Homework 6, Quantum Mechanics 501, Rutgers

December 16, 2016

1) Using the matrix elements of the operator L, in the subspace for [ = 1 derived in the
previous homework, show that the matrix for arbitrary rotations around the x-axis is
given by

%COSH-{-% —%Sin@ %COS@—%
Dy (0) = exp(—i0L,/h) = —\/Lé sin 6 cos _\/LE sin 6 (1)
%cos@—% —\%Sin@ %cos&—i—%

Ans.: One can diagonalize 3 x 3 matrix of the operator L., and derive the matrix of
rotation. The alternative derivation relies on the Taylor series of the exponent. One

can notice that )

010 1 01

1 01 =10 20

010 1 01
and ;

010 0 20

1 01 = 2 0 2

010 0 20

hence the Taylor series

g [0 10 > A 10
Dy (0) = exp(—ifL,/h) =exp | —= | 1 0 1 = — (—) 1 (2)
V2 \ o1 0 nl \v2 01 0
gives
Dy (0) = 1+ —<—> 10 1 |22y —( ) 2 0 |20/
n:1,3,...n! ‘/5 010 n:2,4,...n! \/§ 0 1
1/2 0 —1/2 . 010 | 101
Dy () = 0 0 0 J4+—(=isinf) [ 1 01 |+ocosf| 020 |(3)
~1/2 0 1/2 V2 010 101



which is equivalent to the given matrix above.

Show that applying this matrix for the case of § = 7 on the eigenfunction |l = 1, m = 1)

gives the same result as rotating explicitly the function Y;,(0,¢) = —y/ & sinfe’ by
180-degrees around the x-axis.

Ans.: The rotation by 180 degrees is

0 0 -1
Dm)y=( 0 -1 0 (4)
-1 0 0
hence rotating (1,0,0) gives (0,0, —1).
The unrotated function corresponding to (1,0,0) is Y11(6,¢) = —y/&sinfe’® =
—1/ & (2+iy) and the rotated, corresponding to (0,0, —1) is —=Y;,_1(0,¢) = —/ & sinfe ™ =

—\/5x (@ —iy)
Rotation around x axis by 180 degrees amounts to y — —y and z — —z. Indeed this
transforms Y7 ; into —Y; _;.

A hydrogen-like atom with atomic number Z is in its ground state when, due to nuclear
processes (operating at a time scale much shorter than the characteristic time scale of
the H atom), its nucleus is modified to have the atomic number increased by one unit,
i.,e. to Z 4+ 1. The electronic state of the atom does not change during this process.
What is the probability of finding the atom in the new ground state at a later time?
Answer the same question for the new first excited state.

Ans.: The hydrogen ground state wave function is

Z3/2
Vra

Once the atomic number is changed, the ground state becomes

V10,0(r) = e #ria (5)

- (Z + 1)3/2 — T/a
7/’1,0,0(7‘) - W@ (Z+1)r/ao (6)
0

and the first excited state becomes

- (Z +1)3/2 Z4+1 o
Ua00(r) = —(2- r)e—(Z+r/(a0) )
\/ 32mag ag
e _ 9 o )
The probabilities are P, = <¢1’070|¢1’070> and P, = <¢2,0,0W1,0,0>

- ol i ‘ _ @@y _ 21 (Z(Z+1)
The evaluation of the radial integrals gives P, = Tl and P, = T



3) Consider the delta-shell potential model, which is a very simple model of the force ex-
perienced by a neutron interacting with a nucleus. In this model, the force experienced
by neutron has the form

h2g2
— QIu

Vir)= o(r —a) (8)

Here r is written in spherical coordinates.

Investigate the existence of bound states in the case of negative energy.

a)

Write down the Schroedinger equation for u;(r) in spherical coordinates using
potential V' (r).
Ans.: Schroedinger equation reads

l(1+1) 9

—u" — g*0(r — a)u+ —5—u = —K’u (9)
r
where
2uE
K==
What are solutions for free particles (V' = 0)?7 Which solution can be used for

interior part (r < a) and which for exterior part (r > a)?

Ans.: The solution for free particles was given in class, namely spherical bessel
and spherical neuman functions. However, these functions are solutions for £ > 0.
Here we need bound states, which can be obtained by changing kr — ixr in the
argument of the solution.

