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1. Introduction and Overview of the Lectures

This is a series of lectures about BPS states in string theory and in particular how to count

them. The main motivation for this work is the program, initiated by Strominger and Vafa

in 1995, of trying to account for the entropy of supersymmetric black holes in terms of the

microstates described by D-branes. We recall some of the features of the Strominger-Vafa

computation in section 1.1 below.

An important role in BPS statecounting has been played by automorphic functions,

and in particular by modular forms for SL(2,Z), so our first lecture is devoted to basic

aspects of the role of modular forms in two-dimensional conformal field theory. We will

emphasize the interplay between holomorphy, modularity, and the important role of “polar

terms” in modular forms of negative weight.

In the second lecture we combine these ideas with extended supersymmetry. In par-

ticular, for N = (2, 2) superconformal theories the elliptic genus is a holomorphic modular

object - a weak Jacobi form of weight zero (see definitions in section **** below). We

show how one can construct the entire elliptic genus given just the degeneracies of the

“polar states” through a Poincaré series (aka the Fareytail expansion). A corollary of this

construction is the Rademacher formula for nonpolar degeneracies in terms of the polar

degeneracies.

Then, using the recent activity in 2+1 dimensional quantum gravity we motivate the

consideration of extremal conformal field theories. In particular, we describe a very new

result, obtained in [15] concerning the possible existence of extremal N = (2, 2) conformal

field theories.

Given the great success of the Strominger-Vafa computation, an obvious program is to

repeat the story for more realistic black holes. That is, we would like to carry out a similar

computation for black holes in four dimensions with fewer unbroken supersymmetries.

The state of the art in this program is that in four dimensions with N = 8 unbroken

supersymmetries we have very good control. This is the subject of Ashoke Sen’s lectures.

In the case when there are N = 4 unbroken supersymmetries we know some things, but

much there is a much less complete picture. In particular, we do not even know how to

compute microscropic entropies in certain natural charge regions, for example, when all
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charges are uniformly scaled to infinity. The subject of the final lectures concerns the

behavior of the index of BPS states for BPS states associated to D-branes on Calabi-Yau

manifolds. We stress the fact that the index is not constant, but has wall-crossing behavior.

1.1 The Strominger-Vafa computation

The main motivation for reviewing the old results on modular invariance and the elliptic

genus is that they have applications to the ongoing Strominger-Vafa program of accounting

for the Beckenstein-Hawking entropy of black holes in terms of counting of microstates.

Strominger and Vafa initiated this program in [35] in the context of 5-dimensional

supersymmetric black holes. The microstate counting was provided by the theory of D-

branes. Let us briefly recall the most important points. Reviews include [23, 29, 8, 7, 30].

Strominger and Vafa considered type IIB string theory on R1,4×S1×K3 and considered

a system of Q1 D1 branes wrapping the S1 and Q5 D5 branes wrapping S1 ×K3. They

considered the case in which the radius of S1, denoted R is large in string units and argued

that the low energy states in this system are described by a superconformal field theory

on S1 × R with target space SymQ1Q5(K3). 1 This superconformal field theory has (4, 4)

supersymmetry and central charge c = c̃ = 6Q1Q5. The elliptic genus counting the index

of BPS states

χ(τ, z; SymN (K3)) =
∑

n,ℓ

c(N)(n, ℓ)qnyℓ (1.1)

has been accounted for above.

On the other hand, there is a spacetime supergravity point of view. The quantum

numbers Q1, Q5 specify RR charges and n a KK momentum charge. For large charges, the

BPS states are described semiclassically by a unique black hole which, in (4+1)-dimensional

Einstein frame has the metric

ds2 = −(f1f5f)
−2/3dt2 + (f1f5f)

1/3ds2R4 (1.2)

f1 = 1 +
4GR

gsπα′
Q1

r2

f5 = 1 + α′gs
Q5

r2

f = 1 +
4G

πR

n

r2

(1.3)

♣ NEED TO CHECK THIS! ♣ From (1.2) one computes the Beckenstein-Hawking entropy

SBH = 2π
√
Q1Q5n (1.4)

On the other hand, we know that for n≫ Q1Q5 we have the asymptotics
∑

ℓ

c(Q1Q5)(n, ℓ) ∼ e2π
√
Q1Q5n (1.5)

1This is, roughly speaking, the symmetric product (K3)Q1Q5/SQ1Q5
. To be more precise, this orbifold

(which has singularities) has a resolution of singularities called the Hilbert scheme of points HilbQ1Q5(K3),

a smooth algebraic variety. It inherits a hyperkahler metric from that on K3. This Hyperkahler resolution

is the true target space of the conformal field theory. See [28] for a description of the relevant mathematics

and [REFS] for some description of how one arrives at this conclusion.
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giving perfect agreement.

♣ MORE Precise? Add spin? ♣
Strictly speaking, for this successful computation one only needs the Cardy formula.

However, the techniques we have described become much more relevant when we go on

to the next steps in the SV program, and attempt to give a microscopic account of the

entropy of four-dimensional black holes preserving only 4 supersymmetries.

Remarks

1. ♣ Explain the link to the AdS/CFT correspondence? ♣

2. ♣ Explain that the entropy is dominated by the long string with ceff = Q1Q5 ?

(Maybe application of the symmetric product section) ♣

2. Modularity in 2D Conformal Field Theory

2.1 Introduction

Modular forms and automorphic functions have been playing an important role in mathe-

matics since the early 19th century, and continue to be an active and fascinating subject

of research to this day. The theory of modular forms entered physics in the 1970’s and

1980’s in the context of string theory and 2-dimensional conformal field theory. In 2D

conformal field theory, modular invariance puts strong constraints on the spectrum of the

theory [Cardy]. In string theory, modular invariance is part of the anomaly-cancellation

and consistency conditions for a string theory.

2.2 Partition functions of 2D conformal field theory on a torus

Suppose we have a 2D conformal field theory C with Hilbert space H. It is a representation

of left- and right-moving Virasoro algebras with central charges c, c̃:

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0 (2.1)

and similarly for L̃n.

We will assume that H can be decomposed into a (possibly infinite) direct sum of

highest weight representations Vh. Recall these are representations built on a vacuum

vector |h〉 with
L0|h〉 = h|h〉 Ln|h〉 = 0, n > 0 (2.2)

In particular, the spectrum will be assumed discrete.

One of the most useful quantities we can associate to it is the partition function. We

define q := e2πiτ , with

τ = θ + iβ.

A common notation in the math literature is e(x) := e2πix, so we could write q = e(τ).

Then the partition function is defined to be:

Z(τ, τ̄) := TrHq
L0−c/24q̄L̃0−c/24 (2.3)

(2.4)
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If the spectrum of H on H is bounded below and discrete then Z(τ, τ̄ ) is real analytic for τ

in the upper half-plane H, although it might have singularities for Imτ → ∞ or Imτ → 0.
2

The partition function (2.3) has the interpretation of being the path integral on a flat

torus with modular parameter τ . To see this we write

Z(τ, τ̄ ) = TrHe
−2πβH+2πiθP (2.5)

where the Hamiltonian is

H = L0 + L̃0 − (c+ c̃)/24

while the momentum is:

P = L0 − L̃0 − (c− c̃)/24

Thus, we propagate for Euclidean time β and then glue-via the trace- with a twist θ as

shown in (1).

Figure 1: Taking the trace after propagating the closed string is the path integral on a torus.

The importance of this observation is that we can now study the behavior of the theory

under diffeomorphisms of the torus. The group of topologically nontrivial orientation

preserving diffeomorphisms of the torus is SL(2,Z), and representatives are easily written.

It is useful to transform to coordinates so that

ξ = s+ it = σ1 + τσ2 (2.6)

Here s is the spatial and t the time coordinate. If we impose the identifications σ1 ∼ σ1+1

then space is identified with period 1. If we furthermore impose σ2 ∼ σ2 + 1 then t is

identified with period β together with a twist by θ in s. In these coordinates we identify

the torus as

Eτ := C/(Z⊕ τZ). (2.7)

2♣MENTIONTHAT SL2R gives counterexample when spectrum is not discrete - due to noncompactness

of the target worldvolume ♣
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as shown in figure ***.

Let us now consider the diffeomorphisms acting on (σ1, σ2) as:

(σ1, σ2) → (dσ1 + bσ2, cσ1 + aσ2)

where (
a b

c d

)
∈ SL(2,Z) (2.8)

We denote Γ = SL(2,Z). It is called the modular group.

The action of the modular group on z is:

ξ → (cτ + d)(σ1 +
aτ + b

cτ + d
σ2)

and up to an overall scaling this induces a fractional linear transformation on τ :

τ → aτ + b

cτ + d
(2.9)

Note that the action factors through an action of PSL(2,Z) = SL(2,Z)/Z2.

Put differently: If we view the complex structure of the torus τ as induced from the

Riemannian metric ds2 = |dξ|2 then the pullback metric is

f∗(ds2) = |cτ + d|2
∣∣∣∣dσ1 +

aτ + b

cτ + d
dσ2
∣∣∣∣
2

so we have a Weyl scaling and a modular transformation on τ .

Now, in a diffeomorphism-invariant theory the partition function Z must be diffeomor-

phism invariant. The effect of a Weyl rescaling on the background metric ĝ on a Riemann

surface Σ, ĝ → eφĝ on a partition function is

Z → exp

[
const.(c+ c̃)

∫

Σ

√
ĝR(ĝ)φ

]
Z (2.10)

but this is zero for Σ = Eτ because the background metric is flat (more generally, φ is

constant and the Euler character of Eτ is zero). Therefore, the partition function must

be modular invariant. Thus, if we know a theory to be diffeomorphism invariant, modular

invariance puts a nontrivial constraint on the spectrum of the theory. Conversely, if we are

given a theory, we can use modular transformations of its partition function as a diagnostic

to search for anomalies under globally nontrivial diffeomorphisms.

It thus behooves us to review a few:

Facts about the modular group

1. The center is {±1}. The action of Γ factors through an action of Γ̄ = PSL(2,Z) on

τ . That is γ = −1 acts trivially on τ and only Γ̄ acts effectively.
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2. The modular group is generated by

S =

(
0 −1

1 0

)
(2.11)

T =

(
1 1

0 1

)
(2.12)

with relations S2 = −1 and (ST )3 = −1 (which implies (TS)3 = −1). Moreover, the

only torsion elements in Γ have orders 2, 3, 4, 6. If γ has order 2 it is −1. If it has

order 4 it is conjugate to ±S. If it has order 3 it is conjugate to −(ST )±1 and if it

has order 6 it is conjugate to (ST )±1.

Group-theoretically, PSL(2,Z) is the free product Z2 ∗ Z3 while SL(2,Z) is the

amalgamated product Z4 ∗Z2 Z6. An amalgamated product G1 ∗A G2 relative to

homomorphisms fi : A → Gi is the quotient of the free product by the relations

ag−1
i = 1 if fi(a) = gi. See [33] for more information.

3. There is an algorithm to express a general element γ ∈ SL(2,Z) in terms of a word

in S, T using the continued fraction expansion of ratios of the matrix elements of γ.

4. The modular images of τ = i∞ are the rational numbers: γ(ı∞) = a
c ∈ Q.

Figure 2: A standard choice of fundamental domain for the action of PSL(2,Z) on the upper half-

plane. The orbifold points are at τ = i and τ = eiπ/3 ∼ e2πi/3 and their images. The blue triangles

are all modular images of the fundamental domain F . This picture was lifted from Wikipedia.

5. A standard fundamental domain for the action of Γ on H is the keyhole region F
shown in figure 2. H/Γ has a Z2 orbifold singularity at τ = i since S2 = 1 in

PSL(2,Z) and a Z3 singularity at τ = eiπ/3 since (ST )3 = 1 in PSL(2,Z). The cusp

at τ = i∞ is preserved by the subgroup generated by T : τ → τ + 1, i.e.

Γ∞ = {
(
1 ℓ

0 1

)
}ℓ∈Z (2.13)
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6. Let Q̂ = Q∪{i∞} then (H∪ Q̂)/Γ can be given the structure of an analytic Riemann

surface, and is therefore CP 1. Therefore there is a 1-1 uniformizing map denoted j(τ),

and defined up to a constant if j takes ∞ to ∞. Therefore, the field of meromorphic

functions invariant under Γ is C(j).

