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Nontechnical Summary

We study a TQFT in 4d whose partition function
generalizes both the Donaldson invariants and the
Vafa-Witten invariants, and interpolates between them.

The theory depends on a choice of background spin-c
structure s. This dependence has not previously been
discussed. Including it turns out to be nontrivial.
We believe we have solved the problem completely.

| gave a preliminary report at the end of my talk at
StringMath 2018, where the last slide said...



Surprise!!

It doesn’t work!
Correct version appears to be non-holomorphic.

With Jan Manschot we have an alternative
which is currently being checked.

Does the u-plane integral make sense for

ANY family of Seiberg-Witten curves ?
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Intro & Main Claims — 1/6

d=4 N=2* SYM. G = SU(2),S0(3)

X: Smooth, compact, oriented, 0X = @, by > 0,

For simplicity: Connected, m,;(X) = 0, ignore torsion

Data needed to formulate the invariants:

TOE}[;C[O :=627TiT0 m € C
(UV) Spin-c structure: s, ¢, := ¢,(s) € H*(X,Z)

v € H?(X;Z/2Z) Orientation of H?(X; R)


Presenter
Presentation Notes
Say: Comparison with Freedman’s topological classification of four-manifolds shows there is a huge difference between the topological and smooth categories. Very deep. 


Intro & Main Claims — 2/6

Path integral defines a "~ function”

Z,(to,m,cyy,): H (X;Z) - C

2o m e ) = ) b [ et Bul(e;m)
k=0 Mk

M;.: Moduli of ASD connections on a principal SO(3)
bundle P - X with v = w,(P) and instanton no. = k

w:H,(X,Z) » H* *(My; Q)

E. . U(1)-equivariant virtual bundle
over moduli space of instantons



Intro & Main Claims — 3/6

Special cases were studied In
[Moore & Witten 1997, Labastida & Lozano 1998 |

Those studies were limited to spin manifolds
with trivial spin-c structure.

Related work: Dijkgraaf, Park, Schroers 1998
N=1 deformation of N=4 SYM, twisted using
Kahler structure for Kahler 4-folds with by > 3.

Recently an important contribution to related issues appeared in [18]. It would be
fruitful to apply the physical methods of [18] to the problems addressed here. In that way
one could compute the entire generating functional of the N = 2 theory with a massive

adjoint hypermultiplet, and work on more general four-manifolds.



Intro & Main Claims — 4/6

An acs J defines a canonical spin-c structure s(J) .

(Use canonical homomorphism U(2) — Spin©(4).)

1A: For such a spin-c structure and m —» 0

7474
Zy(To,m, Cyyy) = Zy" (Tp)
1B: m » o0 & gy = 0 with A* := 4m*q, fixed:

renorm DW
Ly (TO: m, Cuv) - 4y



Intro & Main Claims — 5/6
Z, =27y +Z;"
Z58 : Coulomb branch integral

2a. Writing a single-valued measure
requires nonholomorphic interactions with s

(= Implications for class S generalization )

2b: Integrand is a total derivative
of a Maass-Jacobi form. (" Mock Jacobi form” )

2c. Value of the integral is a nonholomorphic
completion of a mock modular form.

2d: VW expression for CIP? is a special case



Intro & Main Claims — 6/6

For b; > 1 Z, is alinear combination
of SW invariants with coefficients in a
ring of modular forms for 7,

Corollary: VW invariants vanish If

X:Y1

Y, with b5 (Y;) > 0

(VW invariants only rigorously defined for algebraic
surfaces: Tanaka-Thomas 2017; Sheshmani-Yau 2019)
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N = 2% Theory
Bosonic Fields:

Vectormultiplet A € A(P) ¢ € I'(adP ® C)

S = [ 1y tr(F?) + totr(F?) + -

Adjoint HM: gq,g € I'(adP @ C)

W =Tr(q (Ad(¢)

m)q )

= U(1), symmetry: Charge(q,q) = (1,—1)



Topological Twisting
Couple to background SO (3)x bundle with connection.

Choose an isomorphism with SO(3) bundle with
connection associated to (A>*TX , V:¢)

Magically, all metric dependence is Q-exact (Witten 1988):
S = f’fo tr(F4) + Q ()

N.B. Also holomorphic in 7,

With adjoint hypers topological twisting only makes
sense If they couple to a background spin-c structure
s and spin-c connection [Labastida-Marino 95]



Topological Twisting
HM bosons (q,§* )= M eT(W* ® adP @ C)

W* - X : Positive chirality rank two bundle
assoclated to uv spin-c structure s

Q —fixed point equations
Ft+[M,M]=0 DM = 0

“"Nonabelian monopole/SW equations”

[Labastida-Marino; Losev-Shatashvili-Nekrasov]

U(1), actsonthe moduli space M, of these egs.

