RUtgerS Computational Physics- 2012 Introduction

H2 molecule
Hamiltonian of H; molecule is
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We will use prolate coordinate system (nttp://en.wikipedia.org/wiki/Prolate_spheroidal coordinates), iN

which the Hamiltonian of the dimers leads to a separable diff. equation.
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The prolate coordinate system is defined by (see Wikipedia):
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If the distance from the molecule is large, £ is large, and we can then approximate

r=(y/1—mn?cos¢,\/1—n?sin¢,n)RE/2. Hence, it becomes clear that 77 =~ cos

in spherical coordinate systems, and £ ~ 2r/R.

We want to solve

We look for the solution with the following separable ansatz

v(Em, @) = (€2 — 1)™2X()(1 — n*)™2Y (n)eF™? (12)
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Inserting the ansatz into diff. equation leads to
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Here we used X' (§) = dX/d€ and X" (§) = d* X /d&?.

Differential equation can be set into a separable form

L [2(m 1 1)EX(€) + (€ - 1)X"(€)] +

Y
[ (m+ L)Y (n) + (L —n*)Y"(n)] +
(2R — (& —n*)p°) =0 (14)
where we introduced parameter p:
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The final form of the normal differential equations is

(& —=1DX"(E) +2(m+1)EX (&) + (—pE + A+ 2ROX =0 (15)
—(1=n*)Y"(n) +2(m + 1)nY'(n) + (—p°n*> + A)Y =0 (16)

The boundary conditions are

Y(€ — 0) =0 (17)
Vi < oo (18)

The second diff.equation has even-odd symmetry. This is due to the fact that n — —n
leaves equation unchanged. Hence, solution has to be even (Y (—7) = Y (7)) or odd
(Y (—n) = =Y (n)). The standard name for odd (even) functions is "gerade” ("ungerade”).

The boundary condition for ungerade functions is Y’ (0) = 0 and for gerade is Y (0) = 0.
The second boundary condition is arbitrary, but we will choose Y (1) = 1 for simplicity. We

will later normalize the function.

At large distance the wave function has to vanish, hence X (£ — o) = 0. For the kinetic
energy to be finite everywhere, a quick look at the V operator shows that X' (£ = 1) = 0.
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We hence have the following boundary conditions

X(E—00)=0 (19)
X'(€E=1)=0 (20)
Y(n=1)=1 (21)
Y(n=0)=0 or Y'(n=0)=0 (22)

We will use double-shooting method to find p and A for the bound states.

We will solve diff. equation Y (77) to get connection between p and A, i.e., A(p). We will
solve X (&) to pick p that correspdonds to a bounded state.

We need a good guess for parameters p and A. At small distance (equivalent to He™ ion)
these parameters are

éanOA = —I(l+1) (23)
lelino p=0 (24)

where [ is angular momentum eigenvalue of He ion.

When atoms are far apart, £ = —1, —1/4, ... and hence p = R/2, R/4, .... The

Kristjan Haule, 2012 —6—



RUtgerS Computational Physics- 2012 Introduction

ground state will have largest p, which will be slighly larger than R/2 because
delocalization of electron leads to lower energy when ions get close together. We will look
for possible solutions in the interval p € [R/2 + 0.6, ... R/4]. We notice that p can be
smaller (but positive) for high-excited states.

At finite separation, A grows and is largest for the groundstate. For small p, A(p2) has an
expansion in power series, which looks like A(p?) = —I(l + 1) + p?/3 + .... Agood
interval for values of Ais A € [p?/2 +p3/2 — 11+ 1), ..., —1(l + 1)].

Below we sketch algorithm

e Create a good mesh for solving diff. equation in variables £ and 7). A good choice for 1
is linear mesh (with 50 points). (Be careful and do not put point at |77\ = 1, but rather at
In] =1 — §with § =~ 10", For £ we will use logarithmic mesh £ € [1 + 6, &nazl,
where &,,q = 30/p. A mesh with 200 point is sufficient.

e First we will find value of A at constant p (i.e., A(p)), which satisfies diff. equation
Y (n). This will be achieved by the shooting method: parameter A will be varied (on
linear mesh) between p? /2 + p° /12 and — 4z (lmaz + 1) (we will use I,,q, = 2
in this expression, and we will use 10 points only). Once a change of sign in Y (0)

Y’ is detected for ungerade [gerade] state, we use root finding routine to
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determine A(p).

For numeric integration of Y (77) we need initial conditions. You can use Y (1) = 1 and

Y'(1) = (p? — A)/(2(m + 1)). This is because

2(m + DnY'(n) + (A —p*n*)Y
1 —n?

hence Y'(1) is finite only if Y/(1) = —(A — p?)/(2m + 1).

Y (n) =

(25)

e Once A(p) is determined, we integrate equation for X () to see if current value of p is
such that satisfies the boundary condistion. We will start integrating from & = oo down
to £ = 1 and we will look for function with X’ (& = 1) = 0. We will need to vary p to
find such function. This will be done in the outside loop.

e The outside loop iterates through a set of linearly distributed values for parameter p
between R/2 4 0.6 and R /4. When the above described shooting methods detects a
sign-change in X'(& = 1), it calls root-finding routine to determine p to high accuracy.

The bound states are saved in a list.

e Once parameters A and p are determined, we recompute Y (1) and X (£). We create
an interpolating object for (€2 — 1)™/2X (2i) and (1 — n?)™/2Y (1), such that
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(&, m, @) can be calculated at any point.

e For ploting the 2D density plot of the wave function, we generate a regular mesh of
cartesian [x, z] points. We compute prolate coordinates [5 1, ¢] from cartesian vector

[z, y, 2] from
2?2 y? 4 22
— 26
r R/2 (26)
~ z 27)
Zz = ——
R/2
sq =/ (14+72)? — 422 (28)
£ = (1+7245q)/2 (29)
n=+/(1+72—sq)/2 sign(z) (30)
¢ = arctan(y, x) (31)
The transformation from prolate to cartesian coordinates is simpler
p=VE& —1y1—n (32)
(z,y,2) = (pcos ¢, psin ¢, &{n) R /2 (33)
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We evaluate ?)(r) and plot a density plot.

We choose R = 2, which is very close to equilibrium distance of H;r We first
evaluate a few lowest energy gerade states at m = 0:

1o, : (p, A, E) = (1.48501486965, 0.811729880903, —1.20526916309)
25, : (p, A, E) = (0.849562360518, 0.248475561369, 0.278243795591)
30, : (p, A, E) = (0.596209803892, 0.120381543784, 0.644533869744)

and ungerade states at m = 0:

1oy : (p, A, E) = (1.15545267065, —1.18688803994, —0.33507087412)
20, ¢ (p, A, E) = (0.714744398137, —1.691702919, 0.489140445332)
30, : (p, A, E) = (0524110147939, —1.83466895941, 0.725308552828)

and finally m = 1 gives:

1m, : (p, A, E) = (0.926036766069, 0.174948548517, 0.142455907889)
lmy @ (p, A, ) = (0.673353143116, —3.80488326247, 0.546595544656)
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