*******************

SAY SOMETHING ABOUT HAUPTMODUL

NEED TO STRESS MORE THAT YOU ARE TALKING ABOUT UNITARY THE-

ORIES

*******************

2.3 Chiral splitting and holomorphy

If all we know is that Z(τ, τ̄ ) is singularity free, real analytic and modular invariant we

cannot conclude very much: Take any function with compact support in F and average

it over the modular group. The result is such a function. However, modular invariance

places strong constraints when combined with holomorphy in τ .

Because the conformal field theory splits locally into left- and right-moving degrees of

freedom one can, in general decompose the partition function as a sum of the form

Z(τ, τ̄) =
∑

i

fi(τ)f̃i(τ̄ ) (2.14)

where fi, f̃i are holomorphic functions.

For example, we can always decompose into characters of the Virasoro highest weight

representations:

Z(τ, τ̄) =
∑

h,h̃

Nh,h̃fh(τ)f̃h̃(τ) (2.15)

where fh has the expansion

fh(τ) =
∑

n≥0

f̂h(n)e(τ(n −∆h)) (2.16)

with ∆h = c
24 − h.

But we can also extend the Virasoro algebra in various ways to get more control of the

spectrum. In particular, we will do this with N = 2 and N = 4 supersymmetry.

One finds especially strong constraints in the case that the sum in (2.14) is a finite

sum. This happens in a broad class of theories known as rational conformal field theories.

Evidently, the invariance of Z means that fi must then transform under Γ as:

fi(γ(τ)) =Mij(γ)fj(τ) (2.17)

where M(γ) is a projective representation of the the modular group. Note that f̃i trans-

forms in the contragredient representation.

Remarks
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1. The most extreme case of all is when there is one term and the partition function

is holomorphic Z = f(τ). f(τ) is a then a Γ-invariant function. Such a function

is known as a modular function. As we have explained above, the field of functions

meromorphic on H which are invariant under Γ is the field of rational expressions in

the famous modular j function. We will show later how to compute its q-expansion:

j(τ) = q−1 + 196884q + 21493760q2 + . . . (2.18)

j(τ) can have zeroes, but does not have any poles in H. Note that there is a singularity

in j for τ → i∞.

Since our Z(τ) has a spectrum bounded below and no other singularities in H it must

follow that Z(τ) is a polynomial in j(τ).

2. In general, if

fi(τ) =
∑

n≥0

f̂i(n)e
2πiτ(n−∆i) (2.19)

where ∆i =
c
24−hi. Based on this expansion we divide the states in the representation

space into two kinds:

• Polar states have n−∆i < 0. They contribute a singularity to fi(τ) in the limit

Imτ → ∞, or, equivalently, q → 0.

• Nonpolar states have n−∆i > 0

states with n −∆i = 0 are more subtle and should be considered polar or nonpolar

depending on the example.

3. To illustrate the power of holomorphy plus modularity, we will demonstrate in the

present example of a holomorphic partition function how the finite set of polar de-

generacies determine the infinite set of nonpolar degeneracies. We will discuss this

in much more detail, but let us consider the example Z(τ, τ̄) = f(τ), and M(γ) = 1

is a 1× 1 matrix. We may expand

f(τ) = f̂0e(−∆τ) + f̂1e((1−∆)τ) + · · · (2.20)

with ∆ some integer. But, as we have said we also know that

f(τ) = a0j
∆ + a1j

∆−1 + · · ·+ a∆j
0 (2.21)

Since the partition function must be nonsingular for τ ∈ H ∆ will be a nonnega-

tive integer. Moreover, for the same reason the series must terminate at order j0.

Now, equating the polar terms in these two expressions gives a triangular system of

equations for the ai in terms of the polar degeneracies f̂j, j = 0, . . . ,∆. Thus we

can solve for the ai in terms of the polar degeneracies. The partition function is

then completely fixed! That is, there is no + · · · in (2.21). Therefore, all the higher

degeneracies are captured by the polar degeneracies f̂j, j = 0, . . . ,∆.

4. There are many examples where the sum in (2.14) is infinite and yet one can still

obtain (2.17), but in general when the sum is infinite this cannot be done.
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2.4 A basic example: Periodic chiral scalars

2.4.1 The Gaussian model

A simple instructive example is the Gaussian model of a single real scalar field X, with

X ∼ X + 1 and

S =
(2πR)2

4πα′

∫
dX ∗ dX (2.22)

A standard computation in CFT leads to:

Z =
ΘΛR

ηη̄
(2.23)

Here η is the Dedekind function arises from quantizing the oscillators:

η(τ) := e
2πiτ
24

∞∏

n=1

(1− qn) (2.24)

To define the numerator, first, ΘΛ is an example of a Siegel-Narain theta function.

Let R1,1 be a Euclidean space of signature (1, 1). Vectors have left- and right-moving

projections v = (v+; v−) with norm v2 = v2+ − v2−. If Λ ⊂ R1,1 we define

ΘΛ :=
∑

p∈Λ
q

1
2
p2+ q̄

1
2
p2− (2.25)

The lattice ΛR is defined by :3

p = ne+mf n,m ∈ Z (2.26)

with

e =
1√
2
(
1

R
;
1

R
) (2.27)

f =
1√
2
(R;−R) (2.28)

As an abstract lattice the e, f span a hyperbolic lattice II1,1 since e2 = f2 = 0 and e·f = 1.

The embedding of this unique even unimodular lattice of signature (1, 1) into R1,1 encodes

the radius. Thus

p+ =
1√
2
(
n

R
+mR) (2.29)

p− =
1√
2
(
n

R
−mR) (2.30)

p± are often denoted pL, pR in the literature. n is interpreted as a momentum eigenvalue

and m as a winding eigenvalue.

There are many useful lessons one can extract from this simple example among them

are:

3We are quantizing on a circle of length 2π, and putting ~ = 1 and α′ = 1. We can restore α′ since it

has units of length-squared, while R has units of length.
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Figure 3: A Narain lattice for the Gaussian model.

1. The Gaussian model clearly has no diffeomorphism anomalies. Therefore Z(τ, τ̄ ) is

modular invariant. From this we can conclude that the and denominator of (2.23)

transform nicely separately under modular transformations. Using the Poisson sum-

mation formula one can directly check that

ΘΛR
→ (cτ + d)1/2(cτ̄ + d)1/2ΘΛR

(2.31)

It follows that

η(
aτ + b

cτ + d
) = (−i(cτ + d))1/2eiφ(γ)η(τ) (2.32)

where eiφ(γ) is a phase. In fact, one can show that the Dedekind function transforms

as:

η(τ + 1) = e
2πi
24 η(τ) (2.33)

η(−1/τ) = (−iτ)1/2η(τ) (2.34)

and hence eiφ(γ) is an interesting 24th root of unity. ♣ GIVE IT? ♣

2. The model enjoys T-duality: The theories at radius R and RD are isomorphic if

RRD = 1. One manifestation of this is the invariance of the above partition function

under R→ 1/R. Note that momentum and winding are exchanged.

3. The R → ∞ limit is interesting. The sum on m becomes suppressed and only the

m = 0 term survives. The sum on n becomes (recall that β = Imτ)

∑

n∈Z
e−πβ( n

R )
2

→ R

β1/2

(
1 +O(e

−πR2

β )

)
=

∫
(2πR)

dp

2π
e−2πβ 1

2
p2
(
1 +O(e

−πR2

β )

)

(2.35)

and hence

Z(τ, τ̄ ) → R

(Imτ)1/2
1

ηη̄
. (2.36)

The factor of R is the volume of the target spacetime. Note that we have lost

holomorphic factorization.
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4. The partition function of a noncompact self-dual or chiral scalar is taken to be

Z(τ) =
1

η
(2.37)

Note that it is singular at τ → i∞, and has gravitational anomalies. That is, it is a

section of a nontrivial line bundle on (a finite cover of) H/Γ.

5. When R2 is rational, R2 = p/q is in lowest terms, (2.14) becomes a finite sum:

Z =

2pq∑

µ,ν=1

fµ(τ)Nµνfν(τ) (2.38)

where

fµ =
Θµ,pq(0, τ)

η
µ = 1, . . . , 2pq (2.39)

are expressed in terms of holomorphic level pq theta functions (See equation (3.45)

below.) The extended algebra is an extension of the loop group LU(1). The loop

group is best thought of in this context as the differential cohomology group Ȟ1(S1)

(because our remarks will generalize to higher self-dual forms). The extended algebra

is characterized by an integrally quantized level, and the level is 2pq. In particular

it is never equal to the basic extension at level 1. But it is the level one central

extension which gives the basic self-dual scalar field. To obtain the basic self-dual

field one must take a double cover of the target space circle at the free-fermion radius

R2 = 2. The partition functions of the self-dual field are then given by level one-half

theta functions with characteristics:

Zǫ =
ϑ [ǫ] (0|τ)

η
(2.40)

where ǫ encodes a spin structure on the torus. For further discussion of these points

see [14, 13, 5].

6. Remarks 4 and 5 generalize to other important theories of self-dual fields, including

the M-theory 5-brane partition function and the partition function of the RR fields

in type II string theory. But this is a topic for another lecture series.

2.4.2 General theories of self-dual and anti-self-dual scalars

More generally, if we have b+ compact left-moving (self-dual) scalars and b− compact

right-moving (anti-self-dual) scalars their partition function is of the form

Z(τ, τ̄) =
1

η(τ)b+η(τ)
b−

ΘΛ(τ, τ̄ ) (2.41)

Here ΘΛ is a Siegel-Narain theta function. To define it we embed a lattice Λ of signature

(b+, b−) into Rb+,b− with projections p → (p+; p−) onto the positive definite and negative

definite subspaces of dimensions b± respectively. That is Λ⊗ R ∼= Rb+,0 ⊕ R0,b− . Then

ΘΛ(τ, τ̄ ) =
∑

p∈Λ
q

1
2
p2L q̄

1
2
p2R (2.42)
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The embedding of Λ in Rb+,b− encodes the data of a flat metric, a flat B-field, and a

flat gauge field (coupling to the left- and right-moving currents) on the target space torus

[16].

To express the transformation properties it is useful to generalize a little bit and define

the general Siegel-Narain theta function

ΘΛ(τ, τ̄ ;α, β; ξ) := exp[
π

2β
(ξ2+−ξ2−)]

∑

λ∈Λ
exp

{
iπτ(λ+β)2++iπτ̄ (λ+β)

2
−+2πi(λ+β, ξ)−2πi(λ+

1

2
β, α)

}

(2.43)

where Imτ = β.

The main transformation law is:

ΘΛ(−1/τ,−1/τ̄ ;α, β;
ξ+
τ

+
ξ−
τ̄
) =

√
1

|D|(−iτ)
b+/2(iτ̄ )b−/2ΘΛ∗(τ, τ̄ ;β,−α; ξ) (2.44)

where Λ∗ is the dual lattice, and D = Λ∗/Λ is a finite abelian group known as the dis-

criminant group. Equation (2.44) can be proven straightforwardly by using the Poisson

summation formula.

To get the transformation law under T we must assume that Λ has a characteristic

vector, that is, a vector w2, such that

(λ, λ) = (λ,w2) mod 2 (2.45)

for all λ. In this case we have in addition:

ΘΛ(τ + 1, τ̄ + 1;α, β; ξ) = e−iπ(β,w2)/2ΘΛ(τ, τ̄ ;α− β − 1

2
w2, β; ξ) (2.46)

Remarks

1. The global gravitational anomalies cancel when Λ is an even unimodular lattice and

b+ − b− = 0mod24. The case b− = 0 gives an example of a conformal field theory

with a purely holomorphic partition function.

2. The case of Λ even unimodular occurs in toroidal compactifications of the heterotic

string.

3. More importantly for our present theme, these theories, where Λ is not even unimod-

ular, arise in the reduction of the M5 brane theory on complex surfaces.

