Final Exam, Quantum Mechanics 501, Rutgers

December 15, 2015

(a) Construct the spin singlet (S = 0) state and the spin triplet (S = 1) states of a two
electron system.

Answ.: singlet:
1

10,0) = E(\M — 1) (1)
triplets:
1,1) = 1) (2)
1
1,0) = E(\NHIW) (3)
1,-1) = [W) (4)

(b) In the experiment we have two electrons, which are in the spin-singlet state. They
move in the opposite direction along the y-axis, and two observers A and B measure
the spin state of each electron. A measures the spin component along the z axis,
and B measures the spin component along an axis making an angle # with the z axis
in the xz-plane. Suppose that A’s measurement yields a spin down state and sub-
sequently B makes a measurement. What is the probability that B’s measurement
yields an up spin (measured along an axis making an angle 6 with the z-axis)?
The explicit formula for the representation of the rotation operator exp(—iS-nf/h)
in the spin space is given by the spin 1/2 Wigner matrix

D4, 0) — cos(0/2) —in,sin(6/2)  (—in, —n,)sin(0/2) (5)
’ (—ing +ny)sin(0/2)  cos(0/2) + in, sin(6/2)
and N = n,€, + nyey, + n.€, ( |n| = 1) is the axis of rotation.

Answ.: Since the state of two electrons is singlet, and we know that the first electron
points down, the second has to point up in the same coordinate system. But observer
B is rotated by 6 around y axis, hence we need to find how spin-up looks in the rotated
coordinate system. We thus apply D1/2 (&, 6) on (1,0) to get

[¥5) = (cos(0/2), sin(0/2)) (6)

The probability for up-spin is thus P(|1)) = cos?(/2) and for down-spin P([|)) =
sin?(6/2).



2. The Wigner-Eckart theorem s given by

(a)

(5" TOIng))
V2ji+1

Explain the meaning of the two terms on the right hand side.

(7)

(' j'm!| T} [njm) = (5'm|lq, jm)

Answ.: The first term is the Clebsch-Gordan coefficient, which encodes the geo-
metric properties of the matrix element under rotation. The second is the reduced
matrix element, which is a common coefficient for all m,m’ quantum numbers.

The interaction of the electromagnetic field with a charged particle is given by

AH="A-p
2m

If the electromagnetic fields are in the form of a plane wave, then A = A, e,
where € is the polarization of the plane wave. Assuming that the wavelength A =
27 /k is much larger than the atomic size, we may write

A=Ac01+ik-r+--)

such that .
AH~ —Ayé-p(l+ik-r)
2m

Her we kept both the dipole, and the quadrupole terms.

If the field is polarized along the z-axis (¢ = €,), and the wave propagation is along
the z-axis (k = k€,) express the Hamiltonian in terms of spherical harmonics. Note
that p is a vector operator, and transforms under rotation as r. For symmetry
consideration you may therefore replace p by Cr

Answ.: The Hamiltonian for the above configuration is
AH = %Aocm + ik 22) (8)

Using the expressions for Y]/ s we can get

2
T =/ 37’(5/1,71 —Y11) (9)
2T 4
22 =\l 1e7 (Yo,1 —Ya1) (10)

e o kr
AH = %A()C ?T(}q,—l - Yi,l + 1%<Yé,—1 o }/271)) (11>

For the above configuration, derive the selection rules for the dipole and the quadrupole
transitions, by considering the transition probability matrix elements | (¢ f|AH|¢;) |? =
[ (Lymy | AH [Limg) 2.

hence
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Answ.: The dipole matrix elements are proportional to

hence |my —m;| =1, and |ly — [;| < 1.
The quadrupole matrix elements are

hence |my —m;| =1, and |l — ;| < 2.

The explicit expressions for the spherical harmonics for [ = 1,2 are given by

1 /3 xz+1y 1 \/gz
Mo Voo MoV (14)
1 [15 (x +1iy)? 1 [15 (z +iy)z 1 \/3222 — 2?2 — P
227 4\ o g2 21 2V 27 r2 2074V 72 (15)

and Yy, = (=1)"Y},.
. A particle of reduced mass p = 200 MeV/c? is moving in a spherical potential well of
range a and depth Vj = —150 MeV. [V (r) =V} for |r| < @ and V(r) = 0 for |r| > a].

The particle is bound in the 1s ground state with binding energy £ = —5 MeV. (This
is supposed to be a very simple model of the deuteron). Note: hc = 197.327 MeV fm.

(a) Solve the Schroedinger equation for both 7 < a and for r > a.

(b) Using the boundary conditions at r = a, extract the size of the "potential range”
a.

(c) Calculate the probability that a measurement of r will find r > a, i.e. the particle
is outside the range of the potential (which is of course forbidden classically).

Answ.: The radial wave function for [ = 0 solution is

sin(kr)

Ylr < a) = A (16)
O(r > a) = oe:” (17)
where
[ 2UE = Vo)
h2
and

_[2plE]
TN TR

Given the numbers in the text, we can get

k=1.22/fm
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Kk =0.227/fm

The continuity of the wave function and its derivative at » = a gives the following set of
equations

Asin (ka) = Ce™ ™ (18)
Akcos (ka) = —Cre™ "™ (19)
which is satisfied if
k
tan(ka) = ——. (20)
K

This equation can be solved for range parameter a, and the first solution (1s) gives:
1
a= E(ﬂ' — arctan(k/k)) ~ 1.44fm

The probability for the particle to be outside the well is

_ Ja () Pridr
P(r>a) = 00 Erar (21)

The integration inside the well gives A2 [ sin?(kr)dr = A?2(1 — 2225 and integration

—2Kka

outside the box gives C? [ e~ *"dr = C?<5—. We also have C'/A = €™ sin(ka)
The ratio that describes the probability P(r > a) is
sin?(ka)

sin?(ka) + ra(l —

Sy 0.73 (22)

2ka
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