The solutions are thus
u(r) = Ar j(ickr) + B r n(ikr) (10)

For small r, only j;(x) are well behaved. For large r we need solution that falls off.
The following large x > 1 expansion of spherical bessel and neuman functions
was given in class

Ji(x) = —sin(z — I /2) (11)

Blrg| =

ny(z) =~ ——cos(x — Im/2) (12)

For imaginary argumen 7z, these functions are

o sinh(z) (_1)1/2 [1=0,2,4,..
]l(zx) ~ { _{%052(@(_1)(1—&-1)/2 [=1,3,5,... (13)
jcosh(z) ( 1y1/2 =
oy d SR 120,24,
ny(ix) ~ { sinh(m)(_l)(l+1)/2 1=1,3,5,.. 09



The following combination of bessel and neuman function falls off in infinity

—T

hi(iz) = my(iz) — ijy(iz) o< (15)

This function is also called spherical Henkel function. One can check explicitly

. i(—1)2= 1=0,2,4,...
fuliz) = { (—1)=DR2et =135, (16)
Hence, the solution is
_J Arg(ikr) r<a
w(r) = { Brh(ikr) r>a (17)

Integrating around the point » = a, determine the discontinuity condition, and
hence equation for the eigenstates.

Ans.: The integration of the Schroedinger equation gives
u'(a®) —u'(a”) = —g*u(a) (18)
We have two boundary condistions: i) continuity at r = a gives
Aaji(ika) = Bahy(ika) (19)
and ii) the discontinuity of the Schroedinger equation gives
Bakh)(ira) — Aakj(ika) = —g° Aaji(ika) (20)
The two equations can be combined together into the following condition

Ji(ika) B hi(ika)  g*a

gilika)  h(ika)  ka (21)

Assuming that g?a = 2, solve (possibly numerically) for bound state energy at

[ =0.

Ans.: For [ =0
sinh(x
jofa) = 2R (22)
x
e’
ho(x) =i (23)
hence the above condition gives
2 g*a
s 77 24
1—e 2 x (24)

We are hence looking for the solution of

r=1—¢?%

for which numerical solution is ka = 0.796812. The bound state energy hence is
2

(0.796812)> (25)

E=- h
2a?



4) A beam of composite particles is subject to a simultaneous measurement of the spin
operators S? and S,. The measurement gives pairs of values s = my; = 0 and s = 1,
ms = 1 with probabilities 3/4 and 1/4 respectively.

(a) Reconstruct the state of the beam immediately before the measurement.
Answ.: Before the measurements, the wave function must have been
\/§ Qo 1
W}) = 5 |O70> tery |17 _1>
2 2
where « is any real number.
(b) The particles in the beam with s = 1, my; = 1 are separated out and subjected to
a measurement of S,. What are the possible outcomes and their probabilities?

Answ.: Possible outcomes are eigenvalues of S, operator for s = 1 particles. To
compute probabilities, we need eigenvectors of operator S, (in the s = 1 sector).
The eigenvectors are

1 1 1
|S‘T:H>:§|1’1>+E|1’0>+5|1’_1> (26)
1 1 1
’SI:_D:§|1’1>_E’1’0>+§‘1’_1> (27)
1
Sz = 0) ZE(ILD—IL—U) (28)
The probabilities are then
P(+1) = (S, = +1]1,1) = 1/4 (29)
P(=1) =[(S. = —11,1) P =1/4 (30)
P0) = (S, = 0|1, 1) [* = 1/2 (31)

(¢) For the purpose of understanding the symmetry of the wave function, it is con-
venient to replace spin operators with corresponding orbital angular momentum
operators, i.e., S, — L, and S? — L?. Write down the spatial wave functions
of the states that arise from the second measurement if the operator was orbital
angular momentum operatore L,. Give the z,y, z dependence of such wave func-
tions.

Hint: First figure out the decomposition of the measured states in terms of |, m;)
states. Using spherical harmonics, express the resulting wave function in real
space.

Answ.: We repeat the decomposition

1 1 1
Le=+1) = 5IL1 + 25 [1.0)+ 511 -1) (32)
1 1 1
|Lx:—1>:§|1,1>—E|1,0>+§|1,—1> (33)
Lo =0) = (1,1) — |1, 1)) (34)

2

S



and use standard expressions for the spherical harmonics, to obtain

(35)

(36)



