xuusil-i) = 8FROTIOSNgie
#

orCH-Efreot+etg
Xuisili-z = 8fROTIOSTrOgies Fo

*imginl-z) = <T-OPCOIG GTMGCEK
- <ToOi <Trois Oil
-

<T@hOiH <E@iK @TR1

We will me this snowboys to oteries the some
conelation fundin

in functional field integral representation.



stopped (1/3,2022

ans-Ethtin-ESETATrSEC-
SOFG-Ejeon+omgen) (

Fo

EE8T != p
mreof=<OT) <0.1] <@i)

vonishes
= - <E@ist) @[stD

YungiLins- 8TESTSEOTDOH**M
F=o

=(otsildim@ije@iCi)) - <oTM@zGD<@@iml>
- <0.T1) @in(1(> <8i21) dijctc>

connected correlation function #@iT@inCiK
-

-x@Tsidim@ijc@i()) -GiiOt Giniglot + GiinCri) Gizig
(T-i

in& fis
⑭ - if" iCif in



Back to Functional Integra and correlation functions

(Ags page 37] just one that
live egone time correlation functions (O) (

can be obtained by seminative,
the time dependent should

work alo. We will prove it

In Heisen being represenLeton

Guidinis--that
with H- Ho-Eftr4s +@tijict

ancial point: To get Functional Integral for
z we replace est -> fist

and me

3 = SEtte-jit-HCth301f
- SarR4.t>18-mitse + Ho -E fifstice + 4tegist

mJ8C+++] @Ginnsia):- ofisfir
-
-foctites to the
SPL+i+] <S

=

Drfsi
fsiD = -

STAC,c
-

me dlined before in

Ifunctional field) integral
no

were
to T Hessenting picture

We do not needexplicit time ordering in DS: LtTcosrecome functional integral is time ordered

#is generally three: (*@;s OWS Bigs (@icK = EJBCTN EMainMissstinse
any

time dependentoverage replace operators withof operator
corresponding fichols



Back to Green's function (in Hessenting representation
retardedretenderReal time perical G
#up

"
H-tY = -i&C+-+) < [9pSt), apict"Jog)

green's function

We will are Lehman represen
pation to establish connection between retended (plugrical)

2.F. and imaginary time G.F.
retawer

Gpp C -iH (f-+3 - iHH'-z)
~HtHut =-EC+-+ EZTN18BH ciHtcpe a sTH-3CHtOpe Ope [lm)

M

↑ ↑
complete set of &lm><m) Em> <ml
many body shetes

r

-bEntiEm-EmSC-tY sybEmtilEm-EmKt-e'=- i8C+-+E2k =Y I <M10plm> (m) Opt (n)M, M
switch Mt M

= -

iEG-tYEEn SEREN_gEBEm) ciCEn-Em(H-+ <M10p1m) (mICptIm)
iw (t-t) nefIn Reel frequency pretendedal-Soll+-t@ Gpp, C+-t'

-

GregpIw=-iEEm(EBEn_gqDEm) <MIQpImS[MIOptIn) OeiSWtEn-Empt-optS ↑ ost

new has to be-ot to converge,

#-Em+io

( "eEVEm) <MIGretplu) = EEn
PRE

episuleptin Lehman representation(w+Em -Em+io]

↑
#retorbol
- odhancel



Example p-p =& momention and fermious;

2melw = EEOEN +5REM KMI0eIm>
W+En - Em +i8

Spectral function Allel=-You Grettlw) measured in ARPES
Gro+io)

more generally Applies = =#i[Appiction - Gppluriot] pontine definite
mete't

We know aTioPi-iTOlwo) if acR

weP taetiT oTw-of

tecu = ECceEN +5REM) KMIOmIm> 10TW+En-En) [Oz

Staswiolco = ECaSEN +5DEm)KNIOeIm>/-EECNICSEOmlpmI@atn +z

<MI@aIm><m) EDEM@ut1m)

Gretelw = Sreexof Knoman-Kong
a

=

EETr(e*ontearelation

Proof:

Sixof for mattin [(qeEn +50Em)KNIdeIn>/0x tEn-zn
↑M z

= E(zOEN +cDEM) KNIQmImSY wtEntir
↑M z

Azl) is resoned olirectly by ARPES:
Xray, beof < 5 -> EanEct stopped (113,2022

-

comple

h-GeV...200er
↑fitzahrtodeebineepy of user one quein

En we went to determine
momentum of wor function
photon is

In crystal momention to he

negligHe hence
"

M

PII = R,

↑
·f get G determined

&in rinD= &
I

measure

Went Ex(2)



wio Pre-iTlw-o)

-S-molti
I

adeionismto
↳ -

In (3+i0)-(n)-3+io)
=- iT

↑ Tio



son-interacting system

↳M Cr m) FacaL=ECADCEnS
KeIOISFWSUTEE

M
Em

En= EmEz => EmtEn:E

+acc)= 2.(OEN +cDEm) 1MI0mIm > 10Tw-s)z
-

Jaw) olw=1=OTW-2).I

Then: Greuin): WrestTo from 4.4. Grelos - Sato4
Interacting system

12) = M3
Not sigenstate (m) ->often some

time we how a mpoportion of eigentle

<n" G(t) G10lm) ~=Gr tile
self energy

new mome

<02xt) 10cos) ↑

overlap obeays not time

To the Fermi liquid picture:
invol

- - GincolwiGalw):TeTTir+Galm)-Wipe - Ex +if
Asus = 22 0(20tyo-E) + Asmah,not

↑

grenpestile venomolization amplifie



Imaginary time
Green's function ↑= it

It is easier to manipulate and collate. To get real
time response

me Wich's rotation Gelint
-> Gelatio

no commutator
Guidinis = otttm) =- <EQGLOT instead time ordering

j=o
- <T

=
00i) @9107

=>equivalent to Girc=-8ct 18,4807 - y8( 2@41010.6K
We use Jelmon representation to establish relationship between

ref
2inSt and GizSt)



Gppst =
- SE@pC@p/Co3 Gene

Gppl=-Oct2nle**@p ** Optins↑

-YECtESMe**Apte*O*e*TIMe

- sEnt (Em -Em) F

Gppl:-QCtE 23mlepl)Cntcepting
c

-
sEm +En-Em) -

-YEFE [<mleptn> <m10p1m) (
M. M

Gop.sim) = SOgiwn-Gopsto and CappiC
=E GiWeTEppicion

"otulons pregnancies,
became we know

it mut ratinfy (endiperiodicity.
M

@ppCiel=-= SnepIeSSICptInSEmEmtimeTbErAct+Y
·

sEm@c) of
-

O CiNatEn-Em) oloes notcontilule
-
BEM

⑤
-
a

fireto
e ~Em

= sEm_x-BEm
-
iWatEn- Em

- SEM IsEm
Eppliua) = suceplinssmeptionsaiWa +Em - Em

↳ only need to replace
compare with

Ge (iw) -> GaCw+iot

Grebplal = EEm CPBE_gCDEM)
(w+Em -Em+io] <M10plm>(M1@ptm)

This is not entirely trivial when Geliwa)
- is known with finite precision (Pook, macent (
- is known amditically but not in an emolytic form

elample. Thisesta ofwas oliwages, hence non-enlytin

= ntation is onolytic



Generalize the Green's function into entire complex plane

xismin*G1w-io)

GCz= S*Tioo4 Mehre ASX=-iQCxtir) -Gxir]

What son be computed from the agreen's function?
1) partial) total plenity Eiplrtat = <<ptcp>= Mp here

p
=

G8s
opin2) Mimatic

energy
F= <&44cpS=&<papcitot

momentun

3)
Inventolily: 88etrit) ecrit-atreeches

&cham18-n <oter, thecrit
Gcrir, itof

*It him (W.-8n Garin, root necol to be obviated with
electric field turned on

1) total energy [on[Ho, 02] = - to become to is of gnoohel's form
&@st25,92] = - 22 when v is of gortic form

can be given for homeres)



Let's consider:(82-gtp)Gptreot = <aptol8rGpCH-18-p)Mp

·Opht=CH, eps] became epit = OpeH

= <ep(H,0p3) -(3p-)Mp

Hence
[(8--sptplGpcreot =[Cept (Ho, ep3) +[200(V, 0pK-cmpn p

-<2V>
2.
- <Ho)

-<Ho>

= - [Efot

Hence Exot=- 28-pty)Eplest on

Gpst= is2
gimEpsim

Eto=E [ limn + -y)Gpsim
p, Wm

not well converging bone
Eplim->to and in Glimi-

Cplims-into-Eplim

Etht=E iWntyu-g-Eplimm)-8 +28+Eplicea -E21 + [Spliw) +2<gp-p)] Gplima)
Twenty-Ep-Epliw) p.Wn M

!E.cimng_.otfz)Zeo
Etot = TSC9p-p+1 [pliwe)]GpCiw)=Tr((Ho+IRI

hence (V) = 2Tr([G)andT = Tr(HoG)



Bar to Panternation Theory following Negle - Ortonol)
First for single particle G, which is easier: stopper) Nor 8, 2022

Guidins = -Ef82+T43 @
- So-DS

↑hi totre

--IE JACITIS Es tsties =ECost fatto
↑

here so for the 38-outdisticsissome
more

t endl zo=S8C+T4]S
oCO2 = J814+0

We obined before the identity
> tofi ..tot... fifth. -EC93SADag... Slips (

whe
<03 = (Betts Set Ayi

Here A = (8th+Ep)< mtixin (i) sij)

#Ring
= B5* (8-p+2) E-1Gsits]

"

to that (sity=-Grity) =-Giptrt
expresswhich is well wide's theorem. The "vepy" is to

(s)" in

expension, and the Ey()
to evict term by term.