Fixed pointset: M =0 is M,.4(P) = M,



Observables
O0:H,(X,Z) > Q — coho

O(p) =[Tr ¢*(p)]
0(S) = [ | Tr(@F + )

Q-coho = Hjyy, (Mp)

m: U(1), equivariant parameter
= deg 2 generator of $*(u;, (1))

[Labastida-Marino; Losev-Shatashvili-Nekrasov]



L ocalization

Q: Path integral -

O f

(0 .= > ab f 10 Eyl (€5 m)

k=0

E. . Obstruction bundle for elliptic
complex, pulled back to M.



Index Computations

ci,— 2y +30)
4

vdimM, = dimG
N.B. Independent of instanton number k!

3
dika = 8k —E()(‘FO')

= Partition function is an infinite q, - series even
without insertion of observables.

3
Index D = —8k + 5 (cz, — o)

Conjecture: £, =ker(D™) for large k



Relation To Vafa-Witten Equations-1/2
Ae AP) CeTl(adP) B*eQ? (adP)

F*+[B*,B*]+[C,BT] =0
D,C +DVBy, =0

ACST=> ATT'X =R Ky

J also determines a
canonical spin-c structure s(7)

WT=RQCHK



Presenter
Presentation Notes
Even though the topological twists of N=4 SYM are very different. 
Incidentally, 
One is not allowed to cancel Witten from this equation. 


Relation To Vafa-Witten Equations -2/2

DW twist of N=4 SYM Is inequivalent to the SW twist.

Nevertheless, for s(7) Q-fixed point egs coincide

Seiberg-Witten = Vafa-Witten



Mass Limits
Lim,,_o[N = 2* SYM] = [N = 4 SYM]

SW94.
m— o &gy — 0

A§ = 4 m*q,
= pure SYM



Mass Limits — 2

O(x) . — "j KO Eul(E,; m)
(e )sz ;CIO Mke U m

E’LLl(gS, m) - H(xl - m) — —Index(D) z Cw”(gs)

Leading term form — 0 : ¢, (E;)

Fors(J): &, =T*M, = Euler character of M, *

Leading term for m — o : ¢y(E,)=1

= Donaldson invariants
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Coulomb Branch Integral

This Is a useful and nontrivial test case for a
more general very interesting open problem:
Generalize DW theory to class S.

CB = Base of a Hitchin system B

Here: u € C = B

Physics described by special geometry
of a family of Abelian varieties over B

SW94: Jacobians of a holo family of curves

Equipped with meromorphic differential



Seiberg-Witten Geometry

2

Eu yz — H(x —a;) a;=uelty) +m_ei(To)2

4
1=1

e;(1o) half-periods of £, = C/(Z + 1(Z)

1
e;(1g) € {§ (93 (to) + 94 (1), ...}

N.B. After choice of duality frame E, has a
7(u, m, 7y) which should not be confused with 7,

lim T(u,m,17y) = 19 lim t(u,m,7y) = 1
m—0 U— 00



u; = mée;(1o)



Path Integral Of U(1) LEET

LEET: U(1) Maxwell + N=2 superpartners
with topological couplings

ZCB f d*u B(uw)? A(u)X Zygxwelt
‘B

B = H(u — ui)%

= Potential problems with single-valued measure.



CB Measure: 199/7-1998

Z5B(p,S) = fdzu BY ePueS°T AX @
B

1

_1 (=p2 2
A = (@) ’ “Ijv ~ é e fTden'++T Fayn, -

du
fluxes

Depend on duality frame —
- but the local system has nontrivial monodromy.



CB Measure Only SV For X Spin

AXeS°TY  is independent of duality frame,
up to 8t roots of unity.

On a spin manifold, o0 = 0 mod 8:
The measure Is single-valued.

If X IS not spin the above measure
IS not single-valued ....



CB Measure: New Interactions

We need to include the
background spin-c structure s

There are couplings to the UV spin-c connection:
_ 2
AS ger = | cWFZ + d(u) FpFayn
|[Shapere-Tachikawa, 2008]

Surprise! No choice of holomorphic coupling
makes the measure single-valued!