2.5 Vector-valued nearly holomorphic modular forms

The above example motivates the consideration of a class of functions more general than

just modular invariant functions. We are interested in vectors of holomorphic functions

transforming in some matrix representation of Γ.

For

γ =

(
a b

c d

)
∈ Γ
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it is useful to define

j(γ, τ) := cτ + d (2.47)

Definition: A vector-valued nearly-holomorphic4 modular form of weight w and mul-

tiplier system M is a collection of functions fµ(τ), holomorphic for τ ∈ H such that for all

γ ∈ SL(2,Z):

fµ(γ(τ)) = j(γ, τ)wM(γ)µνfν(τ), (2.48)

for a matrix M(γ) constant in τ .

If w is not an integer we must choose a branch of the logarithm. We choose −π <

arg(z) ≤ π. Using the important cocycle identity:

j(γ1γ2, τ) = j(γ1, γ2τ)j(γ2, τ), (2.49)

one easily proves that the multiplier system γ →M(γ) defines a representation of Γ when

w is integral, and a projective representation of Γ when w is nonintegral.

It is useful to define the slash notation:

(f |γ)(τ) := j(γ, τ)−wM(γ)−1f(γτ) (2.50)

which can be applied to any vector of functions. Vector valued nearly holomorphic forms

satisfy f |γ = f .

The simplest case is when the representation of the modular group is trivial. In this

case it immediately follows that if f is nonzero then w must be an even integer, as one sees

by considering γ = −1. Note that from the invariance under T we learn that f(τ) must

have a Fourier series expansion:

f(τ) =
∑

n∈Z
f̂(n)qn (2.51)

We will see that many interesting physical questions are related to the asymptotic behavior

of the Fourier coefficients of modular forms.

When M(γ) is the trivial one-dimensional representation then we can derive a useful

constraint on any nonzero meromorphic function f with f |γ = f . Let vp(f) denote the

order of the zero (or pole) of f at τ = p ∈ H, that is vp(f) is the integer n such that

f(τ)/(τ − p)n is holomorphic and nonzero at τ = p. It is positive if f has a zero at p and

negative if f has a pole.

By carefully integrating the one-form 1
2πi

df
f around the boundary of the fundamental

domain one derives the constraint:5

v∞(f) +
1

2
vi(f) +

1

3
vρ(f) +

∗∑

p∈H/Γ

vp(f) =
w

12
(2.52)

where the sum on the LHS is over the points in the fundamental domain omitting τ = i, ρ.

Only a finite number of terms are nonzero.

Remarks

4the term “weakly holomorphic” is also used in the literature
5For the details see [32], p. 85 or [22], p. 6.
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1. In all physics applications I know the projective representation M factors through a

a congruence subgroup. To define this let Γ(N) be the normal subgroup of Γ defined

by the kernel of the map γ → γmodN . A congruence subgroup (of level N) is a

subgroup Γ′ of Γ which contains Γ(N) for some N . One can generalize equation

(2.52) by integrating around the boundary of a fundamental domain for Γ′.

2.5.1 Summary of some basic results on modular forms

In this section we take the multiplier system to be trivial. That is M(γ) = 1 is a 1 × 1

matrix.

We have included the condition “nearly holomorphic” above because in the theory of

modular forms discussed in the math literature an important growth condition is placed on

the function f(τ), namely, that they do not have exponential growth for τ → i∞. That is,

there are constants c, k so that |f(τ)| ≤ c(Imτ)k for Imτ → ∞, or, equivalently, F (n) = 0

for n < 0 in (2.51). With this added condition the function is known as a modular form.

We can describe the space of modular forms very explicitly. Let Mw(Γ) denote the vector

space over C of modular forms of weight w.

The first thing to show is that some Mw(Γ) are nonempty. We do this by constructing

the Eisenstein series, defined by

Gw(τ) :=
∑ 1

(mτ + n)w
(2.53)

The sum is on integers (m,n) ∈ Z2 − {(0, 0)}. The sum converges absolutely for w > 2.

Moveover, the sum vanishes for w an odd integer. Thus we restrict attention to w even

and w ≥ 4. The modularity is obvious by direct substitution.

For later purposes it is very useful to rewrite (2.53). Let Γ∞ be the subgroup of

modular transformations generated by T . We may identify Γ∞\Γ with the set of pairs of

relatively prime integers (c, d). Note that ad − bc = 1, so (c, d) are relatively prime and

since (
1 ℓ

0 1

)(
a b

c d

)
=

(
a+ ℓc b+ ℓd

c d

)
(2.54)

we can map a coset unambiguously to the pair (c, d). Conversely, given a pair (c, d) we can

always find a corresponding (a, b) so that ad− bc = 1 and construct an element of SL(2,Z)

Different choices of (a, b) are related by (2.54). Now, in view of this observation we can

rewrite:

Gw(τ) = ζ(w)
∑

γ∈Γ∞\Γ
j(γ, τ)−w (2.55)

Using the cocycle identity (2.49) we immediately verify that Gw is a modular form of weight

w, provided it converges. It is common in the literature to define Gw(τ) = 2ζ(w)Ew(τ)

so that the Fourier expansion Ew(τ) begins with 1. With a little work one can derive the

Fourier expansion

E2k(q) = 1− 4k

B2k

∞∑

n=1

σ2k−1(n)q
n (2.56)
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where σk(n) =
∑

d|n d
k is the sum of the kth powers of the divisors of n and B2k is the

Bernoulli number.

Note that modular forms form a Z-graded ring denoted

M∗(Γ) = ⊕w∈ZMw(Γ) (2.57)

The first basic theorem in the theory of modular forms states that this ring is a polynomial

ring generated by Eisenstein series E4, E6 of weights 4, 6:

M∗(Γ) = C[E4, E6] (2.58)

Thus, Mw = 0 for w < 4, except for M0 = C, generated by the constant function.

This theorem is proven by systematically applying the key result (2.52). For details

see [32] or [22].

To give a flavor of the proof note that for a modular form vp(f) must be nonnegative

integers. Thus, it immediately follows that Mw = 0 for w < 0. Moreover, the sum rule

can only be saturated for w = 0 if all vp(f) = 0. Therefore f is constant, so M0 = C · 1.
For M2 there is no way to satisfy the sum rule, so M2 = 0. For w = 4 the only solution

is vρ = 1 with all other vp = 0. Thus, M4 is one-dimensional. It must be generated by

E4, and moreover we learn that E4 has a simple zero at τ = ρ, and no other zeroes in F .

Similarly, M6 is generated by E6 which has a simple zero at τ = i. In a similar way we

find that M8 is generated by E2
4 and M10 is generated by E4E6.

Something new happens at w = 12. Note that at weight w = 12 since E4 and E6 are

equal to 1 for q = 0, if we define ∆ by

E3
4 − E2

6 = (12)3∆ (2.59)

then ∆ is manifestly holomorphic, and clearly has a zero at q = 0. Therefore, by (2.52) it

has a first order zero at q = 0 and no other zeroes in the upper half-plane.

Now, if f is any modular form of weight w = 12 then

f − f̂(0)E12

∆
(2.60)

is in M0, and hence a constant, so

M12 = 〈∆, E12〉 = 〈∆, E3
4〉 = 〈∆, E2

6〉 (2.61)

The same argument in fact shows that

Mw = ∆ ·Mw−12 ⊕ 〈Ew〉 (2.62)

and hence it follows that

dimMw =

{
[ w12 ] w = 2mod12

[ w12 ] + 1 w 6= 2mod12
(2.63)

Remarks
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1. A modular form with F (0) = 0, i.e. a form which vanishes for q → 0 is called a “cusp

form.” Define Sw ⊂Mw the space of cusp forms. Then Mw = Sw ⊕ CEw.

2. Given the transformation properties of η we see that

∆ = η24 = q

∞∏

n=1

(1− qn)24 (2.64)

manifestly showing that it is nonvanishing on H.

3. Similarly, we can construct the j-function

J(τ) =
E3

4

∆
=
E2

6

∆
+ (12)3 = q−1 + 744 + 196884q + · · · (2.65)

2.5.2 Negative weight and the polar part

The examples of partition functions above show that we might wish to relax the standard

growth condition on modular forms since we consider inverse powers of η functions. These

have a singularity at q = 0. Moreover, we should consider modular forms of negative

weight.

Now, a simple, but crucial observation for physical applications is that for negative

weight nearly holomorphic modular forms the polar part of the form uniquely determines

the entire form.

In physical terms this will mean that for holomorphic partition functions the degen-

eracies of polar states completely determine the entire spectrum.

One way to see this is to use the identity (2.52). We see that negative weight forces

some terms vp(f) to be negative. By definition nearly holomorphic functions have vp(f) ≥ 0

for p 6= ∞, so there must be a polar piece. Now, if we have two forms f(τ) and f̃(τ) with

the same polar part then f(τ) − f̃(τ) has no polar part, and therefore must vanish, so

f = f̃ . Note that this conclusion is quite false if we drop holomorphy, or modularity, or

even if we insist on holomorphy and modularity but consider the case w > 0. In this last

case, we can always modify the nonpolar degeneracies by adding a cuspform.

This argument can be generalized to vector-valued modular forms whereM(γ) becomes

diagonal on a congruence subgroup. A word of warning: The crucial identity (2.52) becomes

more complicated because the fundamental domains are more complicated. For a nifty on-

line program that draws fundamental domains of congruence subgroups see Helena Verrill’s

program at http://www.math.lsu.edu/ verrill/fundomain/ .

3. Extended supersymmetry and the Elliptic Genus

3.1 N = 2 superconformal symmetry and spectral flow

3.1.1 N = 2 superconformal algebra

Let us now consider a conformal field theory with N = 2 supersymmetry. That is, the

Hilbert space H is a representation of the N = 2 superconformal algebra. The holomor-

phic currents which generate the algebra are the energy momentum tensor T (z), the two
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supercurrents G±(z) and a dimension one U(1) current J(z). Using standard definitions

of the modings the Lie algebra relations are the Virasoro relations for Ln, in addition the

other currents are Virasoro primaries

[Ln, Jn′ ] = −n′Jn+n′ (3.1)

[Ln, G
±
r ] =

(n
2
− r
)
G±

n+r (3.2)

The U(1) current algebra satisfies

[Jn, Jn′ ] =
c

3
nδn+n′,0

and the supercurrents G± have charges ±1:

[Jn, G
±
r ] = ±G±

n+r

Finally, we have the supersymmetry algebra:

[G±
r , G

±
s ]+ = 0

because there are no elements of charge ±2 and, most importantly,

[G±
r , G

∓
s ]+ = 2Lr+s ± (r − s)Jr+s +

c

12
(4r2 − 1)δr+s,0 (3.3)

Here n,m ∈ Z but the mode numbers r, s of G+
r , G

−
s can be in a nontrivial Z-torsor

r ∈ Z + a, s ∈ Z − a for any real number a. The algebra for a = 1
2modZ is known as

the Neveu-Schwarz (NS) algebra, while that for a = 0modZ is known as the Ramond (R)

algebra.

It will be convenient to define ĉ and m by:

c = 3ĉ = 6m (3.4)

Supersymmetric sigma models with a Kähler target space have N = (2, 2) supersymmetry.

If the target space X has complex dimension d then ĉ = d. Supersymmetric sigma models

with a hyperkähler target space have d even, and hence m integral. These models in fact

have extended N = (4, 4) supersymmetry. There are also very interesting theories with

(0, 2) and (0, 4) supersymmetry.

For simplicity, in what follows we will assume thatm is integral, and that the spectrum

of J0 is integral.

3.1.2 Spectral flow isomorphism

The N = 2 algebra makes sense for r ∈ Z+a, s ∈ Z−a. In fact, the algebras are isomorphic

for all values of a thanks to the so-called spectral flow isomorphism which maps [31]

G±
n±a → G±

n±(a+θ) (3.5)

Ln → Ln + θJn +
c

6
θ2δn,0 (3.6)

Jn → Jn +
c

3
θδn,0. (3.7)
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where θ is any real number.

Note that the combination

4mL0 − J2
0 (3.8)

is spectral flow invariant.