-Hole that: <4: to- lij hence we can do mite

>toti ..tot... fint -21927, thotic ter... stiati
Wire's there regenies all pomble

contraction of the omegs.
Not that this is only valid for geodetic

So!

· Nate:
any

correlation function can be expenobol in
the some may

<x (TT.Tl = Eo<7SC"Xsix,...iK



to
prove

A = -107
-

Fourier before of: so
- the diphthe; Ptime

so = E4TtiSime +p-E.hp/wa
-

· Go:"liwn) I load to time
then soas the [GoJhosts

motixio ij and 5, x'

(20Jnjes=[G9j1]= B*[8-ep

Normally we should also expenol
obnominator zie

z= 2 J8C++ c
S4T1GOT ASLEoCOSESCo

We will show that hinded
cluster theorem" allow us to expend only

nominator and sun instead the connected" Fayman diagram.



Finally, we need to specify the form of the interaction, for example

b = (FEiVise Ritettastest, which we con
to be isa

- Fourier

it have the remerpinethiso -> itwino↳
reat

it 21 in independent R
50-=" R

where Vigne= <P*F**IVar-F) Pair Oecrs) this is instantinous interaction

we can also homolle retended
interaction

the phonon interaction is dynamic, on has the form

as=jortitetest diGpasi-is is tests emeoFumerp->
&2

-
if

I h

Let's evoluate a few term: Gaindi-Is= - EaseASMDo
8) order Ginlitt) = EGi C5-i)=theght him with arrow stems

for Go

I order Gindir = +Ee
Pie EVizeSoTSfTefeteriestost
I

am

·is T

1) sifast. <4yrtesPoC Mincenti
slo = GaidenGaps- Gisel

init

mus
isis i

2) - <titefacto<4tsticDo<tince testcDo:- Gailtrs Gpbirt's Gense

timii 3) - <ticfose3o<Mptstacked insixty like -Gecot Gesotaindiv↑

requires of become of
current

order of ext o

·O 2) <ticteceo4timeto feeDo: GelofGplinth cance
i"

Bi 5)stise tick.(4te4ck2<4.4> Pesto = GilintGaprot Geinc-m->i, i3)
& ↑i12E -

ti.6-<4sDo<4testhetisteso - Gint Greeceincied
&j & i

12 jo T

Stopped Now 10,2022



Two types of diagrouns!

·Disconnectect OmO

connected & i

This work of any order: E
a vertices

inside

⑰
connected! -5

me
vertices otic connected

-C

a&
Disconnected: * of east two pieces

T
m <n vertices invide

Linical Center Theorem. The disconment diagram sently
cancel

the denominate

Therefore it can be Witten Givinbrin)=EFS4 fisiccommended

Proof:

Giin(r) =-FOET ECEDS PGATIDoCEDSM-] (o)
y
a number of every

for distitute

(DS) vertices
between (BS)and

M-M

* wa! m! *S

Ginsiri- ECn <5DS isiM!
<Aummat

*

= - <FSM 4isilNitsilyn, ECL-DSY
But E= ECCESPY Sune Giinfit)=<F4sfitsi

commuter



*
&In(EAS)M0 i! <5D5*) ci?

For m=0: 2o SAs)= E

For Mil: <FSO ECSNT = CESCOSE
M-M

For
anyo: [seczo<EpSsS=<STRO-

Topologically equivalent otagrams and syminty factor

Symmetry of the interaction vertice

At the lowest order we got the Hartune of two Fork diagrams become there

are two
ways

to name vertises

Evijnex(ithas itfiles, (sesi) -se.jh
T -

which is exactly conceled by I in ·evaex) init inobjination of V.

this works of any order and EVipe and 2ways of recronging
indices in

interection,

Neyle-Orland defines hebled of unlabeled oliograms.
In lobled diagram

WeC
Acetobetoffightpersonforeachinteracingtheinitiis

S
If we considers labeled diagrams we have two copies of diagrams

#i+h ++ but if we concile undeleted,
we have only one copy. Tof



At order 2 we have aEe 2 lobled diagrams for coll
unlobeld diagram.

Conclusion from interaction of order on: (1)
"

Nijee)" is exactly conceled by
2 lobed

copies of the same unlabelco oiagram,

In addition, of order in we home extron! Ways
to moreng indice

between different interections, i.e.,
can exchange spine)

- Sinjadata

↳if enolgines the row groups.

this is! different orangement can be used to simplify the equation

connected, cobeled

Giiz1ir] : -ECESNGGRDo nebeled

Ginbins-e*)SoorReVipze tttpistenses testsfists3
annealed

Ginsens =-RfaoReVipze ttetpistances testfists
counties we do write intopologicallydifferent

What are topologically different diagious"

diesgnenseril "ht-
ore

mar

-i ·hun



Rules for Faqumen diagrams for a
Drew all topologically distinct connected diagne composed of m

vertices see and diverted lines
-

S

I
Two diagrams are topologically distinct if they

cannotbe deformer I
no as to coincide completely including

the direction of the omous
on

electron propogator
For each topologically distinct diagram

endluate contribution as follows

-

Anign time/frequency and
momentumlike politel

lobes

For each site orig factor Vijne Pure and for ea
- &out

line GipStend- ihat) si tenoS
Gjliwn) stre

i
conserve frequency in each veter

- Sum over all internal invoices and

Sintegrate
overess time [0,57

Sun over all internal Meterhans frequencies
-

Multiply the result eng S
zjM 3

ML

I
im ↓me

L942 in fregrency

where she is the number of Cos fermionic loop.

stopped (or 152022

Check for first two orders:

&

i+the·z

O "I ↑

-in
it

~iosintinfohniw+...
(1)

GinS)=GGIJolVijneGiS-i)GinC GpSot + (i)of Vine Gicrt>GainSi) Geplot+...
Gincin=RCrijze Gisia) GeinCind Gapie's + EVne GiliaGmincine Gejsimties+. .. .



simplifications of perficiative series for G

1) Transform to converted invoices: momentum and frequencyB
inf &, Wr

Genlimal-Wee KT=Gast@eYos2: hence -

Content interaction in momentare pose Ng
= fax comeponds to Asariteen

hence we can wite = faiysfrsitartys, tas We and
&92ssI

&, te

stairson fees, when referent bmsFishe
*2+gs' *2+gs'

Note: I from Vije was eliminated
by considing

elobeled diagram. Here similar
rule

opplies. We were of myin eat concise only one contitution.
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2) Dyson Equation
Diogroms like the one

better handled by prometric
sun, and the resulting gentity I is worldly better converging soon G.

We mite G = (4-2)=G+42C+22929+....
↑

zroth ↑ ↑
order them (insin)5"age toles core of all ringle particle

are removed
reducible diagramsIn general G= + -8+ + -@18++.

hence I should be one particle involucible: does not fall into two

pices by nothing a single perfile line



Modification of rules for self-energy (as compared to G):
- Draw all topologically distinct connectedsingle particle

inveduable diagrams.
-Cut

legs from
the oligram.

- All topole pierous contribute a constant, and can be
eliminated by

reofinuy (properly recolcating the chemical potentialsingle perficle poten
Lel

Todpole ! -o⑧ receive [eliw) = Ny=0·
constant

②, w independent of & On Wn
- I

is like you in G = (iwtyu-an-Cell
#

all constant of
orbed in

In general toolpole is
the Harten potential redefining jo

&
Mir

·

&pral:firtrVC-Mir
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S S
-

3start with [srins = orriSVac-r" MOCF"LOPr"
and then M is replaced by more sophistizoteo

approximation for obesity 0+@+5+.-

We
rally

remove the diagram from perfutation,
endjust self-conitetly

evolute obity in and Hortine potential for this oterity.

Hence perturbation on Hertle state is
very convenient,

which in shop
toopoles.



Expension for free energy
We wrote E = E Suze and me it to concelell disconnected

Olieayous. But we did not develop rules to evolute z

Rules are similar, but their is a complication for high symnity diagram.

We new devine "limbed cluster theorem" for themolymania potential,
undid states

E = 2o (seecep cugconmee-dopologically
blisted

on
Here leg is a symmity factor for

a given diagram,
and is on integer that

enumerates how money copies of the same diagram we
often when

exchanging invoices on all interations.

there one 2%.M! posite exchanges of indices,
and not genete

topologically distinct diagrams, while
sun won't. When

the one
externe

S

like perfectation for G) Nao=1,
but comidering voseum-to-rea

diegnome $571.
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8
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Proof through functional obinative

z= 2 J8C++ c
sti (Gobitosis syste

effETs SOC asriksitors states = Goll-

GT= EEC-ht Note. GKOT=1

5C405+ 0GS
= 0

=OfE=-Gootis B= -GC207'Go
T = -140 wtht]

o
Functional deviative -int is a simple cutting of 40 properator

in expension for
the

Note: z0= DefGo'7

enzo= 1uDet 1-G0] =-TV (n)-Go)

onzo Got hence of order 0: GT=-40400) = - Go

9)"s-= = Golt

Gt=-CTrCiCOYoK -SOSCONCOSTS



We know that each topologically
distinct diagram should appear only once in

expansion of G.

