
Homework 6, Quantum Mechanics 501, Rutgers

December 16, 2016

1) Using the matrix elements of the operator Lx in the subspace for l = 1 derived in the
previous homework, show that the matrix for arbitrary rotations around the x-axis is
given by

Dmm′(θ) = exp(−iθLx/~) =


1
2
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2
− i√

2
sin θ 1

2
cos θ − 1

2

− i√
2

sin θ cos θ − i√
2

sin θ
1
2

cos θ − 1
2
− i√

2
sin θ 1

2
cos θ + 1

2

 (1)

Ans.: One can diagonalize 3× 3 matrix of the operator Lx, and derive the matrix of
rotation. The alternative derivation relies on the Taylor series of the exponent. One
can notice that  0 1 0

1 0 1
0 1 0

2

=

 1 0 1
0 2 0
1 0 1


and  0 1 0

1 0 1
0 1 0

3

=

 0 2 0
2 0 2
0 2 0


hence the Taylor series

Dmm′(θ) = exp(−iθLx/~) = exp

−iθ√
2

 0 1 0
1 0 1
0 1 0

 =
∑
n

1

n!

(
−iθ√

2

)n 0 1 0
1 0 1
0 1 0

n

(2)

gives

Dmm′(θ) = 1 +
∑

n=1,3,...

1

n!

(
−iθ√

2

)n 0 1 0
1 0 1
0 1 0

 2(n−1)/2 +
∑

n=2,4,...

1

n!

(
−iθ√

2

)n 1 0 1
0 2 0
1 0 1

 2(n−1)/2

Dmm′(θ) =

 1/2 0 −1/2
0 0 0
−1/2 0 1/2

+
1√
2

(−i sin θ)

 0 1 0
1 0 1
0 1 0

+
1

2
cos θ

 1 0 1
0 2 0
1 0 1

 (3)
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which is equivalent to the given matrix above.

Show that applying this matrix for the case of θ = π on the eigenfunction |l = 1,m = 1〉
gives the same result as rotating explicitly the function Y1,1(θ, φ) = −

√
3
8π

sin θeiφ by

180-degrees around the x-axis.

Ans.: The rotation by 180 degrees is

D(π) =

 0 0 −1
0 −1 0
−1 0 0

 (4)

hence rotating (1, 0, 0) gives (0, 0,−1).

The unrotated function corresponding to (1, 0, 0) is Y1,1(θ, φ) = −
√

3
8π

sin θeiφ =

−
√

3
8π

(x+iy) and the rotated, corresponding to (0, 0,−1) is−Y1,−1(θ, φ) = −
√

3
8π

sin θe−iφ =

−
√

3
8π

(x− iy)

Rotation around x axis by 180 degrees amounts to y → −y and z → −z. Indeed this
transforms Y1,1 into −Y1,−1.

2) A hydrogen-like atom with atomic number Z is in its ground state when, due to nuclear
processes (operating at a time scale much shorter than the characteristic time scale of
the H atom), its nucleus is modified to have the atomic number increased by one unit,
i.e. to Z + 1. The electronic state of the atom does not change during this process.
What is the probability of finding the atom in the new ground state at a later time?
Answer the same question for the new first excited state.

Ans.: The hydrogen ground state wave function is

ψ1,0,0(r) =
Z3/2√
πa30

e−Zr/a0 (5)

Once the atomic number is changed, the ground state becomes

ψ1,0,0(r) =
(Z + 1)3/2√

πa30
e−(Z+1)r/a0 (6)

and the first excited state becomes

ψ2,0,0(r) =
(Z + 1)3/2√

32πa30
(2− Z + 1

a0
r)e−(Z+1)r/(2a0) (7)

The probabilities are P1 = 〈ψ1,0,0|ψ1,0,0〉
2

and P2 = 〈ψ2,0,0|ψ1,0,0〉
2

The evaluation of the radial integrals gives P1 = (Z(Z+1))3

(Z+ 1
2
)6

and P2 = 211

38
(Z(Z+1))3

(Z+ 1
2
)8

.

2



3) Consider the delta-shell potential model, which is a very simple model of the force ex-
perienced by a neutron interacting with a nucleus. In this model, the force experienced
by neutron has the form

V (r) = −~2g2

2µ
δ(r − a) (8)

Here r is written in spherical coordinates.

Investigate the existence of bound states in the case of negative energy.

a) Write down the Schroedinger equation for ul(r) in spherical coordinates using
potential V (r).

Ans.: Schroedinger equation reads

−u′′ − g2δ(r − a)u+
l(l + 1)

r2
u = −κ2u (9)

where

κ =

√
−2µE

~2
.

b) What are solutions for free particles (V = 0)? Which solution can be used for
interior part (r < a) and which for exterior part (r > a)?

Ans.: The solution for free particles was given in class, namely spherical bessel
and spherical neuman functions. However, these functions are solutions for E > 0.
Here we need bound states, which can be obtained by changing kr → iκr in the
argument of the solution.