Spectral flow allows us to relate traces in the NS and R sectors. Define

ZRR(τ, z; τ̄ , z̄) := TrHRR
qL0−c/24e2πizJ0 q̄L̃0−c/24e2πiz̄J̃0eiπ(J0−J̃0) (3.9)

The factor of eiπ(J0−J̃0) is inserted for later convenience. ZNSNS is defined similarly. The

spectral flow image of a partition function is defined by substituting the above transfor-

mations:

(SFθS̃F θ̃Z) := e
(
mθ2τ + 2mθz

)
e
(
mθ̃2τ̄ + 2mθ̃z̄

)
Z(τ, z + θτ ; τ̄ , z̄ + θ̃τ̄) (3.10)

Therefore, spectral-flow invariant theories must satisfy

ZRR = (SFθS̃F θ̃)ZRR θ, θ̃ ∈ Z (3.11)

ZNSNS = (SFθS̃F θ̃)ZRR θ, θ̃ ∈ Z+
1

2
(3.12)

(3.13)

3.1.3 Highest weight states, primary, and chiral primary states

We will need some results on the representation theory of the N = 2 superconformal

algebra, and in particular the constraints of unitarity. These were worked out fully by

Boucher, Friedan and Kent in [6].

In the NS sector an N = 2 primary field satisfies:

G±
r |h, q〉 = 0 r > 0 (3.14)

Ln|h, q〉 = 0 n > 0 (3.15)

Jn|h, q〉 = 0 n > 0 (3.16)

L0|h, q〉 = h|h, q〉 (3.17)

J0|h, q〉 = q|h, q〉 (3.18)

Such a state generates a highest weight representation Vh,q. By spectral flow we obtain

corresponding highest weight representations in the Ramond sector.

Unitarity implies

0 ≤‖ G±
−1/2|h, q〉 ‖

2

= 〈h, q|G∓
1/2G

±
−1/2|h, q〉

= 〈h, q|2L0 ∓ J0|h, q〉
= 2h ∓ q

(3.19)

and hence we get our first example of a BPS bound:

h ≥ |q|
2

(3.20)
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Figure 4: Unitarity region for NS sector highest weight representations of the N = 2 algebra. The

chiral primaries lie on the line h = q/2, 0 ≤ q ≤ m. The antichiral primaries on the line h = −q/2,
−m ≤ q ≤ 0. We have illustrated the case m = 3.”

Highest weight (BPS) states which are annihilated by G+
−1/2 saturate the bound h = |q|

2 .

They are also known as chiral primaries. Similarly, BPS states annihilated by G−
−1/2 are

known as anti-chiral primaries. The only BPS state which is both chiral and antichiral is

the vacuum h = q = 0.

A similar computation with 0 ≤‖ G±
−3/2|h, q〉 ‖2 leads to the bound

2h∓ 3q + 4m ≥ 0 (3.21)

For a chiral primary field this implies q ≤ 2m. The bound is saturated by a unique chiral

primary with G+
−3/2|h = m, q = 2m〉 = 0. This is the spectral flow of the vacuum by one

unit.
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Figure 5: Unitarity region for the Ramond sector. Ramond groundstates are at h = m/4, −m ≤
q ≤ m. We have illustrated m = 3.

– 20 –



Under spectral flow by θ = +1
2 we have:6

G+
−1/2|h, q〉NS = 0

θ=+1/2→ G+
0 |h− q

2
+
m

4
, q −m〉R = 0 (3.22)

G−
1/2|h, q〉NS = 0

θ=+1/2→ G−
0 |h− q

2
+
m

4
, q −m〉R = 0 (3.23)

giving us the Ramond sector groundstates.

In the Ramond sector positivity of ‖ G±
0 |h, q〉 ‖2 bounds L0 below by c

24 . Under

spectral flow by θ = +1/2 to the R sector the BPS states in the NS sector map to R

groundstates with L0 = c/24 and −m ≤ q ≤ m, as shown in fig. 5.

Remarks

1. The full analysis of unitarity is quite intricate. We will just state the conjecture of [6].

We assume c ≥ 3, i.e. m ≥ 1
2 . Then, for the NS sector the unitary representations

are of “type A3” or “type A2.” The type A3 representations lie within a discrete

approximation to a parabola. This parabola is given by

(4m− 2)h = q2 (3.24)

On this parabola we draw chords joining the successive points (q = (2m − 1)s, h =
1
2(2m− 1)s2), for s ∈ Z. Then (q, h) must lie in the closed convex region defined by

the chords. In addition, there can be representations of type A2 which lie on the line

segments

2h− (2s− 1)q + (2m− 1)(s2 − s) = 0 (2m− 1)s ≤ q ≤ (2m− 1)s+ 1 (3.25)

for 0 ≤ s, and their charge conjugate images. A similar picture holds in the Ramond

sector. The discrete approximation to the parabola (4m− 2)(h −m/4) − q2 + (m−
1/2)2 = 0 is drawn by drawing chords between successive points (q = (2m − 1)(s +

1/2), h −m/4 = 1
2s(s + 1)(2m − 1)). The closed convex region contains the unitary

representations of type P3. In addition there can be representations of type P2 on

the segments

2(h−m/4)− 2sq+(2m− 1)s2 = 0 (2m− 1)(s+1/2) ≤ q ≤ (2m− 1)(s+1/2)+1

(3.26)

for s ≥ 0, and their charge conjugate images.

2. A proof of the determinant formulae of [6] was given in [20]. As far as we know, full

proofs of the unitarity constraints have never been published.

6Warning: In general, spectral flow does not take highest weight vectors to highest weight vectors. This

is obvious from the change in the moding of G±
r .
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3.1.4 Path integral interpretation and modular invariance

As before, there is a path integral interpretation of these partition functions. In the interest

of brevity we will be sketchy here. Schematically it takes the form:

Zǫ =
〈
e2πi

∫
Eτ
(A0,1J+A1,0J̃)

〉
ǫ

(3.27)

Here Eτ := C/(Z+ τZ) is an elliptic curve and

A = A0,1dξ̄ +A1,0dξ

=
i

2Imτ

(
z̄dξ − zdξ̄

) (3.28)

is a flat 1-form. We introduce complex coordinate ξ = σ1 + τσ2 on Eτ as in section ***.

The subscript ǫ refers to the the (left and right) spin structures.

Now, the currents J(ξ)dξ and J̃(ξ)dξ̄ have singularities in their operator product ex-

pansions:

J(ξ1)J(ξ2) ∼
2m

(ξ1 − ξ2)2
+ · · · (3.29)

and therefore (3.27) requires regularization and renormalization.

♣ Explain this better by subtracting the square of the prime form. ♣
Now let us consider diffeomorphism invariance. In general, diffeomorphisms act non-

trivially on the set of spin structures. There are four spin structures on the torus, only

one of which is nonbounding. This must be prserved by diffeomorphisms. It is the one

corresponding to RR boundary conditions for the fermions both on the left and the right.

Let us take this pair of spin structures.

Next, we have f∗(dξ) = (cτ+d)dξ so z must transform under modular transformations

as:

z → z

cτ + d
(3.30)

Now, if the underlying theory is diffeomorphism invariant then there is a regularization

which makes Zǫ diffeomorphism invariant. It turns out that this regularization involves a

contact term between J and J̃ , leading to an overall factor ∼ exp const.
∫
A1,0 ∧A0,1. The

net result is that the diffeomorphism invariant partition function is

e−πm
(z−z̄)2

Imτ ZRR(τ, z; τ̄ , z̄) (3.31)

and the modular transformation law of the partition function is:

ZRR

(
aτ + b

cτ + d
,

z

cτ + d
;
aτ̄ + b

cτ̄ + d
,

z̄

cτ̄ + d

)
= e

(
m

cz2

cτ + d

)
e

(
m

cz2

cτ + d

)
ZRR(τ, z; τ̄ , z̄)

(3.32)

( To see how this works in detail in a representative example work out the partition

function of a chiral fermion coupled to Ā. For details see, for example, [3].)
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3.2 The (2, 2) elliptic genus

Of particular importance is the Witten index, this is a specialization of the above partition

functions which counts the BPS representations of the superconformal algebra. In the

present context it becomes the elliptic genus.

The elliptic genus for a (2, 2) CFT C is defined to be:

χ(τ, z; C) := ZRR(τ, z; τ̄ , 0) (3.33)

= TrRRe
2πiτ(L0−c/24)e2πizJ0e−2πiτ̄(L̃0−c/24)(−1)F (3.34)

where (−1)F = exp[iπ(J0 − J̃0)] is ±1, given our assumption of integral m and U(1)

spectrum.

The key to understanding the elliptic genus is that in a Ramond sector highest weight

representation Vh,q we have

TrVh,q
qL0−c/24eiπJ0 =

{
eiπq h = c

24 = m
4

0 h > c
24 = m

4

(3.35)

The elliptic genus satisfies the following important properties:

• First, thanks to (3.35) χ(τ, z) is not a function of τ̄ . Moreover, in unitary theories

with discrete spectrum, it will be holomorphic for τ ∈ H and entire in z.

• Next, the modular transformation properties of the path integral (3.32) leads to the

the transformation laws for γ ∈ SL(2,Z):

χ(
aτ + b

cτ + d
,

z

cτ + d
) = e2πim

cz2

cτ+dχ(τ, z) (3.36)

• Finally, the phenomenon of spectral flow is encoded in:

χ(τ, z + θτ + θ′) = e−2πim(θ2τ+2θz)χ(τ, z) θ, θ′ ∈ Z (3.37)

Remarks

1. The elliptic genus can be introduced for any theory with supersymmetry. It was

introduced for (0, 1) theories in [REFS]. The systematic investigation of the properties

for N = 2 theories was begun in [21].

2. It is important that we are assuming integral m and U(1) charges, otherwise there

are some modifications on these conditions. See [21].
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3.3 Jacobi forms

Definition A Jacobi form φ(τ, z) of weight w and index m is a function which is holo-

morphic in z ∈ C, and in τ ∈ H and satisfies the identities:

φ(
aτ + b

cτ + d
,

z

cτ + d
) = (cτ + d)we2πim

cz2

cτ+dφ(τ, z)

(
a b

c d

)
∈ SL(2,Z) (3.38)

φ(τ, z + θτ + θ′) = e−2πim(θ2τ+2θz)φ(τ, z) θ, θ′ ∈ Z (3.39)

The standard reference is the book by Eichler and Zagier [12]. In this book only

integral values of m are considered.

From equations (3.38) and (3.39) it follows that φ(τ, z) has a Fourier expansion in both

variables, so we can define Fourier coefficients:

φ(τ, z) =
∑

n∈Z,ℓ∈Z
c(n, ℓ)qnyℓ (3.40)

In the math literature [12] again one specifies growth conditions at infinity. Strictly

speaking a Jacobi form is reserved for functions such that c(n, ℓ) = 0 unless 4mn− ℓ2 ≥ 0.

As with modular forms, this is too restrictive for physical applications. The mathematical

notion which fits perfectly with applications to unitary N = 2 theories is that of a weak

Jacobi form. This is a holomorphic function transforming as in (3.38) and (3.39) which in

addition satisfies c(n, ℓ) = 0 unless n ≥ 0.

There are two main structure theorems for Jacobi forms that we will need: The theta

function decomposition and the structure of the ring of Jacobi forms.

Thanks to (3.39) the coefficients c(n, ℓ) satisfy

c(n, ℓ) = c(n + ℓs+ms2, ℓ+ 2ms) (3.41)

where s is any integer. It follows from (3.41) that a weak Jacobi form has c(n, ℓ) = 0 if

4nm− ℓ2 < −m2. We will return to this point below.

