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H2 molecule
Hamiltonian of H+

2 molecule is

H = −
h̄∇2

2m
−

q2

4πε0r1
−

q2

4πε0r2
+
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(1)

Let’s introduce dimensionless units
H

Ry
→ H (2)

r2B∇
2 → ∇2 (3)

(
r1
rB

,
r2
rB

,
R

rB
) → (r1, r2, R) (4)

using Hydrogen energyRy = mq4

8h2ε2
0

and Bohr radius rB = 4πε0h̄
2

mq2 . We get

H = −∇2 −
2

r1
−

2

r2
+

2

R
. (5)

We will use prolate coordinate system (http://en.wikipedia.org/wiki/Prolate_spheroidal_coordinates), in
which the Hamiltonian of the dimers leads to a separable diff. equation.
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The prolate coordinate system is defined by (see Wikipedia):

ξ =
r1 + r2

R
(6)

η =
r1 − r2

R
(7)
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dV =

(
R

2

)3

(ξ2 − η2)dξdηdφ (9)
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η ∈ [−1, 1] and ξ ∈ [1,∞] (10)

∇2 =
4
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(11)

If the distance from the molecule is large, ξ is large, and we can then approximate
r = (

√
1− η2 cosφ,

√
1− η2 sinφ, η)Rξ/2. Hence, it becomes clear that η ≈ cos θ

in spherical coordinate systems, and ξ ≈ 2r/R.

We want to solve

(−∇2 −
2

r1
−

2

r2
+

2

R
)ψ = Eψ

We look for the solution with the following separable ansatz

ψ(ξ, η,φ) = (ξ2 − 1)m/2X(ξ)(1− η2)m/2Y (η)e±imφ (12)
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Inserting the ansatz into diff. equation leads to

4

R2(ξ2 − η2)

[
2(m+ 1)ξX ′(ξ) + (ξ2 − 1)X ′′(ξ)

]
Y +

4

R2(ξ2 − η2)

[
−2(m+ 1)ηY ′(η) + (1− η2)Y ′′(η)

]
X +

(
4

R(ξ + η)
+

4

R(ξ − η)
+ (E −

2

R
)

)
XY = 0 (13)

Here we usedX ′(ξ) ≡ dX/dξ andX ′′(ξ) ≡ d2X/dξ2.

Differential equation can be set into a separable form

1

X

[
2(m+ 1)ξX ′(ξ) + (ξ2 − 1)X ′′(ξ)

]
+

1

Y

[
−2(m+ 1)ηY ′(η) + (1− η2)Y ′′(η)

]
+

(
2Rξ − (ξ2 − η2)p2

)
= 0 (14)

where we introduced parameter p:

p2 = −
R2

4
(E −

2

R
)
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.

The final form of the normal differential equations is

(ξ2 − 1)X ′′(ξ) + 2(m+ 1)ξX ′(ξ) + (−p2ξ2 +A+ 2Rξ)X = 0 (15)

−(1− η2)Y ′′(η) + 2(m+ 1)ηY ′(η) + (−p2η2 +A)Y = 0 (16)

The boundary conditions are

ψ(ξ → ∞) = 0 (17)

∇ψ < ∞ (18)

The second diff.equation has even-odd symmetry. This is due to the fact that η → −η

leaves equation unchanged. Hence, solution has to be even (Y (−η) = Y (η)) or odd
(Y (−η) = −Y (η)). The standard name for odd (even) functions is ”gerade” (”ungerade”).

The boundary condition for ungerade functions is Y ′(0) = 0 and for gerade is Y (0) = 0.
The second boundary condition is arbitrary, but we will choose Y (1) = 1 for simplicity. We
will later normalize the function.

At large distance the wave function has to vanish, henceX(ξ → ∞) = 0. For the kinetic
energy to be finite everywhere, a quick look at the∇ operator shows thatX ′(ξ = 1) = 0.
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We hence have the following boundary conditions

X(ξ → ∞) = 0 (19)

X ′(ξ = 1) = 0 (20)

Y (η = 1) = 1 (21)

Y (η = 0) = 0 or Y ′(η = 0) = 0 (22)

We will use double-shooting method to find p andA for the bound states.

We will solve diff. equation Y (η) to get connection between p andA, i.e.,A(p). We will
solveX(ξ) to pick p that correspdonds to a bounded state.

We need a good guess for parameters p andA. At small distance (equivalent to He+ ion)
these parameters are

lim
R→0

A = −l(l + 1) (23)

lim
R→0

p = 0 (24)

where l is angular momentum eigenvalue of He ion.