If oft produces multiple copies of the same diagram, it must
have symmetry

fector Mp> 1.

Example:$u8 hence o
= 2 & again (p=2

⑭
Mrofhon =

goap=1 frOr No-h

&"
-> mare f & fo

:Gnoi hots
res
-My
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IintMs

M
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convergence of perturbative series - how to make it convergent

#emonic oscilator s=( +wy)dlOy + OjYor -S=

(g -iwn)1Pqwa1+glPgwal"hise"

At lend of Simons morning of perfunctive expension

I(y) =fc
+x-+yx

=
Besolk (, og For

I

I(y) = Sc
+x=x

=fatorCMcam-CosEcs
Stirlin: 2!vERRTgR -MeCfnp

(c+x-yu== (pr2-(zm)!

even for very
smallof

the expension
Note: (hm-1!! = (4M - 1)(hm -3)..-

If I is large, perturbation
SKansascranescam-sidea = xm -x(un

-3 ... olimages of inficiently large n.

-(7)

~
1- 5g + 1856 Hoils instantly! he

AI()--
---- 04

*
n>

- (1)T13 140 hope for longery!

Example g
=1 =) McF(

↓(y)
=1 - 38

I

- (3)
=1 - 5 + 3.28g

- 27.1j3 +--

*Fimolamental issue: -
g changes the frequency of ovcilation.

- Overlap between oscilator with frequency I and renomnalized

frequency with perturbation is venishing.



Trick by Kriment
and Feyrmenu:

#Hotf-*x- Myre =or Beslk [, ofthe 6) Introduce ventional prometer o

F(y,M) = f zrYx=-95x"-ISulcli 2) At each order optimize Igit) with principle

term
of minimal sensitivity, i.e.,HEEEEMERMsM

1) Expend in 4 and not g

otn)= 0 m of order n

9= 3)InCeng), Fadacs).... Incrng)
will likely converge

x=

y -

2m + 2n

I(2,) =f**Ea"sy-zserny-regremlin*CaeramSta
-gam

+umzn

-CaMth() (Eteceije-msmenis, cs!m! =CoCCeeSweetenwin!22
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0.954o
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N

- t
-exact - I

Itsy,r no optimum
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1 -j



comparison of perturbation with functional integral

zsgL:reSOR EX15gX-SoEnpH-ESou*(8*Y- zn = (vfSex)t

Evoluting in by functional intigial technique.
changeof variable:

x=W

Ez yeSarxyuee4-Fe, eutafef zag ga

- hate greener So **EengtAsy)=E-2my2

bring on integral station condition: ·=y-b = 0 or y==2form
foo otationarity:

functions cements: GetIt=>
A= ACA2T+1 OE SyF23=2 (l-ens) + 2239 72)

"

-
a [221-ens) + (8 72)]then za be greener ste = Elezeendcheclensfor

~

<ye epresence
- I tell

re

=E! Er

finally - GeEheEftel
zg1=2 fifet) =I(nee

which is the same as before doing straight formerl
expension,



Homework 3, 620 Many body

November 17, 2022

1) Draw all connected topologically distinct (unlabeled) Feynman diagrams for the self-

energy up to the second order with expansion on the Hartree state. Exclude tadpoles,

which are accounted for by expanding on the Hartree state with redefined single particle

potential.

Assume that the system is translationally invariant, use momentum and frequency

basis to write complete expression for the value of these diagrams. Use the Coulomb

interaction vq and single-particle propagator G0
k(i!n) in your expressions.

2) Calculate the symmetry factors for the following Feynman diagrams, which contribute

to logZ expansion.

Homework: Calculate the symmety factor of the following diagnoun:
Drow the diagram for a that are generated by one

-t
T

3
&>
me

- f -

I d -
<

#or cculate the exchange contribution to self energy and

hotel energy of
the uniform electron gas

E= E2 UyGylimtin)=-EVMey=-fsMarye =-SerflTz) Totak

Siteisefosmes Freepoo-Suisio-SParzetxtiforrigatesriicesxTtifoiredistrict
as

O

*= 1 =

y Skys:It Fm/fel
== y

Sigl =
E= a0n S1E ↳in

find olivetine

y
= (

want

iseffectionmesofeldon
within HFho he

2.I= Eawid +gferw + geerk-at

I

·

wll-fat +p-ef-si-ofashrte-Get[Ex9EM
- I ↑=Ea
E RME)E

zr

za = OEe ·

ECITOCaI

*
=Es[I + Oze-lo

3) The Uniform Electron Gas is translationally invariant homogeneous system of inter-

acting electrons, which is kept in-place by uniformly distributed positive background

charge. The action for the model is

S[ ] =
X

k,�

Z �

0

d⌧  †
k�(⌧)(

@

@⌧
� µ+ "k) k�(⌧)

+
1

2V

X

�,�0k,k0,q 6=0

vq

Z �

0

d⌧  †
k+q,�(⌧) 

†
k0�q,�0(⌧) k0,�0(⌧) k,�(⌧) (1)

Here "k =
~2k2
2m and vq =

e20
"0q2

is the Coulomb repulsion. The uniform density n0 is equal

to the number of electrons per unit volume, i.e., n0 = Ne/V for charge neutrality.

The density n0 is usually expressed in terms of distance parameter rs, which is the

typical radius between two electrons, and is defined by 1/n0
= 4⇡r3s/3. Furthermore,

the Coulomb repulsion and the single-particle energy can be conveniently expressed in

Rydberg units (13.6 eV= ~2/(2ma20), a0 Bohr radius), in which vq = 8⇡/q2 and "k = k2
,

and all momentums are measured in 1/a0.

– Show that the Fermi momentum kF = (9⇡/4)1/3/rs, where EF = k2
F in these

units.

1



– Show that the kinetic energy per density is Ekin/(V n0) = "kin =
3
5k

2
F or "kin =

2.2099/r2s .

– Calculate the exchange (Fock) self-energy diagram and show it has the form

⌃
x
k = �2kF

⇡
S

✓
k

kF

◆
(2)

where

S(x) = 1 +
1� y2

2y
log

����
1 + y

1� y

���� (3)

Note that S(x) can be obtained by the following integral

S(x) =
1

x

Z 1

0

du u log

����
u+ x

u� x

���� (4)

– Derive the expression for the e↵ective mass of the system, which is defined in the

following way

Gk⇡kF (! ⇡ 0) =
Zk

! � k2�k2F
2m⇤

(5)

Start from the definition of the Green’s function Gk(!) = 1/(!+µ� "k�⌃k(!))
and Taylor’s expression of the self-energy

⌃k⇡kF (! ⇡ 0) = ⌃kF (0) +
@⌃kF (0)

@!
! +

@⌃kF (0)

@k
(k � kF ) (6)

and define Z�1
k = 1� @⌃kF

(0)

@! and take into account the validity of the Luttinger’s

theorem (the volume of the Fermi surface can not change by interaction). Show

that under these assumptions, the e↵ective mass of the quasiparticle is

m

m⇤ = Zk

✓
1 +

m

kF

@⌃kF (0)

@k

◆
(7)

– Use the exchange self-energy and show that within Hartee-Fock approximation the

e↵ective mass is vanishing. Is there any quasiparticle left at the Fermi level in this

theory? What does that mean for the stability of the metal in this approximation?

What is the cause of (possible) instability?

– What is the form of the spectral function Ak(!) near k = kF and ! = 0?

– Calculate the contribution to the total energy of the exchange self-energy, which

is defined by

�Etot =
T

2

X

k,�,i!n

Gk(i!n)⌃k(i!n) (8)

Show that �Etot/(n0V ) = �0.91633/rs is Rydberg units.

2
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Note that the correction to the kinetic energy, which goes as 1/r2s is large when rs is

large, i.e., when the density is small (dilute limit).

• Evaluate the higher order correction for self-energy of the RPA form, which is composed

of the following Feynman diagrams

Erelate Feyrom diagons of the form.

↑ dis hit s olls: sx....&alice)=

Eacinl=- RinWy"Garylimtin (Pylie)+e Peie+.
. .