An important consequence of (3.41) is that the c(n, ℓ) are in fact only a function of

the combination

p = 4mn− ℓ2 (3.42)

and the discrete variable ν := ℓmod2m, so we can write:

c(n, ℓ) = cν(p) (3.43)

To prove this let us fix a fundamental domain for translation by 2m and write ℓ =

ν + 2ms0, with integral s0, and −m+ 1 ≤ ν ≤ m. Then we can put s = −s0 in (3.41) and

write:

c(n, ℓ) = c(n − νs0 −ms20, ν) = c(
4mn − ℓ2 + ν2

4m
, ν) (3.44)

Thanks to (3.41) we can write the z dependence of the elliptic genus exactly in terms

of theta functions. We sum over lattice points (n, ℓ) on the parabola 4nm− ℓ2 = const and
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then sum over the constants. If we fix µ and sum over those points with ℓ = µmod2m, the

sum over the parabola leads to a theta function of level m, denoted Θµ,m(z, τ) and defined

by:

Θµ,m(z, τ) :=
∑

ℓ∈Z,ℓ=µmod2m

qℓ
2/(4m)yℓ =

∑

n∈Z
qm(n+µ/(2m))2y(µ+2mn) (3.45)

We thus arrive at the theta function decomposition

φ(τ, z) =
∑

µmod2m

hµ(τ)Θµ,m(z, τ) (3.46)

where

hµ(τ) =
∑

p=−µ2mod4m

cµ(p)q
p

4m (3.47)

We conclude that to give an elliptic genus of weight w is equivalent to giving a vector-

valued modular form of weight w− 1/2 transforming contragrediently to the level m theta

functions. The latter transform as in

Θµ,m(z, τ + 1) = e2πi
µ2

4mΘµ,m(z, τ) (3.48)

Θµ,m(−z/τ,−1/τ) = (−iτ)1/2e2πimz2/τ
∑

νmod2m

1√
2m

e2πi
µν
2mΘν,m(z, τ) (3.49)

♣ Relation to Heisenberg group. General tmn law. Give contragredient rep? ♣

As with modular forms, the weak Jacobi forms J̃w,m form a bigraded ring: J̃∗,∗ =

⊕w,mJ̃w,m. The main fact is

Theorem. J̃∗,∗ is a polynomial ring over M∗(Γ) on two generators φ̃−2,1 ∈ J̃−2,1 and

φ̃0,1 ∈ J̃0,1:

J̃∗,∗ = C[E4, E6, φ̃−2,1, φ̃0,1] (3.50)

This is proved in [12] along the following lines. The above generators allow us to

describe an explicit map

Mw(Γ)⊕Mw+2(Γ)⊕ · · · ⊕Mw+2m(Γ) → J̃w,m (3.51)

One shows that φ̃−2,1, φ̃0,1 are linearly independent, so the map is injective.

Conversely, given a Jacobi form φ(τ, z) one can write its Taylor series about z = 0:

φ(τ, z) =

∞∑

ν=0

χν(τ)z
ν (3.52)

Then, from (3.38) we see that χν(τ) transform as modular forms of weight w+ν plus lower

order terms. This leads to a triangular system of equations from which one can extract

true modular forms ξν , and one uses these to define a map

J̃w,m →Mw(Γ)⊕Mw+2(Γ)⊕ · · · ⊕Mw+2m(Γ) (3.53)

which is also injective. Thus, the spaces must be isomorphic. ♠
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3.4 The singleton decomposition

The theta function decomposition (3.46) has a nice physical interpretation. First of all, we

use the U(1) current to introduce chiral bosons

J = i
√
2m∂φ(ξ) J̃ = −i

√
2m∂̄φ̃(ξ̄) (3.54)

The theory “factorizes” into a theory of U(1)-neutral operators and the theory of this free

boson.

In the context of the AdS/CFT correspondence the chiral bosons φ, φ̃ correspond to

“singleton degrees of freedom,” in the bulk supergravity. The currents J, J̃ are dual to

U(1) gauge fields in the bulk with Chern-Simons terms. The corresponding gauge modes

are “topological” in the bulk, but have physical propagating degrees of freedom on the

boundary. These are known as “singleton degrees of freedom.” They are similar to the

edge states in the fractional quantum Hall effect.

The partition functions for a chiral boson of radius R2 = m are given by (2.39) where

µ gives the U(1) charge modulo 2m. Thus the partition function should be written as

∑

µ

h̃µ
Θµ,m(z, τ)

η
(3.55)

where h̃µ are the partition functions of the neutral “bulk” degrees of freedom. In this way

we recover the decomposition (3.46).

Remarks

1. The singleton decompositions of partition functions in AdS/CFT is discussed in more

detail in [39, 24, 19, 27, 4].

3.5 Examples from supersymmetric sigma models

In general, a supersymmetric sigma model with a Kähler target space X has (2, 2) super-

symmetry.

Under modular transformations one makes a chiral transformation on the worldsheet

fermions. There is an gravitational anomaly in the nonlinear sigma model unless one

restricts to c1(X) = 0, i.e. to Calabi-Yau manifolds. [REFS], so we will restrict to this

case. In this case Fourier coefficients of the elliptic genus can be computed explicitly in

terms of the by the Chern-numbers of the holomorphic tangent bundle of X by [21][17]

χ(τ, z)X =

∫

X

2m∏

j=1

ϑ1(τ, z +
ξj
2πi)

ϑ1(τ,
ξj
2πi)

ξj, (3.56)

where the ξj are defined by

c(TX) = 1 + c1(TX) + . . . c2m(TX) =

2m∏

j=1

(1 + ξj). (3.57)
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In general, the q → 0 limit is given in terms of the Hodge numbers of the target space

X:

χ(τ, z) →
2m∑

i,j=0

(−1)i+jhi,j(X)yj−m :=
2m∑

j=0

χjy
j−m (3.58)

where χj are known as Hirzebruch genera.

As a nice consistency check take the limit q → 0 in (3.56) using ϑ1(z|τ) → −2q1/8 sin(πz)

to get

∫

X

2m∏

j=1

(
eiπz+

1
2
ξj − e−iπz− 1

2
ξj

e
1
2
ξj − e−

1
2
ξj

)∏
ξj = y−m

∫

X
ch(ΛyT

∗X)
∏ ξj

1− e−ξj
(3.59)

where ΛyT
∗X =

∑
j(−y)jΛjT ∗X, which agrees with (3.58) by the index theorem.

The simplest Calabi-Yau manifold is the elliptic curve, but for this case χ = 0. At

complex dimension 2, corresponding to m = 1 there is the abelian surface T 4 and the

K3 surface. Again χ = 0 for T 4, because of fermion zeromodes, so the first interesting

nontrivial case is the K3 elliptic genus. Because of the topological nature of the genus it

can be computed in an orbifold limit of a Kummer surface, where we identify K3 = T 4/Z2.

The computation for the orbifold is straightforward and leads to the result:

χ(τ, z;K3) = 8

((ϑ2(z|τ)
ϑ2(0|τ)

)2
+
(ϑ3(z|τ)
ϑ3(0|τ)

)2
+
(ϑ4(z|τ)
ϑ4(0|τ)

)2
)

(3.60)

By the general structure theorem on weak Jacobi forms it is clear that this must be

proportional to the generator φ̃0,1, and by comparing the Fourier expansion

φ̃0,1 = (y + 10 + y−1) + q(10y2 − 64y + 108− 64y−1 + 10y−2) +O(q2) (3.61)

we see that χ(τ, z;K3) = 2φ̃0,1.

Remarks

1. If the superconformal field theory arises from a sigma model with target space X

the elliptic genus has the interpretation of being the character-valued index of the

Dirac-Ramond operator on the loopspace LX. ♣ MORE DETAILS

3.6 Symmetric products and the product formula

An important construction in the mathematics of supersymmetric black holes is the sym-

metric product construction. If C is a superconformal field theory then C⊗N can be given

a superconformal structure using the diagonal combination of T,G±, J , and taking the

graded tensor product. Clearly the symmetric group acts on this conformal field theory,

commuting with the superconformal algebra, so the orbifold

SymNC := C⊗N/SN (3.62)

is an N = 2 theory.
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Now, the twisted sector associated with a cycle of length n is easily visualized as the

string on a circle which is the connected n-fold covering of S1 → S1. That is, it is a “long

string” of length 2πn. We denote the Hilbert space of this long string as H(n)(C).
Accordingly, the spectrum of energies,i.e. on this string is rescaled to by 1/n. The RR

sector of the symmetric product N = 2 theory is:

HRR(Sym
N (C)) = ⊕(n)ℓn ⊗n Symℓn(H(n)

RR(C)) (3.63)

where we sum over cycle decompositions (n)ℓn of elements of the symmetric group, that is,

we sum over partitions
∑
nℓn = N .

We will now give two interesting formulae from which one can extract the spectrum of

these symmetric product theories. 7

It turns out to be very useful to consider the generating function of all symmetric

product partition functions because we can write:

Z := 1 +
∑

N≥1

pNTrH(SymN (C0))q
HyJ q̄H̄ ȳJ̄ =

∞∏

n=1

∞∑

ℓn=0

pnℓnTrSymℓn(H(n))q
HyJ q̄H̄ ȳJ̄ (3.64)

Here H = L0 − c/24, J = J0 etc.

Suppose we have an expansion:

TrHq
HyJ q̄H̄ ȳJ̄ =

∑

h,ℓ,h̃,ℓ̃

c(h, ℓ; h̃, ℓ̃)qhyℓq̄h̃ȳℓ̃ (3.65)

Then we claim

Z =

∞∏

n=1

(n)∏

h,ℓ,h̃,ℓ̃

(1− pnqh/nyℓq̄h̃/nȳℓ̃)−c(h,ℓ;h̃,ℓ̃) (3.66)

We can prove this as follows: The standard formula for traces in symmetric products

of vector spaces gives

∞∑

ℓn=0

pnℓnTrSymℓn(H(n))q
HyJ q̄H̄ ȳJ̄ =

∏

basisH(n)

1

1− pnqHyJ q̄H̄ ȳJ̄
(3.67)

where we take a product over an eigenbasis in H(n)(C).
Now, the trace in the long string Hilbert space is related to the original one by

TrH(n)(C)(q
HyJ q̄H̄ ȳJ̄) =

1

n

n−1∑

b=0

TrH(C)ω
bq

1
n
HyJ q̄

1
n
H̄ ȳJ̄ (3.68)

where ω = e2πi(L0−L̄0)/n. Thus the sum on b projects to states that satisfy h− h̃ = 0modn.

The energies are scaled by 1/n because the length of the string is scaled by n. From this

the symmetric product formula follows.

7Symmetric product orbifolds were studied in [REFS??]. An important case of the symmetric product

formula first appeared in [36] and the general case was given in [10].
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If we have a Z2-graded Hilbert space then we should take a supertrace, and use the

rule:

∞∑

n=0

pnSTrSymn(H)(O) =
∏

eigenbasisH0

1

(1− pOi)

∏

eigenbasisH1

(1− pOi) = exp

[∑

s

ps

s
STrH(O)

]

(3.69)

thus proving (3.66).

Applied to the elliptic genus we learn that

∞∑

N=0

pNχ(τ, z; SymNX) =
∞∏

m=1

∏

n,ℓ

(1− pmqnyℓ)−c(mn,ℓ) (3.70)

There is another nice formula in terms of Hecke operators. We take the logarithm of

(3.64):

logZ =
∑

n

∑

basisH(n)

1

s
pns(qHyJ q̄H̄ ȳJ̄)s (3.71)

Using again (3.68) this can be written as

logZ =
∞∑

N=1

pNTNZ (3.72)

where

TNZ :=
1

N

∑

N=ns

n−1∑

b=0

Z(
sτ + b

n
, ys;

sτ̄ + b

n
, ȳs) (3.73)

Using (3.69) we see that this also holds for the case of the supertrace.

3.7 Some Remarks Elliptic genera for other superconformal algebras

♣ Need to improve this section ♣
There are interesting extensions of the N = 2 superconformal algebras.

1. N = 4 algebra. In this case, in addition to the stress energy, we have and SU(2)

current algebra J i(z), i = 1, 2, 3, at level k. There are four supercharges Ga(z), a = 1, . . . 4.

We can think of a as an so(4) = su(2)⊕ su(2) index and identify one su(2) summand.

The representation theory is more constrained. c = 6k, with k and integers. One can

still define the elliptic genus identifying J0 with 2J3
0 (with integral spectrum).

