Homework 2, Quantum Mechanics 501, Rutgers

September 27, 2016

1) An operator **A**, corresponding to a physical observable, has two normalized eigenstates $|\phi_1\rangle$ and $|\phi_2\rangle$ with non-degenerate eigenvalues a_1 and a_2 , respectively. A second operator **B**, corresponding to a different physical observable, has normalized eigenstates $|\chi_1\rangle$ and $|\chi_2\rangle$, with eigenvalues b_1 and b_2 , respectively. The two sets of eigenstates are related by

$$|\phi_1\rangle \propto 2 |\chi_1\rangle + 3 |\chi_2\rangle \tag{1}$$

$$|\phi_2\rangle \propto 3 |\chi_1\rangle - 2 |\chi_2\rangle \tag{2}$$

The physical observable corresponding to \mathbf{A} is measured and the value a_1 is obtained. Immediately afterwards, the physical observable corresponding to \mathbf{B} is measured, and again immediately after that the one corresponding to \mathbf{A} is remeasured. What is the probability of obtaining a_1 a second time?

- 2) The ammonia molecule NH₃ has two different possible configurations: One (which we will call $|1\rangle$), where the nitrogen atom is located above the plane spanned by the three H atoms, and the other one (which we will call $|2\rangle$) where it is below. These two states span the Hilbert space in our simple example. In both states, the expectation value of the energy $\langle n | H | n \rangle$ is the same, E(n = 1, 2). On the other hand, the two states are not eigenstates of the Hamiltonian; in fact, we have $\langle 2 | H | 1 \rangle = \langle 1 | H | 2 \rangle = -V$ (where V is some positive number).
 - 1) Write down the Hamiltonian in Dirac form and in matrix form.
 - 2) Find both eigenvalues and normalized eigenvectors. Which state is the ground state?
 - 3) Where is nitrogen in the two eigenstates, i.e., what is the probability to find nitrogen atom above or below in the two states?
 - 4) Consider the parity operator in which all coordinates change sign $(x \to -x)$. Is parity well defined in the two eigenstates? If yes, what is the value of the parity operator in the two cases?
- 3) Consider the following three operators (representing physical observable) on the two

dimensional Hilbert space:

$$S_x = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right) \tag{3}$$

$$S_y = \left(\begin{array}{cc} 0 & -i\\ i & 0 \end{array}\right) \tag{4}$$

$$S_z = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \tag{5}$$

- (1) Assume S_z is measured and one finds the value -1. Immediately afterwards, what are $\langle S_x \rangle$, $\langle S_x^2 \rangle$ and $\Delta S_x \equiv \sqrt{\langle S_x^2 \rangle \langle S_x \rangle^2}$
- (2) What are the possible values one could measure for S_x , and what are their possibilities if it is measured immediately after measurement in (1).
- (3) Explicitly calculate the commutators between any two of the three operators above (all 3). Is it possible to prepare a state of the system with well-defined values for all three?
- 4) Consider the following Hamiltonian for a classical system:

$$H = \frac{1}{2m}(p_x^2 + p_y^2 + p_z^2) + V(x^2 + y^2 + z^2)$$
(6)

Prove that the angular momentum is a constant of motion by explicitly evaluating Poisson bracket of say $L_z = xp_y - yp_x$ and H. Note that for such classical system $dL_z/dt = \{L_z, H\}.$