. J. - RinNy-Grplintine Hepsi

where: Peli2)=sE GeliwiGoiglimtind
iw, 2, S

Pelin): Ads Tye inte-yyLEs
Eye: TieYoghyeyejti

&sation = 2stey ffyeTio = etifa-yetir-tez-yetio)
-

&setioEoEsfoSetSoUIer-gWEAtio etiy=2epx)-entir I

&sation: cranionyx+oatnegx+iol
- I

&section = c2Solzer feet Muse-g=-negxtiol + ung
In Surg--zegx+iol]

Psetiof: stosesCensetzes)
+ asfine"

Rate sae/enso+be) -Ause-res]=8&+efeule-ee)-ensetmes
c = Rty2

hence
& = 0 -g2

8 = - 2&b = 2g

pirstirs-isreserveraioorortmfrereEFrrrrrrrrrimEE( I
I

*
c+io] = - rL1-se&Prs" seen(eemr + (18"sojensrzed]

Show that the self-energy can be evaluated to

⌃k(i!n) = � 1

�

X

q,i⌦m

v2qG
0
k+q(i!n + i⌦m)

Pq(i⌦m)

1� vqPq(i⌦m)
(9)

where

Pq(i⌦m) =
1

�

X

i!n,k,s

G0
k(i!n)G

0
k+q(i!n + i⌦m) (10)

• Show that the Polarization function Pq(i⌦m) on the real axis (i⌦m ! ⌦+ i�) takes the
following form

Pq(⌦+ i�) = � kF
4⇡2

✓
P
✓

⌦

k2
F

+ i�,
q

kF

◆
+ P

✓
� ⌦

k2
F

� i�,
q

kF

◆◆
(11)

where

P(x, y) =
1

2
�


(x+ y2)2 � 4y2

8y3

� ⇥
log

�
x+ y2 + 2y

�
� log

�
x+ y2 � 2y

�⇤
(12)

• RPA contribution to the total energy is again

�Etot =
T

2

X

k,s,i!n

G0
k(i!n)⌃k(i!n) (13)

Show that within this RPA approximation the total energy takes the form

�Etot = �V

2

Z
d3q

(2⇡)3

Z
d⌦

⇡
n(⌦)Im

⇢
v2qPq(⌦+ i�)2

1� vqPq(⌦+ i�)

�
(14)

The analytic expression for this total energy contribution can not expressed in a closed

form, however, an asymptotic expression for small rs has the form�Etot/n0 ⇡ �0.142+
0.0622 log(rs), which signals that the total energy is not an analytic function of rs or

density, hence perturbation theory in powers of vq is bound to fail. Analytic solution

of this problem is still not available, and only numerical estimates by QMC can be

found in literature. Note that this total energy density is at the heart of the Density

Functional Theory.
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Homework: Draw all oliograms for self-energy/excluding tool-potes) up
to the

recond order and mile expression in momentum frequency sposes.

order:
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Homework! Calculate the opnumety factor of the following diegroum:
Drow the oliegremm for a that are generated by There

xx
=2 1p =4 10 =6

O

do I

3
-
m

-

- in a

&

L -3

2

aintheor
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3
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! ↓sTo b. I

d r Fo
is 's

t it ↑35
m

ro
·

I ↓!>
e
-
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Homework 3 on UEG

Fermi momentum: M = nrgs =Ne
= 1Sts ne =n(5 = t = =E
~pir and t =(*)" F

Erin=EMs te=1Ry *Ergois afocal
Ez == =Co)(ERy =E

=mn =VhToRa=tEer(E) =vMo5*Ein =3)"3 Isu Note:

↓E =S
*,M

- Colculate the exchange contribution to self energy &giote

&= EE NoGylinxin=-tENeMexyF-SEs Mavy-m
= - Setof'Tr) Toak

T=0

->

FFJoYorEETELSolmuS ETerEagae-ESaorSe
tobearoundi

O

O

*=u;=y sifcEEoUnenIEEETr
stopped E =

y-
Y

->

E= -518)
size

in
find ominative

y
=1

want

iseffectionnowofelection
within HF to en

2x(u) =2a+(w =0) + &rw + 0225/2 -)

L L

=

w(l--() +5-8-2-aoat2-(-e)[ +8E(0)]
ow

-

- 1

Est ju (- r)E
=CE - Luttinger's theorem

zr

znEr Ee[I+oEMP]

Gr(w)ENERGERE *=za(1+MOEa=6M2M*



For HF: *-e ar=-Esl =x

t = 0 which mean infinite sonowith -> meter unshele

2 =
=k 0.85 =

li (00n)"

What is the spectral function near the fermi level?

Ar(w) = - +YGn(n = -ESmErzascir) -> O neer Raf
ondw=0

Total
energy: We proved before that Exot: TEwn (8-N+1&plive] Gpcin)

For 2" me home sErt=I2Galin) =E2:Ma

↓Ent=Eo-**S(E) ·roCo. - **S(E)) = FrlotserCo- *S(EEMr=

-Ent = tr(or - ajoxx-s(x)
=Car-ns(x1] Note: (oxxrs(x) =z

↑ I

crios
on"Es

·Earn 5.(π*3 - F((π)'= 2003-os

Note also: m =strs =233Ma =
2 Cor-the menu a

=(π)"rs

we know mos: 1Ry =13.6eV hence Cettein by is E=liger
an



=Meluete Feymeu ologous of
the form: David Rives and Bohn

- RPA
Cr(ix) = as 3:23o)1g+.... -

a+
y

&alin=-s &EgGanglintir(Py(ix) +Niet.... JF-stEnMeGanglintial tosial
fil ↑

one more order, butalso
one more loop, hence + 1

where: P(iz) =0, Grcini Ganglintief

↑glim):over nose trage rootedtiw

(n+ in) = 23ffsyethn = 2(a-Yogir-gay-Jetir]
(n+ i) = o3SoFerforeEgio-arg:2egFr+. I

(e+ i) = cEarou (eayx+ir-aeggx+io]
(e+ i) = 2Era[ctns -g-nagx+ia + nagln(M

+yr-2egx-tirl]

Py(M+iot = agezeCensees that*vEx triy 5 = a↓ C

Psy=x =
= 0fomn[enCEgregr+enf

-Fuente) = 5-45545-(x+ yzzy)
-m(x+y=zy))

- cz + z - 454y-[(x + yzzy)
-m(x+y

=zy))

=cy + x(x,y)
x(x,y) =I - [(q)y,(((x + y)+ zy) - e)x + y) - zy)]
P(y =E(x =t) =- E20X-) +P(EE)]



Note 1z((c + bx) -h(c - rr)) =2
+1-((x -h=b) - a(c+ r=t))

e =
r+y2

hence
a =r -j2

b = - 28b =2j

nYNOUiNEEETNOCENONerdEVEEEYotaonPorteofrouaNorrUEERSNONEGHNEFNMC
entities

C I
I

#
(n+ is) = - r(1-reForS(ox-sr] inCezarr) +(48Y-srJhnCE]

#
(n+ is) = - r(1-reErS(ox-sr] inCE2ME) +(48Y-srJenCE3)



↓ErorShinGrossiniCasioanal
roll: Exlinl=-sFEMGanglintiMl teosial
Hence

bEnt=-cForEginGs(iv)Geylintially insins; but Polia)-stes Goncias Ganglinties
↓Etnt=-cENiery circ
=-Efrences/rgs]
=-EM(x)for(x]

P( +i)=
- [P(+ir,) + x(*- in)]

bEnt =-ESM(x(m) FFEqusx7
x(x,y) =I - [(q)y,(((x + y)+ zy) - e)x + y) - zy)]

- AfooTyrfmse> Indoortir-Ny Py(+in]
MB(r) =g)- ,)[SuEn+is() ++ -i5]

= -*(PSMEntis,(,) +(* -i5,]



Bold Expansion (SRip)

S4+1205 -AS(v)
GiizG-eS8C++ C

↑sit fli

-EJOHxS@CTTIES4-Slev tittete - g2j2yr3 5to] fisistines
connected
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Homogeneous electron gas: Plasma theory of interacting
electron

we have interesting electrons in a uniform positive see
round

with change Mo = 0 where N is number of electrons and
V is rolume

This beczground change keeps overed charge neutrality and ensures
electron demity

No to be uniform in space,

NcCF-rSEFri SimRyenits) then Ng =jE

sc) - forfor take (a-p-E) tacre+oFajivoirMatstar
M2.critoSSNaC-rs

4 =ci fault
- SoFFGoProPr tarta S,MoSY fecr-r
+ SoFFSoProPr'IMoSE)

Most NaCO-ER

UsittSLNacion
in

note E-vS hucE>*

satFraisorattraitofthe0

w
- Ne Ng = 0 Mo vc(i - r1)

Mo=
ofy =0

·It Ngzo
Ne

Conclusion: the three term exactly senal: we are left with

SH3 = Frtaics (E-g-want tonsx +gENg tango Parr twin the

*#0



We didperturbative calculation for the homenal.
Here we into one

Functional integret to accomplish the same:

For the second homemade me desired the effective electrons - electron

interaction from electron power coupling. Here we
want to

eccomplish the opposite. Given
electron-electron intraction, we

went to

remide it in terror of electron-loon
interaction. This is accomplica

by Huthend-stratemonica transformation.

- izjOyTix vy"Oy(=
We start by identify E=(020P)C

contains perfection O(d
+0) = cooopre

We will me
O(rER, hence P

=0
note, we need i for repulsiveyet, shift vomiable Og -0z + iV9 ( interaction!
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-(OgVy"Oynt iFyinPgu+iOjSyn-UyffirSom]
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Forfar
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g
= 0, me

I 2:Sgn 0-yie
an over
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y+ 0 irnf-int

Hace 25 on Joe Farm - he Surferagas ton't taful trims
c at at
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irn

- Ifotaalt tas't trial toldt



=>SOC+) @
GOPFSantants(on +91 tault-foFENSE9t'

to lety
to we me

=>O2+++)(PLOTO) - Emaintention
+ arm-En CO Vy"Ogati for Psin] essae Og=0 = 0

Setf= sEaton (viwn-p+ExItame + is Egil@gin vy"Oyn+i Oy.nf-ginl

Son = JetaryIn You' re
B

↑act = tECiwnen
dT

+i(Wn+rm) + - iNnT-irnT
d

sir : Pangaean Pain isin
mm

I

-It is Zen Pagarm (cviwn-p +sa) frmny=o+i Oom) trsa+ is2.0-gim"Ogn)&M

m,j

Now we here only quadratic
form for furious.