2. The N = 4 algebra Aγ has two SU(2) current algebras J i,±(z) and hence two levels

k±. In addition to the four supercharges Ga(z) transforming in the (2, 2) of SU(2)×SU(2)

there is a multiplet of fermionic operators Qa and a U(1) current U(z). For more details

see [34, 18]. The elliptic genera for these superconformal algebras present some interesting

new features due to an unusual BPS bound. It turns out that the elliptic genus is not

holomorphic (but still well-controlled) [18].

An important feature comes when our superconformal theory has a “factor” consisting

of a free N = 2 Gaussian multiplet, i.e. (φ(z), ψ(z)) where φ is a complex boson and ψ is a

complex fermion. (We are speaking loosely of a “chiral scalar.” See the remarks above on
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the Gaussian model.) These arise when there are U(1) symmetries in the superconformal

field theory, thus extending the N = 2 superconformal algebra. In the D-brane context

such symmetries are often associated with Wilson lines.

The R-sector partition function of (φ(z), ψ(z)) in a given U(1)-charge sector is

q
1
2
p2 ϑ1(z, τ)

η3
(3.74)

where p is the U(1) charge. Note that this vanishes when we put z = 0. Thus, in these

cases the elliptic genus will vanish. One way of viewing this is that in the R sector the

quantization of the Clifford algebra {ψ0, ψ̄0} = 1 leads to a doublet with J0 = ±1/2 so

TreiπJ0 = 0. What we should do in this case is compute TrJ0e
iπJ0 . This will be nonzero.

Indeed,
∂

∂z
ϑ1|z=0 = −2πη3 (3.75)

and we see that the only contribution to the Witten index is q
1
2
p2 , which typically cancels

against a zero-point energy to give a constant. Similarly, when there are s U(1) factors we

should consider the modified elliptic genus TrJs
0e

iπJ0 .

Two important examples occur in counting BPS states for string theory compactifica-

tion on T 5, which is associated with a contraction of the Aγ algebra, and in defining the

elliptic genus of the (0, 4) MSW conformal field theory [9]. In both cases one must insert

J2
0 .

4. Modularity, the elliptic genus, and polarity

4.1 Polar states and the elliptic genus

In general, the elliptic genus of a unitary (2, 2) superconformal field theory is a weak Jacobi

form of weight zero and indexm. Therefore, for the elliptic genus, the vector of forms hµ(τ)

will have negative weight w = −1/2. As we have stressed, these are determined by their

polar terms. This motivates the definition:

Definition A state in a representation of the N = 2 algebra which is an eigenstate of

L0 and J0 is called a polar state if

p = 4m(L0 −
c

24
)− J2

0 = 4mL0 − J2
0 −m2 < 0 (4.1)

we refer to p as the polarity of the state.

Note that this notion of a polar state is spectral flow invariant.

For any nearly holomorphic Jacobi form it follows from (3.47) and (3.43) that the

potential polar terms in the Fourier expansion of hµ(τ) are in one-one correspondence with

the monomials qnyℓ for which 4mn− ℓ2 < 0 in accord with our definition of polar states.

Now let us count how many independent polar degeneracies c(n, ℓ) there are, subject to

the constraints of spectral flow and unitarity, but not (yet) modular invariance. Unitarity

shows that c(n, ℓ) = 0 for n < 0. On the other hand, thanks to spectral flow, we can assume
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m
-m

Figure 6: The shaded region contains the points (m, ℓ) in a fundamental domain for the action

of spectral flow on the polar states. The region is divided in half if we include charge conjugation.

There are order m2

12
+ 5m

8
+ O(m1/2) points in the fundamental domain for the action of charge

conjugation and spectral flow, for large m.

that −m ≤ ℓ ≤ m. In this case we can conclude that the nonvanishing polar degeneracies

must correspond to values of (n, ℓ) such that n ≥ 0 and

−m2 ≤ 4mn− ℓ2 < 0 (4.2)

This defines the polar region shown in figure 6. Note carefully that the constant term

(n, ℓ) = (0, 0) is not in the polar region.

It proves to be convenient to impose one simple condition of modular invariance,

namely, invariance under γ = −1. This is charge conjugation invariance and it shows

that c(n, ℓ) = (−1)wc(n,−ℓ) (with weight w = 0 for the elliptic genus) and therefore we

will consider the independent degeneracies to be the coefficients of the monomials qnyℓ

with 1 ≤ ℓ ≤ m, n ≥ 0 and (4.2). We can phrase this differently, spectral flow and charge

conjugation generate an action of the infinite dihedral group D∞ = Z2 ⋊ Z on the set of

polar values of (n, ℓ). We are choosing a fundamental domain for the action of this group.

Call this fundamental domain P.

4.2 Constructing a form from its polar piece

We have repeatedly stressed that the polar part determines the entire elliptic genus, and

more generally, the polar part of a vector valued nearly holomorphic modular form deter-

mines the entire form. This raises a general question: Can we construct a vector valued

modular form with a specified weight, multiplier system, and polar part? This question is

investigated in full generality in work with J. Manschot [25], section 4. In this section we

give a simplified account, following closely the discussion of [25].

For simplicity let us suppose the multiplier system is trivial: M(γ) = 1, the weight w

is a negative integer, and our desired modular form has the expansion:

f(τ) = e−2πiδτ
∞∑

n=0

f̂(n)qn (4.3)
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where δ is a positive integer. For example, physically δ = c/24 and the weight w = −d/2
where d is the number of noncompact bosons. We are given the polar part

f−(τ) :=
∑

n−δ<0

f̂(n)e2πi(n−δ)τ (4.4)

and we wish to construct the full modular form f(τ).

It suffices to consider the case where f−(τ) = e−2πiδτ , since we can then take linear

combinations of the result. The result we will now explain is that:

We can construct a modular form with polar piece f−(τ) = e−2πiδτ iff and only if the

associated cusp form

G(δ)(z) =
1

2

∑

γ∈Γ∞\Γ
j(γ, z)w−2(−2πiδ)1−we(δγ(z)). (4.5)

vanishes.

This is perhaps a surprising statement. Indeed, one’s first reaction is that it should

be trivial to contruct the required form - why not just average over SL(2,Z)? Well, let us

try:

Introduce

s(δ)γ (τ) := j(γ, τ)−we(−δγ(τ)).

Then it is elementary to check that

s
(δ)
γγ̃ (τ) = j(γ̃, τ)−ws(δ)γ (γ̃τ), (4.6)

and hence s
(δ)
γγ̃ (τ) = s

(δ)
γ̃ (τ) for γ ∈ Γ∞. Accordingly, we attempt to average:

S(δ)(τ)
?
=
1

2

∑

γ∈Γ∞\Γ
s(δ)γ (τ). (4.7)

Formally, from Eq. (4.6) we find S(δ)(γ̃τ) = j(γ̃, τ)wS(δ)(τ). Moreover, the cosets

[±1] lead to the prescribed polar term and the remaining terms in the sum are regular

for τ → i∞. It would thus appear that we have succeeded, but in fact we have not. The

problem with the naive attempt Eq. (4.7) is that for c → ∞ we have |s(δ)γ (τ)| ∼ |cτ |−w

and since we must have weight w ≤ 0, the series does not converge. We therefore must

regularize the series.

To motivate our regularization let us suppose for the moment that −w ∈ N. We use

the identity

γ(τ) =
a

c
− 1

c(cτ + d)
, (4.8)

which is valid for c 6= 0. This allows us to write

e(−δγ(τ)) = e−2πiδ a
c e

2πi δ
c(cτ+d) . (4.9)
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An evident regularization would be to subtract the first |w| terms from the Taylor series

expansion of e
2πi δ

c(cτ+d) around zero. Thus we introduce the regularized sum:

S
(δ)
Reg(τ) :=

1

2

∑

γ∈Γ∞\Γ
(s(δ)γ (τ) + t(δ)γ (τ)), (4.10)

with tδγ(τ) := 0 for c = 0 and

t(δ)γ (τ) := −j(γ, τ)−we−2πiδ a
c

|w|∑

j=0

1

j!

(
1

c(cτ + d)

)j

(2πiδ)j . (4.11)

for c 6= 0.

Our regularization has rendered the sum convergent, but now we have spoiled manifest

covariance under modular transformations! But the situation is not as bad as it might

appear at first, thanks to the theory of periods.

♣ FIGURE OF PERIOD CYCLE. ♣
For any function h(τ) on H decaying sufficiently rapidly at Im(τ) → ∞ we can define

its period function

p(τ, ȳ, h̄) :=
1

Γ(1− w)

∫ −i∞

ȳ
h(z)(z̄ − τ)−wdz̄. (4.12)

The contour of z is shown in FIGUREa. When projected to the modular surfaceH/PSL(2,Z)
it is a period on the noncompact cycle in FIGUREb.

Then we claim that

t(δ)γ (τ) = p(τ, γ−1(−i∞), g
(δ)
γ ), (4.13)

where

g(δ)γ (z) := j(γ, z)w−2(−2πiδ)1−we(δγ(z)). (4.14)

Note that γ−1(−i∞) = a/c.

Now, g
(δ)
γ (z) transforms simply and this allows us to write a useful formula for the

transformation of t
(δ)
γ (τ). When we make a transformation τ → γ̃τ we must change vari-

ables z → γ̃z in the period integral. This shifts the domain of integration, and we get:

t(δ)γ (γ̃τ) = j(γ̃, τ)w
[
t
(δ)
γγ̃ (τ)− p(τ, γ̃−1(−i∞), g

(δ)
γγ̃ )

]
. (4.15)

The net effect of this shift is that we actually have the transformation law:8

Ŝ
(δ)
Reg(γ̃τ) = j(γ̃, τ)w

[
Ŝ
(δ)
Reg(τ)− p(δ)(τ, γ̃)

]
, (4.16)

where

p(δ)(τ, γ̃) := p(τ, γ̃−1(∞), G(δ)) =

∫ −i∞

−d̃/c̃
G(δ)(z)(z̄ − τ)−wdz̄, (4.17)

8We are skipping over several technicalities at this point, which are addressed in [25]. The net result is

that in general one must add a constant to S
(δ)
Reg to get a good transformation law. This is the reason for

the notation Ŝ
(δ)
Reg.
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is the period our cusp form defined in (4.5). The function p(δ) is an obstruction to the

existence of f(τ), and it can be shown that it vanishes iff G(δ)(τ) vanishes.

In contrast to Eq. (4.7), the series (4.5) for G(δ)(z) is nicely convergent. It therefore

follows that G(δ)(τ) is a vector-valued modular form of weight 2−w transforming according

to

G(δ)(γτ) = j(γ, τ)2−wG(δ)(τ). (4.18)

In fact, G(δ) is a cusp form, that is, the components vanish for τ → i∞ ∪ Γ(i∞). This

follows since it is clear from the series expansion that G(δ) vanishes for τ → i∞.

Evidently, the polar parts of negative weight forms are very special. They are of the

form
∑

δ>0 aδq
−δ so that ∑

aδG
(δ)(τ) = 0 (4.19)

Remarks

1. Note that g
(δ)
γ (z) it is just like s

(δ)
γ (z) with the replacement w → 2−w, δ → −δ and

a different prefactor.

2. ♣ Comment on modular anomaly analogy. Also analogy to the Mittag-Leffler prob-

lem. ♣

3. In the present case there is another approach using Bol’s identity. ♣ EXPLAIN ♣

4. It is, unfortunately, rather difficult to tell when the cusp form G(δ) vanishes. Let us

take, for example the case of weight w = −10. Then the cusp form is proportional to

∆(τ) =

∞∑

n=0

τ(n)qn (4.20)

In this case G(δ) vanishes iff τ(δ) = 0. But deciding when τ(n) vanishes is considered

a very deep problem in number theory.

5. When applied to the elliptic genus we have

0 → J̃0,m
Pol→Vm → S5/2(Γ,M) (4.21)

where M is the multiplier system contragredient to that of the level m theta func-

tions. It can be shown that the rightmost arrow is not onto, and it is of interest to

understand the image of this map better.

4.3 The Rademacher expansion

In the case when the cuspform obstruction (4.19) does vanish the Poincaré series leads to

a very nice formula for the Fourier coefficients of the nonpolar part of the modular form.