When atoms are far apart,E = −1,−1/4, ... and hence p = R/2, R/4, .... The
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ground state will have largest p, which will be slighly larger thanR/2 because
delocalization of electron leads to lower energy when ions get close together. We will look
for possible solutions in the interval p ∈ [R/2 + 0.6, ...R/4]. We notice that p can be
smaller (but positive) for high-excited states.

At finite separation,A grows and is largest for the groundstate. For small p, A(p2) has an
expansion in power series, which looks like A(p2) = −l(l + 1) + p2/3 + .... A good
interval for values ofA is A ∈ [p2/2 + p3/2− l(l + 1), ...,−l(l + 1)].

Below we sketch algorithm

• Create a good mesh for solving diff. equation in variables ξ and η. A good choice for η
is linear mesh (with 50 points). (Be careful and do not put point at |η| = 1, but rather at
|η| = 1− δ with δ ≈ 10−7. For ξ we will use logarithmic mesh ξ ∈ [1 + δ, ξmax],
where ξmax ≈ 30/p. A mesh with 200 point is sufficient.

• First we will find value of A at constant p (i.e., A(p)), which satisfies diff. equation
Y (η). This will be achieved by the shooting method: parameterA will be varied (on
linear mesh) between p2/2 + p3/12 and−lmax(lmax + 1) (we will use lmax = 2

in this expression, and we will use 10 points only). Once a change of sign in Y (0)

[Y ′(0)] is detected for ungerade [gerade] state, we use root finding routine to
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determineA(p).

For numeric integration of Y (η) we need initial conditions. You can use Y (1) = 1 and
Y ′(1) = (p2 − A)/(2(m+ 1)). This is because

Y ′′(η) =
2(m+ 1)ηY ′(η) + (A− p2η2)Y

1− η2
(25)

hence Y ′′(1) is finite only if Y ′(1) = −(A− p2)/(2m+ 1).

• OnceA(p) is determined, we integrate equation forX(ξ) to see if current value of p is
such that satisfies the boundary condistion. We will start integrating from ξ = ∞ down
to ξ = 1 and we will look for function withX ′(ξ = 1) = 0. We will need to vary p to
find such function. This will be done in the outside loop.

• The outside loop iterates through a set of linearly distributed values for parameter p
betweenR/2 + 0.6 andR/4. When the above described shooting methods detects a
sign-change inX ′(ξ = 1), it calls root-finding routine to determine p to high accuracy.
The bound states are saved in a list.

• Once parametersA and p are determined, we recompute Y (η) andX(ξ). We create
an interpolating object for (ξ2 − 1)m/2X(xi) and (1− η2)m/2Y (η), such that
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ψ(ξ, η,φ) can be calculated at any point.

• For ploting the 2D density plot of the wave function, we generate a regular mesh of
cartesian [x, z] points. We compute prolate coordinates [ξ, η,φ] from cartesian vector
[x, y, z] from

r̃ =

√
x2 + y2 + z2

R/2
(26)

z̃ =
z

R/2
(27)

sq =
√

(1 + r̃2)2 − 4z̃2 (28)

ξ =
√
(1 + r̃2 + sq)/2 (29)

η =
√
(1 + r̃2 − sq)/2 sign(z) (30)

φ = arctan(y, x) (31)

The transformation from prolate to cartesian coordinates is simpler

ρ̃ =
√
ξ2 − 1

√
1− η2 (32)

(x, y, z) = (ρ̃ cosφ, ρ̃ sinφ, ξη)R/2 (33)
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We evaluate ψ(r) and plot a density plot.

We chooseR = 2, which is very close to equilibrium distance ofH+
2 . We first

evaluate a few lowest energy gerade states atm = 0:

1σg : (p,A,E) = (1.48501486965, 0.811729880903,−1.20526916309)

2σg : (p,A,E) = (0.849562360518, 0.248475561369, 0.278243795591)

3σg : (p,A,E) = (0.596209803892, 0.120381543784, 0.644533869744)

and ungerade states atm = 0:

1σu : (p,A,E) = (1.15545267065,−1.18688803994,−0.33507087412)

2σu : (p,A,E) = (0.714744398137,−1.691702919, 0.489140445332)

3σu : (p,A,E) = (0.524110147939,−1.83466895941, 0.725308552828)

and finallym = 1 gives:

1πg : (p,A,E) = (0.926036766069, 0.174948548517, 0.142455907889)

1πu : (p,A,E) = (0.673353143116,−3.80488326247, 0.546595544656)
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