The solutions are thus

u(r) = A r jl(iκr) +B r nl(iκr) (10)

For small r, only jl(x) are well behaved. For large r we need solution that falls off.
The following large x � 1 expansion of spherical bessel and neuman functions
was given in class

jl(x) ≈ 1

x
sin(x− lπ/2) (11)

nl(x) ≈ −1

x
cos(x− lπ/2) (12)

For imaginary argumen ix, these functions are

jl(ix) ≈

{
sinh(x)
x

(−1)l/2 l = 0, 2, 4, ...

−i cosh(x)
x

(−1)(l+1)/2 l = 1, 3, 5, ...
(13)

nl(ix) ≈

{
i cosh(x)

x
(−1)l/2 l = 0, 2, 4, ...

sinh(x)
x

(−1)(l+1)/2 l = 1, 3, 5, ...
(14)
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The following combination of bessel and neuman function falls off in infinity

hl(ix) = nl(ix)− ijl(ix) ∝ e−x

x
(15)

This function is also called spherical Henkel function. One can check explicitly

hl(ix) ≈
{
i(−1)l/2 e

−x

x
l = 0, 2, 4, ...

(−1)(l−1)/2 e
−x

x
l = 1, 3, 5, ...

(16)

Hence, the solution is

ul(r) =

{
A r jl(iκr) r < a
B r hl(iκr) r > a

(17)

c) Integrating around the point r = a, determine the discontinuity condition, and
hence equation for the eigenstates.

Ans.: The integration of the Schroedinger equation gives

u′(a+)− u′(a−) = −g2u(a) (18)

We have two boundary condistions: i) continuity at r = a gives

Aajl(iκa) = Bahl(iκa) (19)

and ii) the discontinuity of the Schroedinger equation gives

Baκh′l(iκa)− Aaκj′l(iκa) = −g2Aajl(iκa) (20)

The two equations can be combined together into the following condition

j′l(iκa)

jl(iκa)
− h′l(iκa)

hl(iκa)
=
g2a

κa
(21)

d) Assuming that g2a = 2, solve (possibly numerically) for bound state energy at
l = 0.

Ans.: For l = 0

j0(x) =
sinh(x)

x
(22)

h0(x) = i
e−x

x
(23)

hence the above condition gives

2

1− e−2x
=
g2a

x
(24)

We are hence looking for the solution of

x = 1− e−2x

for which numerical solution is κa = 0.796812. The bound state energy hence is

E = − ~2

2µa2
(0.796812)2 (25)
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4) A beam of composite particles is subject to a simultaneous measurement of the spin
operators S2 and Sz. The measurement gives pairs of values s = ms = 0 and s = 1,
ms = 1 with probabilities 3/4 and 1/4 respectively.

(a) Reconstruct the state of the beam immediately before the measurement.

Answ.: Before the measurements, the wave function must have been

|ψ〉 =

√
3

2
|0, 0〉+ eiα

1

2
|1,−1〉

where α is any real number.

(b) The particles in the beam with s = 1,ms = 1 are separated out and subjected to
a measurement of Sx. What are the possible outcomes and their probabilities?

Answ.: Possible outcomes are eigenvalues of Sx operator for s = 1 particles. To
compute probabilities, we need eigenvectors of operator Sx (in the s = 1 sector).
The eigenvectors are

|Sx = +1〉 =
1

2
|1, 1〉+

1√
2
|1, 0〉+

1

2
|1,−1〉 (26)

|Sx = −1〉 =
1

2
|1, 1〉 − 1√

2
|1, 0〉+

1

2
|1,−1〉 (27)

|Sx = 0〉 =
1√
2

(|1, 1〉 − |1,−1〉) (28)

The probabilities are then

P (+1) = | 〈Sx = +1|1, 1〉 |2 = 1/4 (29)

P (−1) = | 〈Sx = −1|1, 1〉 |2 = 1/4 (30)

P (0) = | 〈Sx = 0|1, 1〉 |2 = 1/2 (31)

(c) For the purpose of understanding the symmetry of the wave function, it is con-
venient to replace spin operators with corresponding orbital angular momentum
operators, i.e., Sx → Lx and S2 → L2. Write down the spatial wave functions
of the states that arise from the second measurement if the operator was orbital
angular momentum operatore Lx. Give the x, y, z dependence of such wave func-
tions.
Hint: First figure out the decomposition of the measured states in terms of |l,ml〉
states. Using spherical harmonics, express the resulting wave function in real
space.

Answ.: We repeat the decomposition

|Lx = +1〉 =
1

2
|1, 1〉+

1√
2
|1, 0〉+

1

2
|1,−1〉 (32)

|Lx = −1〉 =
1

2
|1, 1〉 − 1√

2
|1, 0〉+

1

2
|1,−1〉 (33)

|Lx = 0〉 =
1√
2

(|1, 1〉 − |1,−1〉) (34)
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and use standard expressions for the spherical harmonics, to obtain

〈r|Lx = ±1〉 =

√
3

8π
(±z

r
− iy

r
) (35)

〈r|Lx = 0〉 = −
√

3

4π

x

r
(36)
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