These are the degeneracies of physical interest in black hole physics.

From the Fourier expansion we know that

f̂(m) =

∫ τ+1

τ
e−2πi(n−δ)τ f(τ) (4.22)
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We now substitute the Poincaré series and integrate term by term. For m − δ > 0 the

contributions of t
(δ)
γ vanish, and the integral of s

(δ)
γ is a Bessel function. In this way one

can derive the Rademacher expansion:

f̂(m) = 2π
∑

n−δ<0

f̂(n)

∞∑

c=1

1

c
Kc(m− δ, n − δ) (4.23)

×
( |n− δ|
m− δ

)(1−w)/2

I1−w

(
4π

c

√
(m− δ)|n − δ|

)
,

where Iν(z) is the modified Bessel function of the first kind. Iν(z) is given as an infinite

sum by

Iν(z) =
(z
2

)ν ∞∑

k=0

(
1
4z

2
)k

k!Γ(ν + k + 1)
, (4.24)

and Kc(m− δ, n − δ) is known as a Kloosterman sum:

Kc(m− δ, n − δ) := i−w
∑

−c≤d<0
(c,d)=1

e

(
(n− δ)

a

c
+ (m− δ)

d

c

)
, (4.25)

One simple consequence of (4.23) is the asymptotic behavior of the Fourier coefficients.

The Bessel function has asymptotics

Iν(x) ∼
1√
2πx

ex Re(x) → +∞ (4.26)

Therefore, the leading term is the c = 1 term in the infinite sum in (4.23). We get the

asymptotics:

f̂(m) ∼ 1√
2
f̂(0)δ1/4−w/2(m− δ)w/2−3/4e4π

√
δ(m−δ) (4.27)

Remarks

1. This is sometimes referred to as the Hardy-Ramanujam formula in the math litera-

ture. In the physical context with δ = c/24 the asymptotic formula

log f̂(m) ∼ 2π

√
c

6
m+O(logm) (4.28)

is often referred to as Cardy’s formula in the physics literature.

2. It is quite important that the asymptotics (4.27) are only valid for m− δ ≫ 1, and

indeed the m − δ in the argument of the Bessel functions should warn us that we

should only use (4.28) when m ≫ δ. In the physical applications, the case δ ≫ 1

and m − δ ∼ O(1) turns out to be quite relevant as well, and in this regime the

asymptotics is rather different. For example, if we define

η−χ(τ) = q−χ/24
∞∑

n=0

pχ(n)q
n. (4.29)
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then [25]

pχ

( χ
24

+ ℓ
)
∼χ→∞ const.χ−1/2 exp

(
χ

2

(
1 + log

π

6

)
+
π2

3
ℓ

)
. (4.30)

3. The Rademacher expansion (4.23) can be generalized to arbitrary weight w ≤ 0 and

multiplier system. The result is

f̂µ(m) = 2π
∑

n−∆ν<0

f̂ν(n)

∞∑

c=1

1

c
Kc(m−∆µ, n−∆ν) (4.31)

×
( |n−∆ν |
m−∆µ

)(1−w)/2

I1−w

(
4π

c

√
(m−∆µ)|n−∆ν |

)
,

where we now have a generalized Kloosterman sum:

Kc(m−∆µ, n −∆ν) := i−w
∑

−c≤d<0
(c,d)=1

M−1(γ)νµe

(
(n−∆ν)

a

c
+ (m−∆µ)

d

c

)
, (4.32)

For a discussion and derivation in the physics literature see [11], appendix B. The

proof makes use of Rademacher’s fiendishly clever contour deformation.

4.4 AdS/CFT and the Fareytail expansion

We will be brief here since this is extensively covered in [11, 26].

♣ Brief on this:

1. Regularized sum for elliptic genus.

2. Interpret sum over (c, d) = 1 as a sum over BTZ geometries, hence an example of

AdS/CFT.

3. Most important point to convey is that the cosmic censorship bound for black hole

solutions without naked singularity is 4m(L0−c/24)−J2
0 ≥ 0. This coincides with positive

polarity of the states. (Be careful that negative polarity states can still correspond to

smooth supergravity solutions – Lunin+Maldacena. )

♣

4.5 Three-dimensional gravity

In an intriguing paper Witten has revived the study of 3d quantum gravity [40]. Twenty

years ago it was observed [1, 38, 2] that the classical 2+1 dimensional (super) gravity

actions could be written as Chern-Simons gauge theories, thus raising hopes of a complete

solution of quantum gravity in 2+1 dimensions. We will restrict attention to the case of

negative cosmological constant. (See [40] for a thorough discussion of why one should do

this.)

Let G denote the 3-dimensional Newton constant, and ℓ the AdS radius. Then we can

consider the action

S =
1

16πG

∫
d3x

√
g(R+

2

ℓ2
) +

k

4π

∫
Tr

(
ωdω +

2

3
ω3

)
(4.33)
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where ω is the SO(2, 1) spin connection. k is suitably quantized due to the topology of

SO(2, 1). (For a detailed and careful discussion see [40].)

By making the change of variables:

A− = ω − ∗e/ℓ A+ = ω + ∗e/ℓ (4.34)

k− =
ℓ

16G
+
k

2
k+ =

ℓ

16G
− k

2
(4.35)

where ∗eab = ǫabce
c, and ec is the dreibein, one can write a classically equivalent action

S =
k−
4π

∫
Tr

(
A−dA− +

2

3
A3

−

)
− k+

4π

∫
Tr

(
A+dA+ +

2

3
A3

+

)
(4.36)

These classical equivalences suggest that one might be able to formulate 2+1 dimen-

sional anti-deSitter gravity as a gauge theory. However, there is an important conceptual

difficulty in doing so. In gauge theory there is no requirement that the dreibein ea corre-

spond to an invertible metric. In order to see how such a condition can drastically change

the physics consider the case of gravity in 0 + 1 dimensions. Here the propagator can be

written as ∫
dee−

∫
e(p2+m2) (4.37)

♣ BE MORE PRECISE HERE! ♣ For invertible dreibeins we integrate e from 0 to ∞ to

produce a Laplace transform. This gives us the propagator. If we instead ignore invertibility

we obtain a Fourier transform δ(p2 +m2), with the wrong physics. 9

Nevertheless, Witten takes (4.36) as an indication that the gravity partition function

holomorphically factorizes. This is perhaps best justified in the case when k+ = 0 (but see

the remark below). Let us just accept this and see how to apply the above techniques.

We have seen above that for w = 0 and trivial multiplier system one can construct a

holomorphic candidate partition function with arbitrary polar part.

♣ No local modes. Brown-Henneaux singleton modes at infinity are Virasoro descen-

dents. ♣
Witten defines “pure gravity” to be a theory with a spectrum as close as possible to

having a vacuum and only Virasoro descendents. The vacuum character for c = 24k is

χ(k)
v = q−k

∞∏

n=2

1

1− qn
= q−k+1/24(1− q)η(τ)−1 (4.38)

Note there is no factor of 1
1−q in the first product because L−1|0〉 is a null state, and it

generates all the other null states in the Verma module. From the second equality it is

clear that the expression is far from modular.

Because of AdS/CFT duality, it is reasonable to insist that a quantum theory of pure

gravity should have a modular invariant partition function.

From our discussion above, we know that we can prescribe the polar part arbitrarily,

but once we have done so, the nonpolar terms, beginning at O(q) are determined. Witten

9I learned this remark from N. Seiberg.
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interprets the nondescendent contributions to O(q) as arising from BTZ black holes. This

fits in well with the interpretation of polarity in the Farey tail story.

These considerations motivate the definition of an “extremal conformal field theory”

to be a conformal field theory with holomorphic partition function all of whose polar terms

are given by Virasoro descendents. That is the partition function must have the form

Zk = χ(k)
v (τ) + nonpolar (4.39)

Witten’s hypothesis was that the partition function of pure 2 + 1 dimensional quantum

gravity with k = kL = kR is |Zk|2.

Remarks

1. Since 3D gravity is not our principle theme we have glossed over a number of im-

portant subtleties in our discussion above. These include distinctions between the

first and second order formalism and the appearance of an extra gauge invariance

when k+ = 0 which ruins the relation of ω to the spin connection. For a more careful

account see [Witten, Strominger-chiral gravity].

2. Extremal conformal field theories are not easily constructed. ♣ REVIEW STATUS

OF CONSTRUCTION.

5. Extremal N = 2 superconformal field theories

We will now describe a new application of the constraints of modularity of the elliptic genus

of N = 2 superconformal field theories.

This section summarizes work done with M. Gaberdiel, S. Gukov, C. Keller, H. Ooguri,

and C. Vafa which will appear in [15].

There are two motivations for this new work:

• In recent years many new models of flux+orientifold compactifications of type II

string theories have been studied in which, it is alleged, all the moduli of the theory

are fixed. Some of these models preserve AdS supersymmetry. In the context of M-

theory, analogous compactifications on CY 4-folds with flux lead to a large number

of compactifications in which the moduli are fixed. If the Kaluza-Klein length scale

is small, and the AdS cosmological constant is small (so that the AdS length scale is

large) then one expects the spectrum to approach that of “pure N = 2 supergravity.”

♣ IN VIEW OF FREDERIK’S REMARKS THIS MIGHT BE COMPLETELY

WRONG ♣

• Supergravities with (p, q) supersymmetry also have Chern-Simons actions [1, 2]. It

is therefore natural to try to extend Witten’s work to these theories.
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5.1 Computing the number of potentially polar states

********************

♣ NEED NEW SEGUE ♣
********************

These monomials qnyℓ in the fundamental domain of D∞ span a vector space Vm of

dimension:

P (m) =

m∑

r=1

⌈ r
2

4m
⌉ (5.1)

Note that we want the ceiling function and not the floor function. We include n = 0 up

to the largest n with 4nm − r2 < 0 for each r = 1, . . . ,m. One can show [15] (following

results in [12]) that

P (m) =
m2

12
+

5m

8
+A(m) (5.2)

where A(m) is the arithmetic function which, roughly speaking grows like m1/2. We sketch

how this comes about in the remarks below.

On the other hand, we can use the above structure theorem to compute the dimension

of the space of weak Jacobi forms of weight zero and index m. A natural basis of J̃0,m is

given by

(φ̃−2,1)
a(φ̃0,1)

bEc
4E

d
6 (5.3)

where a, b, c, d ≥ 0 integral, a+ b = m, and a = 2c+ 3d. Therefore

j(m) := dim J̃0,m =

2m∑

a=0

dimMa(SL(2,Z)) (5.4)

Using the above results on dimMw it is straightforward to show that

j(m) = dim J̃0,m =
m2

12
+
m

2
+

(
δs,0 +

s

2
− s2

12

)
(5.5)

where m = 6ρ+ s with ρ ≥ 0 and 0 ≤ s ≤ 5.

dim J̃0,m =





m2/12 +m/2 + 1 m = 0mod6

m2/12 +m/2 + 5/12 m = 1mod6

m2/12 +m/2 + 2/3 m = 2mod6

m2/12 +m/2 + 3/4 m = 3mod6

m2/12 +m/2 + 2/3 m = 4mod6

m2/12 +m/2 + 5/12 m = 5mod6

(5.6)

We can tabulate the first few values
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m dim J̃0,m dimVm

m = 0 1 0

m = 1 1 1

m = 2 2 2

m = 3 3 3

m = 4 4 4

m = 5 5 6

m = 6 7 8

m = 7 8 9

m = 8 10 11

m = 9 12 13

m = 10 14 16

m = 11 16 18

m = 12 19 21

(5.7)

We thus learn that j(m) < P (m) in general. Indeed, for large m, P (m) − j(m) is of

order m
8 . Thus, the constraints of modular invariance impose further conditions on the

polar terms. That is, one cannot specify arbitrarily the polar terms in a vector of negative

weight forms!

For our discussion below it will be useful to rephrase this as follows. Given a weak

Jacobi form φ we can define its polar polynomial as

Pol(φ) :=
∑

4mn−ℓ2<0,1≤ℓ≤m

c(n, ℓ)qnyℓ (5.8)

Then we have an injective map

0 → J̃0,m
Pol→Vm (5.9)

which is not onto.