We con

integrate terious
out

We now interaction mediated by booms,
instead of direct consant

Note: -iOy is become by is repulsive
t

- socons have no olynomial term O(EF+ (g) Of hena interaction
is

shotic.



-Is Authord-Strotomonich decoupling of interaction unique? No.

There are three decouplings:
- olemnity - olemnity

chosel

-Copper channel

- For-exchange
channel

↑= E PrEg Paal Ny Pain Man = Etrta Mac

oi Baxa taa ar gue
↑

T Minglet/triplet

gx
needed for $2. Channel

-

Way is H.S. weful? We went to find letter rootle point approximation.

The booloe pain approximation in original fermion only formulation
is the Hartree For opproximation.

Namely: nO =(o--Etim +aworris
asideof

Join' Ncr-42(r) <Pair tycrK
- JoinNTD PaCr

<taTcrD tacr

evence (18-g -EA+ N+())v-)
- Nxry!)Y,(it =0

where NI(r) = SoPr'Nccrer's MIrY I Hortree - For
Nx(r,i) =Nc(F-r) M(r', i)



By changing the moviebles to electron-roon interaction me will senate
different reole point opportination.

The steps we need to tobe:

1) Integrate out fermions
2)Consider sole point in honomic variables

3) Chuck fluctuation around
the wooden point

-it is SamFaa,mm((viwn-p
+ de) formingzo+i Pom) toca+ is quilt-gianvy"Ogal

z =(0(0 +03/024++)5PgV"0qm
+ I Pagn,ave( iwn to - sn)5frmio-i Oqm) tawa
my

Define (CC05].p.m, part (iwnn+p-Spc) oopeoirme
- idpat -Mz-1,

z = JOC0+0)a5*PVPor Bet(-ci) =JOC0+05PVa
"Oqm + enDett-Gi

InDetA=TreA bccouse in eigentario snBetA-eneuxi)-Etux:

2 = 8L9+0)C5PVOqm
+ Tr (n)- g'C0])

I
enoSep (P]

= 5Pgv"4qm - ir(n(- (203) stopped 121pozn

Up to here this is exact. Now we short making approximations.
This is highly non linear problem in honomic & mariables.



2)Sooloe point: ofdO=0 = Vg"Poi-oOgaTren )-e"'COI
↳"On-ing a

legc03] = (imnn+p-Spc)operame- ispaymen,
-p,n,p2nz

Bog=-ioPu-pig Ten time
Tr(CG oci =LEpinipure Manzon pray itis

Soolie point Eg: vy"Ogn =-ip ep.n.; pig,mm
go

Guess solution:

Forgt0 0 = 0 is a volution become 20
= 03 = 40 which we know

is

y

trewefondly invenient, hence op=p,ond vanishes
offiney

the point g
= 0 is excluded from the model, become inform hose ground

3)Fluctuations around sooldle point:
Define C =

iwnto- hence (12) pa,pean: (G)". I-iOpepimem,
Define Tripene = Cpap,marm,

-(4)"I -i

Sep (P]
= 52OVOqm - Tren)-(G3"(I

- iG3)

Sep(P] = 52lPVOan+E( - Tren(I-iC()
i h(1

- x) =-x -EX'+..

'So

Sep(P]
=30 +52POqm

+ Tr(iG- π + EGdGB+ 53(1-D + (c1'+..)
w

Cvequines
g
=0,ewdy=0 =0x0p

Sep(P]
=30 + 52OOqm

-zTr(CGN) =5i((a-d(3) + i Tr((G-P)Y)



Sep(P]
=30 +52OVOqm

-zTr(CGN) - j T((4 013) + +Tr)kP(")
-

ItopisGpmipmPppininGpinjpinOp-pim
port of T when in imay'mong freeency

- - p
=

ym
- m=m

SypLO) = S' + EnEdymOym2Vy"-sEGpLiwa)GpopLiwavieml] - 55 [GGpiqGp+y+y, Oy0y1-y -z
rayp +

then

Define: BSir= i SneGpsiwn)Ggliwn-itm) P+y+y)
p +g

a
⑨

Sep (0) =S + i20-yom Ogu Vy"(1-VgPg(iv)]
m

this is screened conloub interaction

Wg
"

= Vy
"

21 - VyPg(ies]
=fLl-PycinL]

We olive 18 = Ngji.e, is the creamed repeation, hence [g
= 1 - VgPg (in) so that

electromagnetic response in a medium is screened Dqn = GqwEgu
2- SO20+0) G Sefp(O = to (DetdVg" - Psirs])

*
eocomic and reel of

enz = enZo -InDet(Vy"-Pg(inD = eZo -zTre(ry-PgLimL
-

Strr" + en(1-vy By(irl)In E =enzo - IgExt(1-VgT(ie) I ↓
O

- sF = - bFo -2m(1- vqB(iv)
i

F = Fo+Fogtn(1-V Bysirl)



To make connection with perturbative RPA secults from the homonos

we note that the interaction energy me and mos

E =Tr(24) =i(x +5 +50+.... I
= (0 + 1 + go.-]

How to get F fromE
We know that

E= Tr(X-PH) = Tr((*(Ho+N)
We multiply each interaction by coupling

constant is one tale ornative month

respect to x, i.e.,

a hzx = oh +r((3)Ho
+

xV) =ExTr(c
3+ (xv) = -*xv)

x-
bF

=lvE

= -botx =<Epotix then F = Fo+o<Epet
Hence F+0 =1 +a + i( + x0y+..-]

-

i(G + i10 + 560 +...]

Keno F-FO = -E2 VyPcir+c(VgPy(ies)
-

+ 5(VP(in)] + ... = E2(n(1 - VB(ir))
L,hn

2, rn

- (X +x + 5x3 + X"+...j =E((1 - x)

house identical result for the energy and
to the same G

and dielectric response.



saip this in clear, but just for your information,

This is actually approximation on top of RPA approximation,one would
not wor

if we were to systematically improve on the self-energy.

Epot= ITr)[.did hernotas we el for homemont and in presume theming

Epot/G+ begt I
----04.. . .

Define <==

Ept==I)+++. ...] = IGadro↑ -

this wee there were neglected ·

of

a-ho:ffCardto stored
- topologically olishint

on ringes pertise
mobate



Conclusion: Soodle point opproximation on Hubbond-Strotomovich

field, which couples
to the olemnity, gives RPA expertination

-

rentieFXol-change
or open anoptionin

end Wy > as
plosion satisfies VyPg =1 ono

Eg =1-Vylg
= 0

↓entice note
T

I

excitations

P(+ i)=
- [P(+) + x(in) Ev Ex and t =y

x(x,y) =I - [(q)y,(((x + y)+ zy) - e)x + yzy)]j E =1- Vyb
him ReTg

y -0wthxxxyvz
- x + yx -4msqu2y2 & - o

↑ 2

ooo in o - a
even in R

800

= -2N5 = +3rlim Pg
a finde

YB
=ot(sk) =8n =5)evence lim

g
->0

M*

luce Vy =1 when R16TNo long
lived ovilations

plasma pregnancy
plossie frguency proportional to slemnity



Elechon phonon interaction in metals of superconductivity
Recall homework problem Hei =NErwa lOyr+Oji) fr
when phomons are integrated out, we get

Se24+,4] =Etatiwn +ea)Yes-E we Myat-you

Historic introduction to s <

cooper instability earcate tantagatain tax vg;V = S-g; rawo
O otemnin

2
-

y Conlonbinkroction, but only between

↑ onol & electron

If y30, cooper
notice thatsomething shemetic occurs, i.e.,

metal is

unstable. Consider the looler diagram
a+ya"+y

# Tregs So Gr 36 38 the interaction is opprotimental with a cobond you

↓-r - r' - a simplicity. The constant is negative
& js a 'to
T elfereta
-
rFa

T
1 =

8
-

g()E-a: Fiw" (gaity Liwatin) + (yB)... - sR

-
B (ive)

Bir) = iSC-a" (ina Caity (iwen time

Note: Bolden there opposite sign as humbles
(become no new fermionic loop

but have
20, so

the overall right
seems the same of

in RPA. But Bold) is very different from Bycon)



From HWI jump to *

Bin = iEC-a: Fiw" (gaing (iwatin)
- isYoie-gog

-1 - f(9-s)

=Eat-gigay-y:[Fogsin

Bylim =-252)
- fy) *

· io-Yety -Ye Let's enounce inversion symmetry Y-o:Yo

Byeolin=-zef(9) =-GlaD(defst
Here we introduce demity of states, i.e.,

thPE (c) =20(c - E)
-

Byoolioto) = SolaDiaf' = DloiC>0T

largest around a = 0 or a =R=

f(z) 5-8

-L Better approximation wi

1
- 27(a), Botodd=0 = DCOLIa = D10)en

(
- I when 17T t is not step function

WD is the
energy up to which

Finally i = oD
interation is affective.

