
Final Exam, Quantum Mechanics 501, Rutgers

December 15, 2015

1. (a) Construct the spin singlet (S = 0) state and the spin triplet (S = 1) states of a two
electron system.

Answ.: singlet:

|0, 0〉 =
1√
2

(|↑↓〉 − |↓↑〉) (1)

triplets:

|1, 1〉 = |↑↑〉 (2)

|1, 0〉 =
1√
2

(|↑↓〉+ |↓↑〉) (3)

|1,−1〉 = |↓↓〉 (4)

(b) In the experiment we have two electrons, which are in the spin-singlet state. They
move in the opposite direction along the y-axis, and two observers A and B measure
the spin state of each electron. A measures the spin component along the z axis,
and B measures the spin component along an axis making an angle θ with the z axis
in the xz-plane. Suppose that A’s measurement yields a spin down state and sub-
sequently B makes a measurement. What is the probability that B’s measurement
yields an up spin (measured along an axis making an angle θ with the z-axis)?

The explicit formula for the representation of the rotation operator exp(−iS · n̂θ/~)
in the spin space is given by the spin 1/2 Wigner matrix

D(1/2)(n̂, θ) =

(
cos(θ/2)− inz sin(θ/2) (−inx − ny) sin(θ/2)
(−inx + ny) sin(θ/2) cos(θ/2) + inz sin(θ/2)

)
(5)

and n̂ = nx~ex + ny~ey + nz~ez ( |n̂| = 1) is the axis of rotation.

Answ.: Since the state of two electrons is singlet, and we know that the first electron
points down, the second has to point up in the same coordinate system. But observer
B is rotated by θ around y axis, hence we need to find how spin-up looks in the rotated
coordinate system. We thus apply D(1/2)(~ey, θ) on (1, 0) to get

|ψB〉 = (cos(θ/2), sin(θ/2)) (6)

The probability for up-spin is thus P (|↑〉) = cos2(θ/2) and for down-spin P (|↓〉) =
sin2(θ/2).
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2. The Wigner-Eckart theorem s given by

〈n′j′m′|T (l)
q |njm〉 = 〈j′m′|lq, jm〉 〈〈n

′j′|T (l)|nj〉〉√
2j + 1

(7)

(a) Explain the meaning of the two terms on the right hand side.

Answ.: The first term is the Clebsch-Gordan coefficient, which encodes the geo-
metric properties of the matrix element under rotation. The second is the reduced
matrix element, which is a common coefficient for all m,m′ quantum numbers.

(b) The interaction of the electromagnetic field with a charged particle is given by

∆H =
e

2m
A · p

If the electromagnetic fields are in the form of a plane wave, then A = A0 ε̂e
ikr,

where ε̂ is the polarization of the plane wave. Assuming that the wavelength λ =
2π/k is much larger than the atomic size, we may write

A = A0ε̂(1 + ik · r + · · · )

such that
∆H ≈ e

2m
A0 ε̂ · p(1 + ik · r)

Her we kept both the dipole, and the quadrupole terms.

If the field is polarized along the x-axis (ε̂ = ~ex), and the wave propagation is along
the z-axis (k = k~ez) express the Hamiltonian in terms of spherical harmonics. Note
that p is a vector operator, and transforms under rotation as r. For symmetry
consideration you may therefore replace p by Cr

Answ.: The Hamiltonian for the above configuration is

∆H =
e

2m
A0C(x+ ik xz) (8)

Using the expressions for Y ′lms we can get

x =

√
2π

3
r(Y1,−1 − Y1,1) (9)

xz =

√
2π

15
r2(Y2,−1 − Y2,1) (10)

hence

∆H =
e

2m
A0C

√
2π

3
r(Y1,−1 − Y1,1 + i

kr√
5

(Y2,−1 − Y2,1)) (11)

(c) For the above configuration, derive the selection rules for the dipole and the quadrupole
transitions, by considering the transition probability matrix elements | 〈ψf |∆H|ψi〉 |2 =
| 〈lfmf |∆H|limi〉 |2.
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Answ.: The dipole matrix elements are proportional to

〈lfmf |∆H1|limi〉 ∝ 〈lfmf |Y1,−1 − Y1,1|limi〉 ∝ 〈lfmf |11, limi〉 − 〈lfmf |1− 1, limi〉(12)

hence |mf −mi| = 1, and |lf − li| ≤ 1.

The quadrupole matrix elements are

〈lfmf |∆H2|limi〉 ∝ 〈lfmf |Y2,−1 − Y2,1|limi〉 ∝ 〈lfmf |21, limi〉 − 〈lfmf |2− 1, limi〉(13)

hence |mf −mi| = 1, and |lf − li| ≤ 2.

The explicit expressions for the spherical harmonics for l = 1, 2 are given by

Y1,1 = −1

2

√
3

2π

x+ iy

r
Y1,0 =

1

2

√
3

π

z

r
(14)

Y2,2 =
1

4

√
15

2π

(x+ iy)2

r2
Y2,1 = −1

2

√
15

2π

(x+ iy)z

r2
Y2,0 =

1

4

√
5

π

2z2 − x2 − y2

r2
(15)

and Yl,−m = (−1)mY ∗l,m.

3. A particle of reduced mass µ = 200MeV/c2 is moving in a spherical potential well of
range a and depth V0 = −150MeV . [V (r) = V0 for |r| < a and V (r) = 0 for |r| > a].

The particle is bound in the 1s ground state with binding energy E = −5MeV . (This
is supposed to be a very simple model of the deuteron). Note: ~c = 197.327MeV fm.

(a) Solve the Schroedinger equation for both r < a and for r > a.

(b) Using the boundary conditions at r = a, extract the size of the ”potential range”
a.

(c) Calculate the probability that a measurement of r will find r > a, i.e. the particle
is outside the range of the potential (which is of course forbidden classically).

Answ.: The radial wave function for l = 0 solution is

ψ(r < a) = A
sin(kr)

r
(16)

ψ(r > a) = C
e−κr

r
(17)

where

k =

√
2µ(E − V0)

~2
and

κ =

√
2µ|E|
~2

Given the numbers in the text, we can get

k = 1.22/fm
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κ = 0.227/fm

The continuity of the wave function and its derivative at r = a gives the following set of
equations

A sin (ka) = Ce−κa (18)

Ak cos (ka) = −Cκe−κa (19)

which is satisfied if

tan(ka) = −k
κ
. (20)

This equation can be solved for range parameter a, and the first solution (1s) gives:

a =
1

k
(π − arctan(k/κ)) ≈ 1.44fm

The probability for the particle to be outside the well is

P (r > a) =

∫∞
a
|ψ(r)|2r2dr∫∞

0
|ψ(r)|2r2dr

(21)

The integration inside the well gives A2
∫ a
0

sin2(kr)dr = A2 a
2
(1− sin(2ka)

2ka
) and integration

outside the box gives C2
∫∞
a
e−2κrdr = C2 e−2κa

2κ
. We also have C/A = eκa sin(ka)

The ratio that describes the probability P (r > a) is

sin2(ka)

sin2(ka) + κa(1− sin(2ka)
2ka

)
≈ 0.73 (22)
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