Homework 7, Quantum Mechanics 501, Rutgers

December 18, 2016

1) Consider a system of two non-identical fermions, each with spin 1/2. One is in a state
with Sy, = g, while the other is in a state with Sy, = —g. What is the probability of
finding the system in a state with total spin quantum numbers s = 1, m, = 0, where
m refers to the z-component of the total spin?

a) First, find the eigenstate of the operator Si, with the eigenvalue g Also find the
cigenstate of Sy, with the eigenvalue —g.

Answ.: The eigenvectors are

1 1
51 = +5) = 7511 + 1)
Sy = —2) = —(I) — i 1))

2" V2

b) Using the rules for sumation of angular momenta, find the expression for the state
|s =1,ms = 0).
Answ.: The triplet state is
1

V2

|s = 1,ms =0) (IT4) + 1)

c¢) Calculate the probability.

Answ.: Since the fermions are not identical, the wave function of the system is

the product wave function of |Si, = +1) and |S,, = —3), i.e.,

9) = 51 + 1) © (1) — i 11)

The probability is thus
1

2v/2

2) Consider two spin-1 particles that occupy the state

P=|(s=1ms=0[¢)" =

(RN =i [F = ) = |52 = §

2v/2 4

|81 = 1,m1 = 1;82: 1,m2 :0>
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3)

What is the probability of finding the system in an eigenstate of the total spin S? with
quantum number s = 17 What is the probability for s = 27

Answ.: Using Clebsh-Gordan coefficients for addition of angular momenta, we have

s = Lo, = 1) = —=(1.0) = [0.1) &
s = Lm, =) = < (|1.—1) = |-L.1) 2)
5= L, = =1) = (0. ~1) = |-1.0) 3)
On the right-hand side the notation is [m., ms). Similarly, we can obtain
s =2,m, =2) = |1,1) 4)
s = 2,m, = 1) = 2=(0.1) + [1.0) (5)
=2m = 0) = 20+ 1)+ F 100 ©)
s = 2,m, = =1) = ==(0.~1) + |-L.0) ™)
s =2,m, = —2) = |-1,—1) (8)

The probabilities are then

P(s=1)=[(1,0]s = 1,ms = 1) |*+| (1,0]s = 1,ms = 0) |*+| (1,0]s = 1,ms = —1) |* = 1/2
P(s=2)=[(1,0]s = 2,ms = 1) |*+| (1,0]s = 2,ms = 0) |*+] (1,0]s =2,ms = —1) |* = 1/2
a) Construct the spin singlet (S = 0) state and the spin triplet (S = 1) states of a

two electron system.

Answ.: singlet:

1
10,0) = E(\M — 1) (9)
triplets:
L1 = 1) (10)
1
[1,0) = E(\NH\W) (11)
1,-1) = [l) (12)

b) In the experiment we have two electrons, which are in the spin-singlet state.
They move in the opposite direction along the y-axis, and two observers A and
B measure the spin state of each electron. A measures the spin component along
the z axis, and B measures the spin component along an axis making an angle
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0 with the z axis in the zz-plane. Suppose that A’s measurement yields a spin
down state and subsequently B makes a measurement. What is the probability
that B’s measurement yields an up spin (measured along an axis making an angle
6 with the z-axis)?

The explicit formula for the representation of the rotation operator exp(—iS-nf/h)
in the spin space is given by the spin 1/2 Wigner matrix

12 a oy [ cos(8/2) —in,sin(6/2)  (—in, —n,)sin(6/2)
D2 (n,6) = ( (—iny +ny)sin(6/2)  cos(8/2) + in, sin(6/2) ) (13)

and n = n,€, + nye, + n.€, ( [n| = 1) is the axis of rotation.

Answ.: Since the state of two electrons is singlet, and we know that the first
electron points down, the second has to point up in the same coordinate system.
But observer B is rotated by 6 around y axis, hence we need to find how spin-up
looks in the rotated coordinate system. We thus apply DY/ (g, ) on (1,0) to
get

[¥5) = (cos(6/2), sin(0/2)) (14)

The probability for up-spin is thus P(|1)) = cos?(6/2) and for down-spin P(]})) =
sin?(0/2).

4) The Wigner-Eckart theorem s given by

((n§'|TV]ng))
NeTES

Explain the meaning of the two terms on the right hand side.

(n'§'m|TP [njm) = (j'm’|lg, jm) (15)

Answ.: The first term is the Clebsch-Gordan coefficient, which encodes the geo-
metric properties of the matrix element under rotation. The second is the reduced
matrix element, which is a common coefficient for all m,m’ quantum numbers.

The interaction of the electromagnetic field with a charged particle is given by
AH=-SA.p
2m

If the electromagnetic fields are in the form of a plane wave, then A = A, ée’¥,
where £ is the polarization of the plane wave. Assuming that the wavelength

A = 27/k is much larger than the atomic size, we may write
A=A(l+ik-r+--+)

such that .
AH~_—Ayé-p(l+ik-r)
2m

Here we kept both the dipole (the first term), and the quadrupole terms (the
second term).



If the field is polarized along the z-axis (¢ = €,), and the wave propagation is
along the z-axis (k = ké.) express the Hamiltonian in terms of spherical harmon-
ics. Note that p is a vector operator, and transforms under rotation as r. For
symmetry consideration you may therefore replace p by Cr

Answ.: The Hamiltonian for the above configuration is
AH = %AOO(JZ +ik z2) (16)

Using the expressions for Y, s we can get

2
v =5 (Y=Y (17)
2
vz =\ p7 (Y21 — Y2u) (18)

e 2 kr
AH = A0\ Zr(Yioy = Yig + (ot = V) (19)

c) For the above configuration, derive the selection rules for the dipole and the
quadrupole transitions, by considering the transition probability matrix elements
| (| AH|;) [? = | {Iyme|AH|;m;) |*. Note: selection rules state under which
conditions is a transition possible.

hence

Answ.: The dipole matrix elements are proportional to
(Lym | AH, |l;my) o< (Lpmg|Yy —1 — Ya 1 |limg) o< (Lpmg |11, Lmg) — (Ipmyg|1 — 1, 1;m;)(20)

hence |my —m;| =1, and |l — ;| < 1.
The quadrupole matrix elements are

<lfmf|AH2|lsz> X <lfmjr’}/2’_1 — Y'2,1|lzm,> X (lfmf]21,llm2) — (lfmf|2 — 1,llmz>(21)
hence |my —m;| =1, and |l — ;| < 2.

The explicit expressions for the spherical harmonics for [ = 1,2 are given by

1 /3 x+iy 1\/32
Vi = —=) — Vip= /22 22
bt 2V 2r r MoV oy (22)
1 [15 (z +iy)? 1 [15 (x +1iy)= 1\/€2z2—x2—y2
Yoo = 4| —n Py, =y 2Ty o 2 257 T2 Y (93
274\ o 2 21 2V 2r 2 20 r2 (23)

and V), = (=1)"Y}7,,.



