
Homework 3, Quantum Mechanics 501, Rutgers

October 18, 2016

1) The normalized wave function ψ(x, t) satisfies the time-dependent Schroedinger equa-
tion for a free particle of mass m moving in 1D. Consider a second wave function of
the form φ(x, t) = exp(i(ax− bt))ψ(x− vt, t).

– Show that φ(x, t) obeys the same time-dependent Schroedinger equation as ψ(x, t)
when constants a and b are choosen appropriately. What should the values of a
and b be (express them in terms of v)?

Answ.: We need to show that

i~
dφ

dt
= − ~2

2m

∂2φ

∂x2

and we know that

i~
dψ

dt
= − ~2

2m

∂2ψ

∂x2

We first compute derivatives of φ using its given form:

dφ

dt
= −ibφ− vei(ax−bt) ∂

∂x
ψ(x− vt, t) + ei(ax−bt)

∂

∂t
ψ(x− vt, t) (1)

∂2φ

∂x2
= −a2φ+ 2iaei(ax−bt)

∂

∂x
ψ(x− vt, t) + ei(ax−bt)

∂2

∂x2
ψ(x− vt, t) (2)

When we plug these derivatives into the Schroedinger equation for φ and take
into account that ψ satisfies the same equation, we get

i~
[
−ibφ− vei(ax−bt) ∂

∂x
ψ(x− vt, t)

]
= − ~2

2m

[
−a2φ+ 2iaei(ax−bt)

∂

∂x
ψ(x− vt, t)

]
(3)

This is satisfies when the first (second) term on the rhs is equal to the first (second)
term on the lhs, which gives

~b = ~2a2/(2m) (4)

i~v = ia~2/m (5)

and hence we need to require

a =
mv

~

b =
mv2

2~
(6)
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– Calculate the expectation value of position 〈X〉, momentum 〈P 〉, and energy 〈H〉
for particle in the state φ(x, t) in terms of those for particle in the state ψ(x, t).
Show that uncertainty in the momentum is the same in both states.

Answ.:

〈X〉φ =

∫
φ∗(x)xφ(x)dx =

∫
ψ∗(x− vt, t)xψ(x− vt, t)dx =

=

∫
ψ∗(x′, t)(x′ + vt)ψ(x′, t)dx′ = vt+ 〈X〉ψ (7)

〈P 〉φ = −i~
∫
φ∗(x)

∂

∂x
φ(x)dx = −i~

∫
φ∗[iaφ+ ei(ax−bt)

∂

∂x
ψ]dx =

= ~a+ 〈P 〉ψ = mv + 〈P 〉ψ (8)

〈H〉φ = − ~2

2m

∫
φ∗[−a2φ+ 2iaei(ax−bt)

∂

∂x
ψ + ei(ax−bt)

∂2

∂x2
ψ]dx =

=
~2a2

2m
+
a~
m
〈P 〉ψ + 〈H〉ψ =

1

2
mv2 + v 〈P 〉ψ + 〈H〉ψ (9)

(∆P )2
φ = 2m 〈H〉φ − 〈P 〉

2
φ = m2v2 + 2mv 〈P 〉ψ + 2m 〈H〉ψ − (mv + 〈P 〉ψ)2

= 〈P 2〉ψ − 〈P 〉
2
ψ = (∆P )2

ψ (10)

– What physical interpretation can be given to the transformation from the state
ψ(x, t) to the state φ(x, t)?

Answ.:

φ describes the same state as ψ, except from a coordinate system that is moving
towards the left with velocity v. In that coordinate system, the system seems to be
moving to the right with additional velocity v and therefore additional momentum
mv. The total kinetic energy increases accordingly.

2) A particle is in the ground state of a box of length L with infinitely high walls. Sud-
denly, the box expands (symmetrically) to length 2L, leaving the wave function mo-
mentarily undisturbed. Calculate the probability that measuring the energy of the
system afterwards yields as result the ground state energy of the new box.

Ans.: The ground state wave function of the box with length L is

ψ0,L =

√
2

L
sin(π

x

L
+ π/2). (11)

Here we set zero at the midpoint of the box. The expanded box has the ground state
equal to

ψ0,2L =

√
2

2L
sin(π

x

2L
+ π/2). (12)
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The probability to find the final ground state ψ0,2L when we start with ψ0,L is P =
| 〈ψ0,L|ψ0,2L〉 |2.

The integral is

〈ψ0,L|ψ0,2L〉 =

√
2

L

∫ L/2

−L/2
sin(π

x

L
− π

2
) sin(π

x

2L
− π

2
)dx =

8

3π
(13)

hence the probability P = ( 8
3π

)2.

3) Consider the Gaussian wave packet of the form

ψ(x, t = 0) =
1

(π∆2)1/4
eip0x/~e−

x2

2∆2 (14)

Calculate the probability current jx for every point x at time t = 0. Calculate ex-
plicitely the probability density, P (x, t), at finite t using Hamiltonian of a free particle.
Next, use this probability density to explicitely verify the validity of continuity equation
at t = 0 (∂P (x,t)

∂t
= −∂j(x,t)

∂x
).

