
Solutions to Homework 1, Quantum Mechanics 501,
Rutgers

September 18, 2016

1) Prove Schwartz inequality:

| 〈v|w〉 | ≤ |v||w| (1)

and triangle inequality

|v + w| ≤ |v|+ |w| (2)

Answ.: One way to prove it is to first construct an arbitrary vector

|z〉 = |v〉 − |w〉 〈w|v〉 1

|w|2
(3)

and then use the basic property of scalar product 〈z|z〉 ≥ 0.

〈z|z〉 =

(
〈v| − 〈w| 〈v|w〉 1

|w|2

)(
|v〉 − |w〉 〈w|v〉 1

|w|2

)
(4)

= |v|2 − 2 〈w|v〉 〈v|w〉 1

|w|2
+ 〈v|w〉 〈w|v〉 1

|w|2
(5)

hence

|v|2 ≥ 〈v|w〉 〈w|v〉 1

|w|2
(6)

|v|2|w|2 ≥ | 〈v|w〉 |2 (7)

which proofs the Schwartz inequality.

To prove triangle inequality, we write

|v + w|2 = 〈v + w|v + w〉 = 〈v|v〉+ 〈w|w〉+ 2<(〈v|w〉) ≤ |v|2 + |w|2 + 2| 〈v|w〉 |. (8)

Now using Schwartz, we know

|v + w|2 ≤ |v|2 + |w|2 + 2| 〈v|w〉 | ≤ |v|2 + |w|2 + 2|v||w| = (|v|+ |w|)2 (9)

which proves triangle inequality.
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2) a) Do functions defined on the interval [0...L] and that vanish at the end points x = 0
and x = L form a vector space?
Answ: Yes.

b) How about periodic functions obeying f(L) = f(0)?
Answ: Yes. Periodic functions form a vector space. (It may be impossible,
though, to introduce a workable inner product).

c) How about all functions with f(0) = 4?
Answ: No. This vector space wouldnt behave properly under addition: (f+g)(x)
= f(x) + g(x) wouldnt work for (4 + 4 6= 4).

3) Consider the vector space V spanned by real 2×2 matrices.

a) What is its dimension?
Answ: 4 dimensional

b) What would be a suitable basis?
Answ:

|1〉 =

(
1 0
0 0

)
; |2〉 =

(
0 1
0 0

)
; |3〉 =

(
0 0
1 0

)
; |4〉 =

(
0 0
0 1

)
; (10)

c) Consider three example vectors from this space:

|1〉 =

(
0 1
0 0

)
; |2〉 =

(
1 1
0 1

)
; |3〉 =

(
−2 −1
0 −2

)
(11)

Are they linearly independent? Support your answer with details.
Answ: The three vectors given are not linearly independent, since |1〉 − 2 |2〉 = |3〉.

4) Consider the two vectors ~A = 3̂i + 4ĵ and ~B = 2̂i − 6ĵ in the 2-dimensional space of
the x-y plane. Do they form a suitable set of basis vectors? (Explain.) Do they form
an orthonormal basis set? If not, use Gram-Schmidt algorithm to turn them into an
othomormal set.

Answ: The 2 vectors are linearly independent. Since the space has only 2 dimensions,
they therefore form a basis. However, they are neither normalized nor orthogonal to
each other. To turn them into an orthonormal set, first we have to normalize the first
one: Â = 0.6̂i + 0.8ĵ. Then, we determine the orthogonal part of the 2nd vector:
~B′ = 4.16̂i− 3.12ĵ. Finally, we normalize ~B′ to obtain B̂ = 0.8̂i− 0.6ĵ.

5) Assume the two operators Ω and Λ are Hermitian. What can you say about

a) ΩΛ
Answ: The product is not necessary Hermitian, because (ΩΛ)† = ΛΩ, which is
not equal to ΩΛ, unless the two matrices commute.
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b) ΩΛ + ΛΩ
Answ: The anticommutator is Hermitian.

c) [Ω,Λ]
Answ: The commutator is antihermitian, i.e. (ΩΛ− ΛΩ)† = −(ΩΛ− ΛΩ)

6) Consider the matrix

Ω =

 0 0 1
0 0 0
1 0 0

 (12)

a) Is it Hermitian?
Answ: Yes

b) Find its eigenvalues and eigenvectors.
Answ:The eigenvalues are +1, 0, -1. The corresponding normalized eigenvectors
are  1√

2

0
1√
2

 0
1
0

 1√
2

0
− 1√

2

 (13)

c) Verify that U †ΩU is diagonal, U being the matrix formed by using each normalized
eigenvector as one of its columns. (Show that U is unitary!)

U =

 1√
2

0 1√
2

0 1 0
1√
2

0 − 1√
2

 = U † (14)

and

U †ΩU =

 1 0 0
0 0 0
0 0 −1

 (15)

d) Calculate exp(iΩ) and show it is unitary.
Answ:

Λ ≡ exp(iΩ) =

 cos(1) 0 i sin(1)
0 1 0

i sin(1) 0 cos(1)

 (16)

which can be verified by direct multiplication that

ΛΛ† = 1 (17)
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7) Consider the ”Theta-funcion”

θ(x− x′) =

{
1 x ≥ x′

0 otherwise

Show that δ(x − x′) = dθ(x−x′)
dx

by multiplaying on the r.h.s with an arbitrary square-
integrable function f(x) and integrating over all x.

Answ: The left side gives: ∫
δ(x− x′)f(x′)dx′ = f(x) (18)

The right side gives∫
dθ(x− x′)

dx
f(x′)dx′ =

d

dx

∫ x

f(x′)dx′ = f(x) (19)

hence it is equal for arbitrary f(x).

8) Consider a ket space spanned by the eigenkets {|ai〉} and eigenvalues {ai} of a Hermi-
tian operator A of dimension n. There is no degeneracy.

a) Prove that operator
n∏
i=1

(A− ai)

is a null operator |0〉 in this space.
Answ: Assume that |α〉 is an arbitrary vector in this space. The action of
operator gives

n∏
i=1

(A− ai) |α〉 =
n∑
j=1

n∏
i=1

(A− ai) |aj〉 〈aj| |α〉 (20)

where we inserted identity in the considered space. This can be rearanged to

n∑
j=1

〈aj| |α〉
n∏
i=1

(aj − ai) |aj〉 (21)

because |aj〉 are eigenvectors of operator A. For each term in the sum over j,
the product runs over all eigenvalues i = 1...n, and hence the term (aj − aj) is
contained in the product, which makes the whole product to vanish. We therefore
have

n∑
j=1

〈aj| |α〉 0×
n∏
i 6=j

(aj − ai) |aj〉 = |0〉 (22)
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b) What type of projector is this operator

n∏
j=1,j 6=i

1

ai − aj
(A− aj) ?

Answ: We again start with expanding over eigenvectors

n∏
j 6=i

1

ai − aj
(A− aj) |α〉 =

n∑
k=1

n∏
j 6=i

1

ai − aj
(A− aj) |ak〉 〈ak| |α〉 = (23)

n∑
k=1

〈ak| |α〉
n∏
j 6=i

1

ai − aj
(ak − aj) |ak〉 (24)

The only time this product does not vanish is when k = i, because j is then never
equal to k. In the case of k = i we have

〈ai| |α〉
n∏
j 6=i

1

ai − aj
(ai − aj) |ai〉 = |ai〉 〈ai| |α〉 (25)

Hence the above defined operator is projector to eigenvector |ai〉, i.e., |ai〉 〈ai|.
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