-

Note the sign
is rich that there is a pole in N ofT

In RPA w =toup but Proleed <0 hand no intelitiy

only of 13430 and we get plasmon,



Conclusion: We have special temperatur 1=pDolnono Tc=WpCB

of which effective interaction between electrons is overging.

of95 interaction infinitely stony ofT

Since we expect a phase framition, we can not continue perfustation
eccron the houmolery. We need to setup perfubation oround a different
mean field stole, which is BCS men field state. The lowest order

perforation gives Migotel - Ellisting Eg. which one
state of the ent

Eg. for conventional superconductors. But first we need now mean field
state

BCS Theory as a men field theory
We consider only the part of the interaction whichgives rise

to olimerging
interaction (for simplicity), reportion give independent, i.e., static and some

Itas'Ca'tys' Ce's we take only y
= 0

H = E30 Ca5Ces -tEdirForCanCad Ergo (IN y(a
=98154<wp
O oterk

itis rightly different but equivalent
choice of momento

consider mean field decoupling of interaction

CaysCas Grigs CIs->CaysCas (Gniy5(es) +Kay's Cast Grigs Cssx

#we decimple intraction in particle-hole channel weget Herfree Fork.
This

decoupling in particle - particlechonnel usually namishes. However we are not

considering normal state.



Let's consider
many holy ground

stats were function (), for which we love

once expectation value

*=ECO CoCN12) and consequently
*= ECRICTC.o1r)

For now this is purely mathematical
consideration. Not lever if it is stable.

A plays the role of the order parameter, which clearly venisles
in mount

shate, and if money below to gives new ground state.

BCS Hamiltonian only seeps j=0 part of the interaction, which is relement
in the

exacticium and being mouse only in the internal
- ws <E2 <Wp where 9=1m-

H = EECa5Ces - FrECatCfah Gid Cs4

then HIEEE (55 Css - In DCexCan+CaCl2x1 =0
- E(dt,(en) 1 -)(C,he te-

(
Boogaliubar Armistonian has a form of peeltic Kowichonion,

hence soluble

HMF = E Pat Hate + cout.;
What are communtion

relation of to

CCtr.4at)=2(e), (ae,<ea)= conicatidavoi=6,is
thence to behove live monal fenionic operators.

Diagonalization Og = Mg4 will MgNg=1, hence unitary thenstoration



Compare that with bosom's problem for enaguous
in AFM: 5g = Mp4g Mg 2, Ng

=Z,

too furious
Pg =Mg4g MyNj=

HMF = E Pat Hate = 20;AMat err P

Det (entry taxeC - O - (2a - xz)(E.z + xx) -x1 =0

x-E- ID=0

xz = IBDR

Eigenectors Met (CN2,simps C ~that (aPec) =(codelanweeridnin Pz,-he Per

To determine Us, we note MettaNs= (400) with xn- BFIDT

then He= Mst(5a) the

(ji-Yc)(j -i)(=) = C-3:

Csaorx,daviss=3) cance anda-vinienE = o2We

-2csOs nimUs =
=
- Din2WeSolution HUF=E(Or,Ped(( )(OPE) +2.
D

Hi=2 xa(Pet Par-PerPin +Em
+x2 a

- x2HuF =2 Xe(Pet Pant 1inRed + (E2-xs)
v

exactly particle-hole synthe
28

HeF =2,xaPetPas+ 2(2-xd jep rice olispension of Be-21i
the ground white of H hamittorian is the meccan state of Properators, such that

8)sil() = 0 for enge, and
hence HMF(r) = 0

and Pat (e) creates excitationsout of vacaum
state.



the roca state hence is
(x): # Por P I wound statey.5.-ap-m

·CsaCs(0) = 1 MsT

(Par = CCMelunWe(en) = LaReCartaOECor C
6-ex = rinOnCr-coWe Car

1x) = T0-er Pan Ings) = T (rinVeCa-caOsCrd) (worsdax + riMNaCr)/Mys)
in =

Faiedto+onPerinPac.tend-en-1)) Ings
1ecs =T (asUn-rimUrCEC.TeaL + T CrinRe+cVedeaden lays121 <RF

consequently the
ground state energy is

H(rBash = zxPa0danPanIngs) +2(6-xr) IBes
Eo = CMss(H1mbcs) = 622-MBCO this shale is lower in

every
Where one the

cooper pairs?
then nounal stale

1ecs =T (asUn-rimUrCEC.TeaL + T CrinRe+cVedeaden lay121 <RF

ECEF Ez)EFnevataro,the
#ilisson oran

carCan EF CTC-d

>
Ez

There or no cooper pain for from EE,
become

olistinction between CP and electron for from EF are

non-existent: Only near EF the distinction is

visible and leach to
top opening,



stopped Dens/2022

We shorted with mean field mete = E,Cal <arCam12) D
which we now need to verify is stable

Cap = cPePap+rnReD. In
We derived before (OaN =CCReCaytarOEC C hence 2.o = rinUeDex-mPe O.I

C-et = rinUsOs-wOs P-rn
It follows:

* =ECRiscs/finUsPet-cuPaPed) (mOaPar+anPe O.EnLIMBcs>
<-c

* d d o
Crocs 1-wOS ReqinVeO.IIMBos

finally DF -& arrants (2arlMias
↑" Recoll:
-

-= -

Enr2r =

c+E5 D=
- Din2We

Neerived of BCS gopEy: D: EED:

* EfWoodEDIol
- WD/D

So= Ash(r)

1 =gDoArh(x,) k=wyBE,E
=2wpc
r

AtT=0 the pop is DEZWD**Do the same rust as the instability

temperature of the noun state.



Left for Homework

Excitations in BCS state

- In turn of queriparticle states or

Ea = - TT. Pas' Pecos ; the Hiscs = 2.xmPrsPas - Fo

E =E(xx-)

This is a non-interacting problem with solution 20toxe, hence

spectrum is -
-

↑
there is a gap for excitations, i.e.,

no were

energy
- 2EF

I
In excitation that could destobilize

the

EE state.

A(t) = - +Ym(e =5(c -xd

x(w) =2 Fa(n) =20W - xx) =folD(RNSW-EFT) = DIO IBMDion is

↑oppsos otia: (or(f(a))o(s = [wocrossrate↑

thePo
↑

-
piles up here

EE



Left for Homework

Excitation in term of electron (what ARPES incomes) (HW)

Get = - LT-Pet+a+0 = -CT-(4). ((n10), (-ea(0))) =

-- C &Can() (Ecos), (CepSt (25101) C (<CFeast Carlo, <CNCCarIOR -CarStIETC
We stocked with Hisas:[Pat (901) Ts which is quoletic, hence

L on

lGalintOPHIis-CinjaniEstC
(iw)-- E-2

A -

Garlin) = ogBi Frucial -
-(a+D

- G-erFin =

iinaDr
=> Gacline - **

wire -s
-

krs(iw) = #
Scre

·oxetcei clud: (iwi-x

A2s(iv) =258zd(w - xx) + rPg(w + x2)
D(w)

↑
.. nevataro,the

-



superconductivity from the field integral &

Sica = foifirstis [or +2)4gcr-8tato,tatsi to Sr, to cri3
-

simplification
intraction is lov

we will colo EM field through minimal vi-) = -

y
d(i-

3

coupling p ->p - eA
- B =8x ono content

=Etied; E=-80-8
↑
i due to imagining time

We check below that much coupling is gange immanent, i.e., EM field gene
inerience

translates into phone immerience of 4 operators

Spas - forfirstis [Er - +R+ie8]4sr-8tto,tats to Sri ocrity

changing plose to ic,+:
ident
in the I-i8-1504=

if 4(v,t -> &
↑tir, t -> CiOpt -- i -r)cj - iix -

i -et)+

-- i - r)cuj - iix -

i -eA)+

Cu( -i- eE + jv)+
If 41, has different phase, we get:
x+ giv(E -p + (-)+ied]e+ + 4

+

2E + ii -p +C
+8vxie8)+

lence -> A+ rotistical one to
·

- - gonge invariana!

conchnion: different any can be achieved my changing the plan of 4 field.



We will me Hubberol-Strotomonich, in which sa-state will be ⑤
modie point approximation, and fluctuations will give Meisover effect

Hutborol-Stretomont

&
&SoIToPr Nattat4aYo -Sorfirta4x-D4.*trT]= OLBT, 1] @

chard by shifting moniebe (5-tata)oc -tatip) -g tototo th
- Soforts(E--p+PYinPSs -fojoir(i-APata-D tattoz =(Δ(+++)8(9+0)2

>= Soforts(E--p+PEYinPS ts+P-Atato-D tattatY

Define 4a =(t
sSfoir (a, tal (E-p+5menttied,

- $

100to-rid)(t) +(firt"*-Dt ②

become tox(n- - + Eet+ieP)1 =4x() (orn+(er) +iep (x+()
rign change in derivatives because 4the

opposite place to 4.