Resolution

“Weakly gauge” the U(1), symmetry:
Gauge group: Ul),xG G€e{SU(2),50(3)}
= Rank TWO gauge group.
Take UV coupling of U(1), to zero:
Freezes U(1), vm fields to classical values
m=(ap )

Natl Seiberg & Ann Nelson — 1993



Non-Holomorphic Coupling

Rank 2 Maxwell action: F; =

TI] —_

(&5 s

da? dadm

d?F d?F
dadm dm?

\
/

V =

(Fb: den)

d*F

dadm

| v FF Fion +V Fy Fiyn



Remark: SW limit m —» o

—_ -|- _|_ —_— —_
0 | 7 F, FayntV Fy Fayn

Metric dependent & nonholomorphic,
varying continuously on B

den

L i [ wa(0)

Important implications for the generalization

of CB integral to class S theories: We do not
want a Z, —valued QRIF.



Coulomb Branch Measure: 2019 -2020

ng=fn
B

Q = du A dii BCeP4eS TAXCC vy,

Nontrivial question: Is this single-valued ?

Step 1. Use modular parametrization.
ldentify B with the modular curve H /T'(2)



Modular Parametrization

Weak coupling duality frame:

Nekrasov: Instanton partition function

_1 .,
T(a,m)—zroa +

+m? f(ro) (log [22) =2 +2) (T)
mf1To(08m 4 2ogA)
fn(t0): polynomials: -~
Es,Eq,Eg Wt=2n — 2 +a* zfn(ro) (E)

[Minhahan, Nemeschansky, Warner; Dhoker, Phong] n=2

A, m dependence (also A,B couplings):
[Manschot, Moore, Xinyu Zhang 2019]



Modular Parametrization
_EF da_ pdx

T = — =
da? du Ay

. (d_a) _ 93093 (x0) — 93 ()03 (xo)
du 1n°(7o)

et (to) ez3(1) + cycl.

e1(To)ez3(7) + cycl

m~4u(t, 1) =

[Huang, Kashani-Poor,Klemm]

B =~ H/I(2)

|12



Modular Parametrization

T=100U=1U

‘T=T0<—) u = oo

T=0e u=u, T=1 e u=u,



Two New Nontrivial ldentities

3

d?F ANz 9,(21, 2v)
C =exp| 271l = | —

dm? m/) 95(19)9,(27)
N d?F
v dadm

9,(21,v)  9,(279,0)  Determines
9.(2t,v)  95(27,,0) v(T, Tp)




The Period Point” J
by >1 =2728=0

ZMaxwell:
bf =1 ZzEB %0 Framedependent.

Not holomorphic.
Metric dependent.

[ =]
Je =1
J°>0

H2(X;R)



Maxwell Partition Function

Sum over the first Chern class 1 € 2L + v,
L = H?(X;Z) (Simplicity: Puts =0.)

1
AE2L+V

X

El =Erf(x))  Erf(o = J omt? g,

0
Imv

x; = VImt(A . Cup) *J



Presenter
Presentation Notes
Say: derivative of Erf(x) goes to zero rapidly, so the sum is actually convergent, even though the holomorphic power of q has the wrong sign. 


With all these ingredients we can now check
that the CB measure is indeed monodromy

Invariant and hence wel

The definition of the integra

-defined.

IS still rather

subtle. One must define naively divergent
expressions like

Z5" =f d?t (Imt)~Sq"q"
H/T(2)

withn<0 and n <0

It can be done In a satisfactory way:
Korpas, Manschot, Moore, Nidaiev 2019
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Evaluation Of CB Integral ?

ZEB — f () (For simplicity: p=5=20.)
H/T(2)
() = dt AdT BCAXCCuwy!

1
P, = 2 0;E] q 7" emi dew v(zo)
AE2L+V
0=dA A = dt BOAX CCiw

‘PJ=afC’;\



Evaluation Of CB Integral ?

1
2 5TE,{ CI_Z/12 et A-Cuy V(T,70)

AE2L+V
] . A
p) = 3.6
~ 1,- .
G = 2 E){ q—zﬂ em/l-cuv v(T,7T0)
AE2L+V

7277 Nom Jim Ej = +1

A2 5400



Evaluating Difference Of CB Integrals
W/ — Yl = 0~ G )12

_ z 1
—_— ] )] __AZ
G]l;jz p— E/ll Zq 4 coe
AE2L+V

E;? = Erf(xg*) — Erf(x;?)

