Homework 3, Quantum Mechanics 501, Rutgers

October 18, 2016

1) The normalized wave function 1 (z, t) satisfies the time-dependent Schroedinger equa-
tion for a free particle of mass m moving in 1D. Consider a second wave function of
the form ¢(x,t) = exp(i(ax — bt))Y(x — vt, t).

— Show that ¢(z, t) obeys the same time-dependent Schroedinger equation as ¥ (x, t)
when constants a and b are choosen appropriately. What should the values of a
and b be (express them in terms of v)?

Answ.: We need to show that

Z,hdgzﬁ L h* 9%¢
dt — 2m Ox2
and we know that
w0
dt — 2m Ox?
We first compute derivatives of ¢ using its given form:
% = —ib¢ — vei(ax_bt)%g/}(m —vt,t) + ei(‘w—bt)%@/}(x — vt, t) (1)
2 2
% = —a’p+ 2iaei(“”:_bt)%¢(a: —vt,t) + ei(‘w_bt)%@/}(x — vt, t) (2)

When we plug these derivatives into the Schroedinger equation for ¢ and take
into account that 1 satisfies the same equation, we get
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This is satisfies when the first (second) term on the rhs is equal to the first (second)
term on the lhs, which gives

hb = h*a®/(2m) (4)
ihv = iah?®/m (5)
and hence we need to require
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— Calculate the expectation value of position (X), momentum (P), and energy (H)
for particle in the state ¢(x,t) in terms of those for particle in the state ¥ (x,t).
Show that uncertainty in the momentum is the same in both states.

Answ.:

(X)y= /gb*(x)xgb(x)dx = /¢*(m —vt, t)zp(x — vt t)de =

= [ o s = v+ (), (7
(P)y = =i [ 6°(a) 5 0(ards = —in [ 6 fiag + e Lyl -

= ha + (P), = mv + (P), (8)

(H), = —h_2 / P*[—a’p + Qiaei(ax_bt)gl/) + ei(a$_bt)a_2w]dx -
6 — om or 0x? B
h2a2 ah 1
=g T (Do Ty = gm0 (P4 (), ()

(AP); = 2m (H), — (P)} = m*0* + 2muv (P),, + 2m (H),, — (mv + (P),)?
= (P?), —(P);, = (AP)} (10)
— What physical interpretation can be given to the transformation from the state
Y (z,t) to the state ¢(x,t)?
Answ.:

¢ describes the same state as 1, except from a coordinate system that is moving
towards the left with velocity v. In that coordinate system, the system seems to be
moving to the right with additional velocity v and therefore additional momentum
mu. The total kinetic energy increases accordingly.

2) A particle is in the ground state of a box of length L with infinitely high walls. Sud-
denly, the box expands (symmetrically) to length 2L, leaving the wave function mo-
mentarily undisturbed. Calculate the probability that measuring the energy of the
system afterwards yields as result the ground state energy of the new box.

Ans.: The ground state wave function of the box with length L is

Yo = \/% sin(ﬁ% +1/2). (11)

Here we set zero at the midpoint of the box. The expanded box has the ground state
equal to

Yo2r = \/gsin(w% +7/2). (12)
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The probability to find the final ground state 127, when we start with vy is P =
| (Yo,zltbo21) [*-

The integral is

(o,t021) = \/TE /_i//z sin(w% - g) sin(w% - g)dx = % (13)
hence the probability P = (2)2.
Consider the Gaussian wave packet of the form
Wt = 0) = /e (14

Calculate the probability current j, for every point x at time ¢ = 0. Calculate ex-
plicitely the probability density, P(z,t), at finite ¢ using Hamiltonian of a free particle.