Define G"[A(F, iw) = C
iw +yu- *-ieo, D C

#iw-g + can tie t

Integrating out fenion:
-(x+(G + -5 =Bet (-GY) c

-ScTre(-G-)
-S

t =(821+.1))0(+++)C

Formally:
3 =

-Tran (G) + folort



Saddle point opportination correspond to new mean-fieldie, BCS shate.
⑰

Our
guess for the solution is D: count in

Fend Fond Luce A= DT

woloe pain ofx=ost) foroir (r -ir(Grl)
y r-

C.The (i)

y =G12 first let A
= 0 =0 then A = cont

-

-*

- IFin+-E,
is ·i)], =soEin(E+ Atx+,iw-g +

C (in-anda= itas,sta

= -

x
=
-sEnxax) =+2f(

-x)]

BCS
gop Eg of fintetemp: t=tEs

thewa

b =SMEsoo-Ice that- zDoCoe-Doae-or
*=xenon

= (z)
AtT=Tc Ato end to hence.

h
Wis

·

=4)ox =M*n+lox =(x) - and + en eTc
= In (P x1.13

0- Tc =1.13W,55↑ (x(1.13 +2)
th(x) = 1 for (x/



Homework

-

gop dependence around Tc:

b--thoN+x-
gDe

*

- = E

hence
- from

pressioninten
-EFMDME

Estimation: Trans-a*(o4 +un-fou
me

*(x +(()
-

- 1)
( -d +42x... (04 *( -cz + (j))

-r+ to.... - Areoox=-th"-EY
i =ty

+ i(t -EY =( EDETET

H

- Dot T=0:

or 70 gotaon-n =
mex+o-as++(5) -M

·en) * + 5)

-50=1
= w = b

=
2wbct

while Tc = 1.13Wp
95.

Lena E = 3 and c = 0.57
*

oror



We finished soulotte point, which gave us BCS equations ⑤
We could study fluctuations around violate point (in the essence of EM-jeto), and

could olive aginolzheng Levolen theory (give explicit incoming and
values to

phenomenological coefficient).
But we will lure concentrate on interaction of EM field

with

superconductor, i.e., deine Meissner effect.

There on two types of fluctuation of field A around mean fell value

of content: 1 = 1 D1 give

-fenctuation of the magnitude IB
- fluctuations of the phase vir,

The letter is a soft mod(yoloistons mode),
become it costs no energy.

the grounds state of a bull superconductor spontaneously breaks that symmetry and
picks certain phone (usually somat= 0) invite bulk superiods for this is known as vigility
of the globel phase of the condensate
If the place changes in space, i.e., OUto the condensate is flowing with nonzero superenment
end B field is mowers. This can happen only on the surface.

We will show that there is a Bolonhome mode ole
to
gene precolor of

the EM-tichd.

Any place
contol he piset by the condensate in principle

We will integrate over this genge freedom it,
and become of that Golostom

mode the gange field.
A will acquires

a mass
thm, which expect monetic field

from the imperconductor. This merchanism
is called Andron-Higge mechanism



starting with general action in EM field: ⑥

Repetition of U8:
2iV(n=)

&
&o

+
ArentFieD -DoC trs-foir (tat, tal >
=

, etoind) (a) tofor
So

- 4"[D]
We

integrate out of jelds, to ofhim
Tr(n(- ci)

-I-G")4
= Det(- () =c hence2=90(4+

+)C

s= -T((- G(x]) + 50

In addition to plane fluctuation, we also here marine fluctuation of IDI which are expensive

and less important. So intent over is will be only over its please v

We introduce unitary transformation i
= (eic iv) and change

4with this

transformation, which can
not change action o (tocut

this is equivalent of changing phone of 4, ->4, M, which aloes not change action

and can be freeing picked.

We next show that this unitary to los to action without the phene D: Do

- I

· ctioai =-Do

L
gioci, gio, saidGin S5.Saic.It=
GiGi, ciGco

i

·Fircin= gir(o -p + FoePtie P)
cive

- givgo (8 + i8 -
p +50-et) + ieP)

- (8 -

y + 1)+inP)
become we have younge freedom

in downing (FP)
end transformation-> A+ removes 50 and i

·

- -



We just proved that the place Dor does not change actions and cooks no energy
hence it is a Golobstone mook. ⑰

Since i can be choose entitions, I can not be experimentally measurable mentity
A is not

genge independent quanting, hence no not be massumed.

While US it on the onlitinity choosen by the condemnate,
the phae can not change in

space or time, i.e., we have a spontaneous symmetry hearing that picks
one place out of

infive number of pointities (for example
v=0

We will how later that s (0= 0, E)
= eoFSoir(Doldir.*c(Acris)] where Do is DCN=0

eno Ms is superficial
demity

It follow that under younge transformation
the action is

S(x,t) =eofor (Do(P+E + am( - 8(2)

hence variation of tin open leads
to time field.

↑Effect v is onlitory
end is part of By hence (OCD) regenies

integral over or and over (OT), the better
is higher in energy

and

less important. Hence we will integrate over v:

Free field: So =CoPrSoFEB in our mobs (a

Hotel Si

S(0) =e-sSor((E -yu)+ (5xAY)intree field
Fourier them form
S(x) =izzt(Az - ijNz)(Ay+igNy)

+ fixAg
(axt).(cx0T) = 0.0 -8.0i.

y
- Ag.A-y - (g.A-y)(y·Az)



⑧
S(x) =izztn(j

-

vywy
+ i(yzy - Ayvy) + AjAy) + g-AjE-y
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Proof that current y = 5
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=+ch(ie-A + 2e)4 - z(x+4=-- x
+8+3 +++ A

fpers

- Inside imperandator there is no
is field and no currently

-

-
- current on the surface in depth x = Es-

Why is there no mistone? js =iA

o-esE-eMAsE evence coment is growing
in the

presence of field.



Here we will net N =0 enol olive the effective action

s(v=0,) =+ir(Y
+ eSoFSoir(D.(Piri)+c(Acri]"]

~

(T-Ta)IDF+CIX1'+...
*et is intesting

Lets split G"into
three ports , we take into account v = 0 and Ato = D0)

a
=

tu+ 2.DoelA3ICX2
no EM field liner in fields guadratic
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-So: -T(n(- G"(x]) =-Tren(-Go"(I- Go(x, + xr1) =M)-Go - Tren(I-Go(x, +Xel
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0o

- ((1 - x)mx + kx
-

+ jx3
~

S-Sawoo = Tr(Go(x, + Xal) + ITr)Go(X,+ xa)Go(X,+ X2))
+... =

S
=
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Homework 4, 620 Many body

December 12, 2022

1) The excitations spectra of the superconductor: Calculate the excitations spectra of

quasiparticles as well as the real electrons in the BCS state wave function.

In class we derived the BCS Hamiltonian

HBCS
=

X

k

 
†
k

✓
"k ��
�� �"�k

◆
 k + "�k (1)

in which the  k spinor is

 k =

✓
ck,"
c†�k,#.

◆
(2)

The Hamiltonian is diagonalized with a unitary transformation in the form

Ûk =

✓
cos(✓k) sin(✓k)
sin(✓k) � cos(✓k)

◆
(3)

where

cos(✓k) =

s
1

2
(1 +

"kp
"k +�2

) (4)

sin(✓k) = �

s
1

2
(1� "kp

"k +�2
) (5)

and the quasiparticle spinors are

✓
�k,"
�

†
�k,#

◆
= Ûk

✓
ck,"
c†�k,#.

◆
(6)

The diagonal BCS Hamiltonian has the form

HBCS
=

X

k

�k�
†
k,s�k,s � E0 (7)

with E0 =
P

k �k � "k and �k =

p
"2k +�

2

1



– Show that the quasiparticle Green’s function eGk = �hT⌧�k,s(⌧)�
†
k,s(0)i has a

gap with the size �. What is the spectral function corresponding to this Green’s

function? Show that the corresponding densities of states has the form D(!) ⇡
D0 !/

p
!2 ��2, where D0 is density of states at the Fermi level of the normal

state.

– Compute the physical Green’s function (measured in ARPES)

Gk,s = �hT⌧ck,s(⌧)c
†
k,s(0)i (8)

and its density of states. Show that the corresponding spectral function has the

form

Ak,s(!) = cos
2 ✓k �(! � �k) + sin

2 ✓k �(! + �k) (9)

Sketch the bands and their weight, and sketch the density of states.

2) In class we derived the BCS action, which takes the form

S =

Z �

0

d⌧

Z
d3r †

(r)

 
@
@⌧ � µ+

(ir+e ~A)2

2m + ie� ��
��† @

@⌧ + µ� (ir�e ~A)2

2m � ie�

!
 (r) + s0(10)

where s0 =
R �

0 d⌧
R
d3r |�|2

g

Show that the action can also be expressed by

S = s0 + Tr log(�G) (11)

where

G�1
=

 
i!n + µ� (p�eA)2

2m � ie�,�

�
† i! � µ+

(p+eA)2

2m + ie�

!
(12)

Show that the transformation UG�1U †
, where U is

U =

✓
e�i✓

0

0 ei✓

◆
(13)

leads to the following change of the quantities

� ! e�2i✓
� (14)

A ! A+
1

e
r✓ (15)

� ! �� 1

e
✓̇ (16)

and otherwise the same form of the action. Argue that since this corresponds to the

change of the EM gauge, the phase of � is arbitrary in BCS theory, and can always

be changed. Moreover, the phase can not be experimentally measurable quantity.