Converges nicely!

= Can use this to evaluate the difference

ZfB’h — ZfB’]Z by a sum of residues.



Wall-Crossing

As the contour approaches the cusp u;: E/{l’]z limits to

sign [(/1 i% Cuv) °]1] — sign [(A i% cuv) -]2]

= 7%/) is piecewise constant as function of J
but has nontrivial chamber dependence.

Chambers defined by various walls W;(4)



W;(4)




Continuous Metric Dependence

For the boundary at u — o the modular parameter
T = Ty. This leads to continuous metric dependence.

For s(7) one finds:

1) % ) [EGFoA ) = EGFor - DI - cu) 45

A

+ Another Term

Closely related: Nonholomorphic: y, = Im(t,)



The Special Period Point

For any manifold with b = 1 3 special J, such that
QO=dA A=dtBoAXCSw G
Where we can write G explicitly so that A is:

1. Well-defined
2. Nonsingular away from z € {0,1,i oo, 7y}
3. Modular: Good g; expansion near cusps



Mock Jacobi-Maass Forms

These conditions determine G uniquely.

It is a Jacobi-Maass form evaluated at z = ¢, v(7, 7))

After doing the integration by parts we obtain
mock modular forms as functions of

For X = CPP? and s(7) we reproduce exactly
the mock modular forms used in Vafa-Witten.

+ many generalizations
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LEET Near Cusps u;

In the region of each cusp u;, j = 1,2,3
the LEET changes:

We have a U(1) VM coupled to a charge 1 HM.
(In the appropriate duality frame) [Seiberg-Witten 94]

There Is a separate contribution to the path integral
coming from the path integral of these three LEET.

We add the contributions, because we sum over vacua.
3

Z, =758 + Z Zy7
j=1



When b} > 1 ZB vanishes —
- we get true topological invariants:

3
— SW
j=1

So It Is quite Interesting to determine
The three effective actions



u; = mée;(1o)



General Form Of Effective
Action Near U;

a: Local special coordinate vanishing at u;

SLEET,j =
f o, (@Eul(X) + B;()Sig(X) +¥;(@)F2,

+ ij(a)den 7A\ Fb ~+ Sj(a)Fb A\ Fb

+ Q(*)



Determination Of Effective Action

MWO97: The terms In the effective action at u; can be

determined from the contribution to the wall-crossing
behavior Z;® from u;

2 oy 2
ZW = ) SW(ey) [AFBICTDf e

Cir=wo(X)mod?2

j

There is a prescription for including the homology
observables e#(*)



T

A\ 3/8(Cun—2x30) 2 g2, 4B m
Z, = Ky (_) '}’}(TU)B(QX—'_SJ) (’T[]/j —5x—6o— Cuv g 1‘|—EIE—EQ[TQ)

Zls*{..{.,r({._,i_r)t.,%(cw—m).ym( ETD;;D O 00 (re) e S
4(70/2

+}

X=K3@p=0&S=0

Cir

Z 12 A % Cuw 5ﬁ£:%cmmod2 el TH-Cuv /2 Eiﬂ”'c’“”’}g_iﬂ”?ﬂ
= 2 - + -
: ( m ) (Jan)P (Dgm)P (V3m)P

1
p=12+ ic"z‘” v;n evaluated at 7,



Relation To Previous Results

For c2, =2y + 30 and m - 0 we recover and
generalize formulae of [VW;DPS] for VW invariants.

For ¢, = 0 we recover formulae
of Labastida-Lozano

Form - o0 ,qy — 0 after suitable renormalization we
recover the Witten conjecture” for the Donaldson
iInvariants in terms of the Seiberg-Witten invariants.

A generalization and unification of the 1990’s formulae:
Vafa-Witten; Witten; Moore-Witten,;
Dijkgraaf-Park-Schroers; Labastida-Lozano
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Concluding Remarks

Twisted N = 2* on four-manifolds with a spin-c structure
unifies and generalizes previous expressions for
Invariants of 4-manifolds derived from SYM.

Some technical points are still being sorted out.

Non-simply connected generalization and
Implications for three-manifold invariants?

Hamiltonian formulation (Floer theory)?

Derivation from 6d (2,0) theory?



S-Duality

In the SU(2) theory Z,, is the partition
function in the presence of ‘t Hooft flux

~Partition function in a background field
for a magnetic Z, 1-form symmetry.”