Ans.: The current is computed by

jx = − i~
2m

(
ψ∗

d

dx
ψ − ψ d

dx
ψ∗
)

(15)

For Gaussian packet we get

jx =
p0

m
√
π∆2

e−x
2/∆2

The time dependent probability density is

P (x, t) =
1√
π∆2

1√
1 + ~2t2

m2∆4

e
− (x−p0t/m)2

(∆2+~2t2/(m2∆2)) (16)

Taking the time derivative of P (x, t) and x-derivative of current jx, it can be verified
that

dP (x, t = 0)

dt
= −djx(x, t = 0)

dx

4) An atom of mass 4 109 eV/c2 has its position measured within 2 nm accuracy. Assume
that it is in a Gaussian wave packet state afterwards. How much time will elapse before
the uncertainty of our knowledge about its position has doubled? How about a 1 g
speck of matter that has been located to within 1 m?

Ans.: The uncertainty in momentum and position satisfies ∆x ∆p = ~/2 hence, the
velocity uncertainty at the beginning is

∆v =
~

2(∆x)0m
≈ 3.7

m

s
(17)
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The uncertainties are adding in quadrature, hence after time t is ellapsed, the uncer-
tainty increases to

(∆x)2 ≈ (∆x)2
0 + (∆vt)2,

which gives for time of doubling

t ≈
√

(2∆x)2
0 − (∆x)2

0

(∆v)
≈ 10−9s

5) A point-like particle of mass m sits in a one-dimensional potential well. The potential
is infinitely high for x < −s and for x > +s, while it is at a constant value of V0 > 0
for −s ≤ x < 0 and zero for 0 ≤ x ≤ s. The particle is in the ground state (lowest
energy eigenstate of the Hamiltonian) with energy E0 > V0.
Question: What is the probability that the particle can be found in the left half (x < 0)
of the potential well? Outline how you would solve this problem step by step, without
actually solving the (transcendental) equations that you encounter:

1.) Write down the one-dimensional Schrooedinger equation for this problem.

Ans.:

x < 0 : ψ′′ = −2m(E − V0)

~2
ψ (18)

x > 0 : ψ′′ = −2mE

~2
ψ (19)

2.) Find the generic stationary solutions in the left and the right half of the potential
well (you may assume E > V0).

Ans.:

x < 0 : ψA(x) = A sin(k1x+ δ) (20)

x > 0 : ψB(x) = B sin(kx+ δ′) (21)

where k2 = 2mE/~2 and k2
1 = 2m(E − V0)/~2.

3.) List all boundary conditions that must be fulfilled (there are 4 of them!)

Ans.:

ψA(−s) = 0 (22)

ψB(s) = 0 (23)

ψA(0) = ψB(0) (24)

ψ′A(0) = ψ′B(0) (25)

4.) Rewrite your two half-solutions from item 2. above to explicitly fulfill as many of
the boundary conditions as possible.

Ans.:

x < 0 : ψA(x) = A sin(k1(x+ s)) (26)

x > 0 : ψB(x) = B sin(k(x− s)) (27)
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5.) Outline how you would find the lowest energy (ground state eigenvalue E) that
solves the one- dimensional Schrodinger equation. No closed algebraic solution is
possible or required for this part - just explain which equation needs to be solved.

The second two boundary conditions require

A sin(k1s) = −B sin(ks) (28)

Ak1 cos(k1s) = Bk cos(ks) (29)

which is satisfied when

k1 cot(k1s) = −k cot(ks) (30)

We can write k1 =
√
k2 − k2

0, where k2
0 = 2mV0/~ is a known constant. The

transcedental equation is then

cot(s
√
k2 − k2

0)
√
k2 − k2

0 = −k cot(ks) (31)

This has a solution at ks = π/2+y(V0), where y is a small positive number, which
depends on the potential strength V0.

6.) Assuming you have E, how would you determine the normalization constants for
the two half- solutions?

∫ 0

−s
sin2(k1(x+ s))dx+

sin2(k1s)

sin2(ks)

∫ s

0

sin(k(x− s))dx = 1/A2 (32)

The integration can be completed, and leads to(
1− sin2(2k1s)

2k1s

)
+

sin2(k1s)

sin2(ks)

(
1− sin2(2ks)

2ks

)
=

1

A2s/2
(33)

7.) Once you have those in hand as well, how can you answer the original question?

Answ.: The probability of finding a particle on the left side is PL =
∫ 0

−s |ψ(x)|2dx =

A2
∫ 0

−s sin2(k1(x+ s))dx = A2 s
2
(1− sin(2k1s)

2k1s
) hence

PL =
1− sin(2k1s)

2k1s(
1− sin2(2k1s)

2k1s

)
+ sin2(k1s)

sin2(ks)

(
1− sin2(2ks)

2ks

) (34)
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