Next, use this probability density to explicitely verify the validity of continuity equation
at t =0 (BPgL‘,t) _ _Bjéx,t))
t T :

Ans.: The current is computed by

| ih [ d d
o= (00— v (15)

For Gaussian packet we get
Po o~ 72/A%

Ja = mv A2

The time dependent probability density is

1 1 ____(a—pgt/m)?
P(z,t) = e (AZHn23/(m2A%) (16)

 VrA? \/1+ H2¢2

m2A4

Taking the time derivative of P(z,t) and z-derivative of current j,, it can be verified

that
dP(z,t =0)  dji(z,t =0)

dt dx

An atom of mass 4 10° eV /c? has its position measured within 2 nm accuracy. Assume
that it is in a Gaussian wave packet state afterwards. How much time will elapse before
the uncertainty of our knowledge about its position has doubled? How about a 1 g
speck of matter that has been located to within 1 m?

Ans.: The uncertainty in momentum and position satisfies Ax Ap = /2 hence, the
velocity uncertainty at the beginning is

Av=—"" 37" (17)



The uncertainties are adding in quadrature, hence after time ¢ is ellapsed, the uncer-

tainty increases to
(Az)? = (Ax)E + (Avt)?,

which gives for time of doubling

s V@A)~ (A2)f o

(Av)

A point-like particle of mass m sits in a one-dimensional potential well. The potential
is infinitely high for x < —s and for = > +s, while it is at a constant value of Vj > 0
for —s < x < 0 and zero for 0 < x < s. The particle is in the ground state (lowest
energy eigenstate of the Hamiltonian) with energy Ey > V4.

Question: What is the probability that the particle can be found in the left half (z < 0)
of the potential well? Outline how you would solve this problem step by step, without
actually solving the (transcendental) equations that you encounter:

1.) Write down the one-dimensional Schrooedinger equation for this problem.

Ans.:
<0 = —Wgﬁ (18)
x>0:¢" = _27;;_2E¢ (19)

2.) Find the generic stationary solutions in the left and the right half of the potential
well (you may assume E > ).

Ans.:
r < 0:Ya(x) = Asin(kyz + 9) (20)
x> 0:vYp(x) = Bsin(kx +§') (21)
where k? = 2mE/h? and kI = 2m(E — Vp)/h2.
3.) List all boundary conditions that must be fulfilled (there are 4 of them!)

Ans.:
Ya(—=s) =0 (22)
¥p(s) =0 (23)
¥a(0) = ¢5(0) (24)
¥4(0) = ¢5(0) (25)

4.) Rewrite your two half-solutions from item 2. above to explicitly fulfill as many of
the boundary conditions as possible.

Ans.:

x<0:Ya(x) = Asin(k(z + s)) (26)
x> 0:vYp(r) = Bsin(k(z — s)) (27)
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5.)

Outline how you would find the lowest energy (ground state eigenvalue E) that
solves the one- dimensional Schrodinger equation. No closed algebraic solution is
possible or required for this part - just explain which equation needs to be solved.

The second two boundary conditions require

Asin(kys) = —Bsin(ks) (28)
Ak cos(kys) = Bk cos(ks) (29)

which is satisfied when
ki cot(kys) = —k cot(ks) (30)

We can write k; = \/k% — k2, where k3 = 2mV;y/h is a known constant. The
transcedental equation is then

cot(s\/k:2 - k;g)\/kQ — k3 = —k cot(ks) (31)

This has a solution at ks = w/24y(V}), where y is a small positive number, which
depends on the potential strength V4.

Assuming you have E, how would you determine the normalization constants for
the two half- solutions?

/ sin?(ky (3 + 8))da + S UF18) /0 Csin(k(z — s))dx — 1/4% (32)

sin?(ks)

—S
The integration can be completed, and leads to

sin?(2k1s) sin?(k;s) sin?(2ks) 1
1— el 22
( 2k s > - sin?(ks) ( 2ks ) A2s/2 (33)

Once you have those in hand as well, how can you answer the original question?
Answ.: The probability of finding a particle on the left side is Py, = ff)s [Y(x)Pde =

A? ffs sin®(ki(z + s))dz = A%5(1 — %ﬁls)) hence

1 — sin(lfkls)
b = 5 e (34)
sin®(2k1s) sin? (k1 s) sin? (2ks)
<1 B 2k131 ) + sinQ(kls) (1 T 2ks >