The Z,, span a vector space V

But arbitrary linear combinations aren't
physically meaningful



Three Distinct Theories

T
7(55:1(2)) Pt
/X
/’,I
T(506)) = T(S0(3),)
- |
I

Gailotto, Moore, Neitzke 2009;
Aharony, Seiberg, Tachikawa 2013



Partition Functions For The
S0(3)+ Theories

250(3)+ _ 2 einv-pr

p
700 =3 7
0

LT
AS = ? P2 (WZ (p)) Aharony, Seiberg, Tachikawa 2013

im/-pZ
P




S-Duality Transformations
-z, - ¢, Z,

S: 7, = (=i Tg)¥ Z el ™7,

p

1 2
w=§()(+30—cuv)

2711
- (2)( 30+C{i,+12v%) _ 5
fv W 2 w = e 24

Derivation from 6d ?



Orbit Of Partition Functions -1/2

The Z,, span a vector space V

The physical partition functions of the
theories form an orbit in that vector space.

It Is a finite covering of the triangle of theories.



[ZSU(Z)]
For simplicity, work in PV v

Partition functions live in a
disjoint union of connected
orbits, each double-covering

SO(3
the triangle of theories. />[Zv ()+] \V

S0(3)- 503
259G)- | oS [750®)-

V+Wwo (X)

A\ oo /
[ V+W2(X)]

Orbits of Z3Y® = 7 and
Z302 ) are the same.



REMARKS ON CLASS S
SLIDES FROM MY
STRING MATH 2018
TALK IN SENDAI, JAPAN



u-plane for class S: General Remarks

UV interpretation is not clear in general.
nese theories might give new 4-manifold invariants.

ne u-plane is an integral over the base B of a
Hitchin fibration with a theta function associated
to the Hitchin torus. It will have the form

Zu=fdudﬂ17-[‘lj
B

H 1s holomorphic and metric-independent

Y: NOT holomorphic and metric- DEPENDENT
_theta function”




Class S: General Remarks
11X
l

a'\ % 3
— qX B°
H=a*pf det(duj) Aphys

Aphys @ holomorphic function on B with first-
order zeros at the loci of massless BPS hypers

a, £ will be automorphic forms on
Teichmuller space of the UV curve C

a, [ are related to correlation functions for fields
In the (0,2) QFT gotten from reducing 6d (0,2)



Class S: General Remarks

Y ~ z ein/’l-fe—in’f()l+,/’l+)—inr()L_.)[_)+...
A

1€ +T ® H2(X: 7) ['c H'(Z; Z)
’ ' Lagrangian
§ el ® H*(X; R) sublattice

If&=p&@w,(X) mod2 then WC from interior
of B will be cancelled by SW invariants

= No new four-manifold invariants...



¥ comes from a partition function” of
alevel 1 SD 3-formon M, =X X X

Quantization: Choose a QRIF Q on H3(M; Z)

Natural choice: [Witten 96,99; Belov-Moore 2004]

Q(x) =exp(im WCS(OUx; ST x Mg))

Choice of weak-coupling duality frame +
natural choice of spin® structure gives

E=pQ wy(X)


Presenter
Presentation Notes
Mention: Btw – this quadratic refinement isn’t quite canonical: Rather, it depends on a choice of Wu structure. It is related to work I’m doing with Samuel Monnier,   I will talk about closely related things next week in Okinawa. 


Case Of SU(2) vV = 2*
Using the tail-wagging-dog argument, analogous
formulae were worked out for &' = 2%, by Moore-

Witten and Labastida-Lozano in 1998, but only
INn the case when X Is spin.

L&L checked S-duality for the case by > 1

The generalization to X which is NOT spin
IS nontrivial: The standard expression from
Moore-Witten and Labastida-Lozano is
NOT single-valued on the u-plane.



This Is not surprising: The presence of external
U(1)paryon 9auge field Fyqppon ~ ¢1(s) means
there should be new interactions:

e K1 (U) C1 (5) : + Ko (U))l C1 (5) Shapere & Tachikawa

Holomorphy, 1-loop singularities,
single-valuedness forces:

Cl(s)z iaaD
(u—u) 8 e om

A-cq(s)



Surprise!!

It doesn’t work!
Correct version appears to be non-holomorphic.

With Jan Manschot we have an alternative
which is currently being checked.

Does the u-plane integral make sense for

ANY family of Seiberg-Witten curves ?