2



In the absence of the EM field, derive the saddle point equations in field �, which are

often written as � = gG12, and cam be expressed as

1

g
= � 1

V �

X

k,n

1

(i!n)
2 � �2

k

. (17)

Show that the same equation can also be expressed as

1

g
=

1

V

X

k

1� 2f(�k)

2�k
(18)

and with D0 being the density of the normal state at the Fermi level, it can also be

expressed as

1

g
⇡ D0

Z !D
2T

0

dx
tanh(

p
x2 + 2)p

x2 + 2
(19)

where x = "/(2T ) and  = �/(2T ).

Next, derive the critical temperature by taking the limit � ! 0 ( ! 0). Assuming

that !D/(2T ) � 1, break the integral into two parts [0,⇤], and [⇤, !
2T ]. Here ⇤ � 1.

In the second part set tanh(x) = 1, as x is large. Using numerical integration (in

Mathematica or similar tool) verify that

lim
⇤!1

Z ⇤

0

dx
tanh(x)

x
� log(⇤) ⇡ log(2⇥ 1.13) (20)

Next, show that Tc is determined by

1

gD0
⇡ log(2⇥ 1.13) + log(

!D

2Tc
) (21)

and consequently

Tc ⇡ 1.13!De
�1/(gD0)

Using Eq. 19 compute the size of the gap at T = 0. Show that to the leading order in

�/!D the gap size is

�(T = 0) = 2!De
�1/(gD0) (22)

Finally, show that within BCS there is universal ration �(T = 0)/(2Tc) ⇡ 1/1.13 ⇡
0.88.

3) Starting from action Eq. 10 derive the e↵ective action for small EM field A,�. Show

that for a constant and time independent phase, the action takes the form

Seff = Tr log(�GA=0,�=0) + Tr(
|�|2

g
) + e2

Z �

0

d⌧

Z
d3r
h
D0(�(r, ⌧))

2
+

ns

2m
[A(r, ⌧)]2

i
(23)

Note that using EM gauge transformation, we arrive at an equivalent action

Seff = S0 + e2
Z �

0

d⌧

Z
d3r
h
D0(�(r, ⌧) + ✓̇)2 +

ns

2m
[A(r, ⌧)�r✓]2

i
(24)
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Below we summarize the steps to derive this e↵ective action.

We start by splitting G�1
in Eq.12 into GA=0,�=0 ⌘ G0

and terms linear and quadratic

in EM-fields, i.e,

G�1
=
�
G0
��1 �X1 �X2

where

X1 = ie� �3 +
ie

2m
[r, A]+I (25)

X2 =
e2

2m
A2 �3 (26)

and �3, �1 are Pauli matrices. Show that action 11 can then be expressed as

S = s0 + Tr log(�G0
)� Tr log(I �G0

(X1 +X2)) (27)

⇡ S0 + Tr(G0X1) + Tr(G0X2) +
1

2
Tr(G0X1G

0X1) +O(X3
) (28)

where S0 = s0 + Tr log(�G0
) (which vanishes at Tc), and the second term, which is

linear in fields, while third and fourth are quadratic.

Next show that the form of G0
is

G0
pn,p0n0 = �p,p0�nn0

✓
i!nI �

✓
p2

2m
� µ

◆
�3 +� �1

◆�1

(29)

where the inverse is in the 2 ⇥ 2 space only, while G0
is diagonal in frequency& mo-

mentum space. We will use (p, n) = p for short notation. Similarly, show that X1

is

(X1)p1,p2 = (ie��3 +
ie

2m
[r, A]+I)p1,p2 = ie�p2�p1�3 �

e

2m
(p1 + p2)Ap2�p1 (30)

Show that

Tr(G0X1) =
1

�

X

!n,p

Tr2⇥2(G
0
p(i!n)[ie�q=0�3 �

e

m
pAq=0]).

Argue that the second term vanishes when inversion symmetry is present, as it is odd

in p (with G0
p even function). The first term than becomes nie�q=0,!=0 (n is total

density), which describes the electron density in uniform electric field, which should

cancel with the action between negative ions and the external field.

Next show that

Tr(G0X2) =
e2

2m

1

�

X

!n,p

Tr2⇥2(G
0
p(i!n)A

2
q=0�3) =

e2

2m
n
X

q

AqA�q

is standard diamagnetic term, which will be used later.
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Finally, we address the term
1
2Tr(G

0X1G0X1). We find

1

2
Tr(G0X1G

0X1) =
1

2

X

p1,p2

Tr2⇥2

�
G0

p1(X1)p1,p2G
0
p2(X1)p2,p1

�
(31)

1

2

X

p,q

Tr2⇥2

�
G0

p�q/2(X1)p�q/2,p+q/2G
0
p+q/2(X1)p+q/2,p�q/2

�
(32)

=
1

2

X

p,q

Tr2⇥2

⇣
G0

p�q/2

⇣
ie�q�3 �

e

m
pAq

⌘
G0

p+q/2

⇣
ie��q�3 �

e

m
pA�q

⌘⌘
(33)

=
1

2

X

p,q

✓
�e2�q��qTr2⇥2

�
G0

p�q/2�3G
0
p+q/2�3

�
+

e2

m2
(pAq)(pA�q)Tr2⇥2

�
G0

p�q/2G
0
p+q/2

�◆
(34)

In the last line we dropped the cross-terms, which are odd in p and vanish.

For any rotationally invariant function R(p2
), the following identity is satisfied

X

p

(pAq)(pA�q)R(p2
) = AqA�q

X

p

p2

3
R(p2

). (35)

We are interested in slowly varying fields (small q), hence p ± q/2 ⇡ p. We therefore

arrive at

1

2
Tr(G0X1G

0X1) =
e2

2

X

p,q

✓
��q��qTr2⇥2

�
G0

p�3G
0
p�3

�
+AqA�q

p2

3m2
Tr2⇥2

�
G0

pG
0
p

�◆
(36)

Next, show that

Tr2⇥2

�
G0

p�3G
0
p�3

�
= 2

(i!n)
2
+ �2

p � 2�
2

�
(i!n)

2 � �2
p

�2 (37)

Tr2⇥2

�
G0

pG
0
p

�
= 2

(i!n)
2
+ �2

p�
(i!n)

2 � �2
p

�2 (38)

Next, carry out the frequency summations, and show that

1

�

X

!n

(i!n)
2
+ �2

p � 2�
2

�
(i!n)

2 � �2
p

�2 = f 0
(�p)(1�

�
2

�2
p

) + (2 f(�p)� 1)
�

2

2�3
p

⇡ � �
2

2�3
p

(39)

1

�

X

!n

(i!n)
2
+ �2

p�
(i!n)

2 � �2
p

�2 = f 0
(�p) (40)

Here f 0
(�p) = df(�p)/d�p and we took only the leading terms at low temperature.

Combining all we learned so far, we get

1

2
Tr(G0X1G

0X1) = e2
X

q,p

✓
�q��q

✓
�

2

2�3
p

◆
+AqA�q

p2

3m2
f 0
(�p)

◆
(41)
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Next we combine this result with the diamagnetic term, derived before, and we obtain

Tr(G0X2) +
1

2
Tr(G0X1G

0X1) = e2
X

q,p

�q��q

✓
�

2

2�3
p

◆
+AqA�q

✓
n

2m
+

p2

3m2
f 0
(�p)

◆
(42)

Next we show that

X

p

�
2

2�3
p

=

Z
d"D(")

�
2

2("2 +�2)3/2
⇡ D0 (43)

f 0
(�p) = ��f(�p)f(��p) (44)

hence Seff ⌘ Tr(G0X2) +
1
2Tr(G

0X1G0X1) becomes

Seff = e2
X

q

�q��qD0 +AqA�q

 
n

2m
� �

X

p

p2

3m2
f(�p)f(��p)

!
(45)

Finally, we will prove that

 
n

2m
� �

X

p

p2

3m2
f(�p)f(��p)

!
⌘ ns

2m
(46)

where ns is superfluid density.

We see that

ns

2m
=

n

2m
� �

X

p

2

3m
("p + µ)f(�p)f(��p) (47)

=
n

2m
� �

1

2

Z
d"D(")

2

3m
("+ µ)f(�")f(��") (48)

⇡ n

2m
� D0µ

3m

Z
d"�f(�")f(��") (49)

Note that here we used D(!) = 2
P

p �(! � "p), where 2 is due to spin. This is

essential because n contains the spin degeneracy as well. It is straightforward to prove

that µD0 =
3
2n in our approximation, because

D0 = 2

X

p

�(µ� p2

2m
) = c

p
µ (50)

n = 2

X

p

✓(µ� p2

2m
) = c(2/3)µ3/2. (51)

We thus conclude that

ns

2m
=

n

2m

✓
1�

Z
d"�f(

p
"2 +�2)f(�

p
"2 +�2)

◆
(52)
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At low temperature f(
p
"2 +�2) ⇡ 0, hence ns = n and all electrons contribute to the

superfluid density. Above Tc we have

Z
d"�f(")f(�") = 1

and therefore ns = 0 as expected. We interpret that ns is the fraction of electrons that

are parred up in superfluid, i.e., superfluid density, as promised.

We just proved that

Seff = e2
X

q

�q��qD0 +AqA�q
ns

2m
, (53)

which is equivalent to Eq. 23.
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