MORE DETAILS ABOUT MOCK
MODULAR FORMS :
SLIDES FROM MY
JMM TALK
JANUARY, 2020, DENVER



Relation To Mock Modular Forms -1.1

Z,, . Asum of Integrals of the form :

I = L drdt (Imt)™° f(1,T)

o0

Supportofcis  f(r,7) = z c(m,n)g™ g"
bounded below Wy g

Strategy: Find h(z,T) such that | -
dzh = (Im71)™S f(1,7)
h (z,T) is modular of weight (2,0)

<7<



Presenter
Presentation Notes
Say in words the measure is modular invariant . Say in words that modularity of h-hat is crucial so that the finite boundaries do not contribute. 


Relation To Mock Modular Forms — 1.2

A(z,T) = h(z) + R

We choose an explicit solution

0-R = (Imt)™° f(1,7)

vanishing exponentially fast at Imt — oo
h(t) : mock modular form

h(D) = ) dm)q™

( 1
hl ==
T

meZz

) = 1%h(7)

0
T4 f
_ioo

2TCLT

q=¢

f(z,v) 15

(v = 1)



Doing The Integral ™

Note: d(0) undetermined by diffeq but fixed
by the modular properties: Subtle!

3 Long history of the definition & evaluation of such
iIntegrals with singular modular forms — refs at the



Examples 1.1
X:(CIPDZ: bzzb;:].

Zu=f dtdt H V¥

Y = 21y b? Z af(\/y (k 4+ b))(—l)k C_Ikz e—2niz‘k

K€L+
S Im(z
,_ Im(@)
y

y = Im(71) A


Presenter
Presentation Notes
Well, H and Psi are complicated, but nevertheless we found an h-hat 
And the holomorphic part is: 


Examples 1.2

n?a
—1 2 8
h(T'Z):ﬁZ) (—D"q :
4Lt nez 1—T2qn_§
. S
r=e " Z:Z w = 9,(1)95(7)

Zy = Zpw(S) = [ H h(z,2)] 40

3
Zpw(S) = =55+ S5 +35%+54851% 4254087 + .-



	Breaking News About �N=2* SYM On Four-Manifolds,�Without Spin�
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Intro & Main Claims – 1/6
	Intro & Main Claims – 2/6 
	Intro & Main Claims – 3/6
	Intro & Main Claims – 4/6 
	Intro & Main Claims – 5/6 
	Intro & Main Claims – 6/6 
	Slide Number 13
	𝒩= 2 ∗   Theory
	Topological Twisting
	Topological Twisting
	Observables
	Localization
	Index Computations 
	Relation To Vafa-Witten Equations-1/2
	Relation To Vafa-Witten Equations -2/2
	Mass Limits
	Mass Limits – 2 
	Slide Number 24
	Coulomb Branch Integral 
	Seiberg-Witten Geometry
	Slide Number 27
	Path Integral Of U(1) LEET
	 CB Measure: 1997-1998  
	CB Measure Only SV For 𝑋 Spin 
	CB Measure: New Interactions 
	Resolution
	Non-Holomorphic Coupling
	Remark: SW limit 𝑚→∞
	Coulomb Branch Measure: 2019 -2020 
	Modular Parametrization
	Modular Parametrization 
	Modular Parametrization 
	Two New Nontrivial Identities
	The ``Period Point’’ 𝐽
	Maxwell Partition Function 
	Slide Number 42
	Slide Number 43
	Evaluation Of CB Integral ? 
	Evaluation Of CB Integral ?
	Evaluating Difference Of CB Integrals  
	Wall-Crossing
	Slide Number 48
	Continuous Metric Dependence
	The Special Period Point
	Mock Jacobi-Maass Forms
	Slide Number 52
	LEET Near Cusps  𝑢 𝑗 
	Slide Number 54
	Slide Number 55
	General Form Of Effective Action Near  𝑢 𝑗 
	Determination Of Effective Action
	Slide Number 58
	Relation To Previous Results
	Slide Number 60
	Concluding Remarks
	S-Duality
	Three Distinct Theories 
	Partition Functions For The 𝑆𝑂  3  ±  Theories 
	S-Duality Transformations 
	Orbit Of Partition Functions -1/2
	Slide Number 67
	Slide Number 68
	u-plane for class S: General Remarks
	Class S: General Remarks
	Class S: General Remarks 
	Slide Number 72
	Case Of SU(2) 𝒩= 2 ∗ 
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Relation To Mock Modular Forms -1.1    
	Relation To Mock Modular Forms – 1.2
	Doing The Integral 
	Examples 1.1
	Examples 1.2