Remarks

1. We prove the assertion above about P (m) as follows. Write

m∑

r=1

⌈ r
2

4m
⌉ =

m∑

r=1

r2

4m
−

m∑

r=1

((
r2

4m
)) +

1

2

m∑

r=1

(
⌈ r

2

4m
⌉ − ⌊ r

2

4m
⌋)
)

(5.10)

where, as in [12],

((x)) := x− 1

2
(⌈x⌉+ ⌊x⌋) =

{
0 x ∈ Z

α− 1
2 x = n+ α, 0 < α < 1
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Note that ((x)) is the sawtooth function. It is periodic of period 1. Now, the main

term comes from the elementary formula

m∑

r=1

r2

4m
=
m2

12
+
m

8
+

1

24
(5.11)

Next, note that in the last sum in (5.10 ) each summand is 1 unless r2/4m is an

integer. It turns out that

m∑

r=1

⌈ r
2

4m
⌉ −

m∑

r=1

⌊ r
2

4m
⌋ = m− ⌊ b

2
⌋ (5.12)

where b is the largest integer such that b2 divides m. It is thus of order m1/2. Finally

we come to the most subtle term
∑m

r=1((
r2

4m )). The numbers (( r2

4m )) are, very roughly

speaking, randomly distributed between −1/2 and +1/2. So we sum over a random

walk and expect the sum to grow like m1/2. One can give an exact formula for this

term in terms of class numbers.

It is up to us to define what we mean by “pure N = 2 supergravity.” We will try to

define it by taking the NS partition function to be a close as possible to the character of

the irreducible N = 2 representation built on the vacuum.

To write down this character, the Verma module has character given by

χV erma = q−m/4

∏∞
m=0(1 + yqm+1/2)(1 + y−1qm+1/2)∏∞

m=1(1− qm)2
(5.13)

However, we must mod out by the sub-Verma module for the subalgebra generated by

G±
−1/2, L−1 acting on the vacuum, as these generate all the null vectors in the module [6].

That submodule has character

(1 + yq1/2)(1 + y−1q1/2)

(1− q)
(5.14)

Taking the quotient we get the character of the irreducible vacuum representation:

χv = q−m/4(1 − q)

∏∞
m=0(1 + yqm+3/2)(1 + y−1qm+3/2)∏∞

m=1(1− qm)2
(5.15)

We assume here ĉ > 1 so that the only null states are from

We adopt the

Definition: “Pure N = (2, 2) supergravity” is the hypothetical theory whose partition

satisfies:

ZNS = |
∑

s∈Z
SFsχv|2 +

∑

Nonpolar

a(n, ℓ; ñ, ℓ̃)qnyℓq̄ñȳℓ̃ (5.16)

for some positive integer coefficients a(n, ℓ; ñ, ℓ̃) so that ZNS is left- and right spectral

flow invariant for all integral s, and the sum over nonpolar states means that either the

left-moving or the right-moving state has nonnegative polarity.
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With this definition we can compute ZRR = SF1/2S̃F 1/2ZNS and then, specializing to

z → z + 1
2 and z̄ = 1

2 we can compute

χ(τ, z) = 2(−1)m
∑

θ∈Z+ 1
2

SFθχv +Nonpolar (5.17)

As a test of the existence of pure N = 2 supergravity we would therefore like to

construct a weak Jacobi form of weight zero and index m with integral Fourier coefficients,

which coincides with (5.17). We therefore examine the polar polynomial of (5.17). It can

be shown that this is given by

pmsugra := Pol(SF1/2χv) (5.18)

Let φi denote a basis of J̃0,m. We search for a solution to

j(m)∑

i=1

xiPol(φi) = pmsugra (5.19)

This is an explicit linear equation one can attempt to analyze. To write it explicitly we

will order the basis monomials qn(a)yl(a) where a = 1, . . . ,dimVm = P (m) so that polarity

increases as a increases, and terms with the same polarity are ordered in increasing powers

of y. For example, an ordered basis for V5 would be

y5, y4, y3, qy5, y2, y1 (5.20)

with a = 1, . . . , 6.

Choosing a basis φi for J̃0,m we can define a matrix Nia of dimensions j(m) × P (m)

from the expansion

Pol(φi(q, y)) =

P (m)∑

a=1

Niaq
n(a)yℓ(a) (5.21)

Defining coefficients da by

pmsugra =

P (m)∑

a=1

daq
n(a)yℓ(a) (5.22)

we are trying to solve the linear equation

j(m)∑

i=1

xiNia = da, a = 1, . . . , P (m) (5.23)

In [15] it is shown that

• There are only solutions for 1 ≤ m ≤ 5 and m = 7, 8, 11, 13, but there is no solution

for m = 6, 9, 10, 12 and 14 ≤ m ≤ 36. Note that since P (m) > j(m) for m ≥ 5 the

existence of solutions for m = 5, 7, 8, 11, 13 requires a “miracle” since in (5.24) there

are more equations than unknowns.
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• Moreover, although the solutions xi are complicated rational numbers the Fourier

expansion coefficients c(n, ℓ) appear to be integral.

Evidently, “pure N = 2 supergravity” in the strict sense we have defined it cannot

exist. But it is natural to define “nearly pure supergravity” by trying to match only the

terms of most negative polarity. Indeed, it turns out that, for 1 ≤ m ≤ 36, the system of

equations
j(m)∑

i=1

xiNia = da, a = 1, . . . , j(m) (5.24)

does have solutions and leads to a Jacobi form
∑
xiφi with integral Fourier coefficients,

except for m = 17.

Let Pβ(m) be the number of independent polar monomials of polarity ≤ −β, and let

β∗ be the smallest integer β such that

j(m)∑

i=1

xiNia = da, a = 1, . . . , Pβ(m) (5.25)

admits a solution xi such that
∑
xiφi has integral coefficients in its Fourier expansion.

Numerical and analytic evidence in [15] strongly suggests that Pβ(m) ≤ j(m). Using

an estimate analogous to (5.2) one finds that

β∗ ≥
m

2
+O(m1/2) (5.26)

for large m.

Now, a monomial qnyℓ of polarity −β corresponds by spectral flow to a state in the

NS sector with

LNS
0 =

m

4
+

(JNS
0 )2

4m
− β

4m
(5.27)

Therefore, if we accept (5.26) then we can obtain an interesting constraint on the spectrum

of a (2, 2) AdS3 supergravity with a holographically dual CFT: It must contain at least

one state which is a left-moving N = 2 primary (not necessarily chiral primary) tensored

with a right-moving chiral primary such that

hNS >
m

4
+

(JNS
0 )2

4m
− 1

8
+O(m−1/2) (5.28)

In the other direction, it is also shown in [15] that one can construct candidate Jacobi

forms with integral coefficients which agree with the N = 2 vacuum character up to

hNS ≤ 5m
16 .

Thus, we reach some open problems:

1. Does (5.28) place interesting constraints on flux compactifications?

2. Can one construct “near extremal” N = 2 theories whose elliptic genus matches that

of pure supergravity up to hNS = 5m
16 ?
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6. BPS Wallcrossing from supergravity

6.1 What are BPS states and why do we care about them ?

The “space of BPS states” has been a very useful concept, central to many of the key

advances which have emerged in string theory and supersymmetric field theory in the past

30 years. In this lecture we will be describing recent progress in understanding some phe-

nomena associated with the question of stability of BPS states as a function of parameters

describing the space of vacua.

6.1.1 Defining the space of BPS states

Generally speaking, spaces of BPS states are associated to string/field theories on asymp-

totically AdS or Minkowskian spacetime, Mn, with some unbroken extended supersymme-

try.

For definiteness we focus on theories in (asymptotically) 4-dimensional Minkowski

space with N = 2 supersymmetry. The Poincaré superalgebra has even generators C ⊕
R4 ⊕ Λ2R4 with basis Ẑ, P̂µ, M̂µν and odd generators S ⊗ C2, with basis Qiα. Here α is a

chiral spinor index, and i = 1, 2 is an R-symmetry index. The commutation relation on

the odd generators is

{Qiα, Qjβ} = δij(CΓµ)αβPµ + ǫijCαβẐ (6.1)

The operator Ẑ is central.

♣ GIVE FULL SUPERALGEBRA? Say something about C,Γµ. Ref to Randjbar-

Daemi review. ♣
Now, in the theory there is a one-particle Hilbert space of states H, and since Ẑ is

central we can decompose this Hilbert space into isotypical components, i.e. eignspaces of

Ẑ:

H = ⊕z∈CHẐ=z (6.2)

Now a key Lemma states that on the space HẐ=z the eigenvalues E of the Hamiltonian

is bounded below by |z|. To prove this we view (6.1) as a 6-dimensional supersymmetry

algebra

{QA, QB} = (CΓM)ABPM (6.3)

where P̂M = (P̂0, ~P ,
̂̂
P4, P̂5) is a 6-dimensional momentum, and P̂4 + iP̂5 = Ẑ. Now for

physically sensible representations where we have diagonalized P̂M we have

M2
6D = E2 − ~P 2 − |z|2 ≥ 0 (6.4)

Definition: The space of BPS states, denoted HBPS is the subspace of H on which

the BPS bound E = |z| is saturated.

Note that the bound is only saturated for ~P = 0, that is, for particles at rest, and more-

over M6D = 0 implies these are “small representations” of supersymmetry, that is, some

combination of supercharges
∑
cAQA annihilates the representation of the little group.

As stressed by Seiberg and Witten, these representations are more rigid, and hence their

degeneracies are more computable than generic representations.
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6.1.2 Type II string theories

Now let us specialize to type II string theories on M4 × X. Since M4 is noncompact, to

define the N = 2 superalgebra on the Hilbert space of the theory we must specify boundary

conditions for the massless fields. We denote these collectively as

Φ∞ = lim
~x→∞

(gµν , φ,Bµν , G) (6.5)

for the metric, dilaton, B-field, and RR field, respectively. In particular the 1-particle

Hilbert space, as a representation of N = 2, depends on these boundary conditions, so we

denote it by HΦ∞ .

In these compactifications there is typically an unbroken abelian gauge group (coming

from the RR fields) and it turns out that HΦ∞ is graded by superselection, or charge

sectors. The charge group is the twisted K-theory of X:

HΦ∞ = ⊕ΓHΓ
Φ∞

(6.6)

where the sum runs over elements in some twisted K-theory of X. 10 An important element

in what follows is that the group of charges (modulo torsion) has a symplectic product. For

the case of K(X) this symplectic product is provided by the index theorem. ♣ EXPLAIN

MORE HERE? ♣
Now we put these two ideas together: Consider type IIA strings on a static Calabi-Yau

3-fold X with flat B-field and flat RR fields at infinity. Under these circumstances the un-

broken supersymmetry is d = 4,N = 2. Therefore, each subspace HΓ
Φ∞

is a representation

of N = 2 where Ẑ is proportional to the identity, so Ẑ = Z(Γ;Φ∞). This defines the crucial

central charge function. We can now study the BPS spectrum

HBPS = ⊕Γ∈K0(X)HΓ
Φ∞,BPS (6.7)

In all known examples the spaces HΓ
Φ∞,BPS are finite dimensional, as strongly expected on

physical grounds. ♣ SAY MORE ? ♣

6.1.3 Dependence on moduli

The space of boundary values Φ∞ preserving the d = 4,N = 2 supersymmetry will be

referred to as the moduli space of vacua. The spaces HΓ
Φ∞,BPS are locally constant but not

globally constant on moduli space.

The moduli space splits (at least locally) as a productMHM×MVM of hypermultiplet

and vectormultiplet moduli. To fix ideas let us take the IIA theory. Then the hypermulti-

plet moduli consist of the complex structure, dilaton, and RR fields. The vectormultiplet

moduli are given by the complexified Kahler class. At large radius this is represented by

10To be more precise, the charge runs over Kτ+d(X) where τ is a twisting whose isomorphism class

is determined by the topological class of the B-field, and d = 0, 1 for IIB, IIA theory, respectively. For

orbifolds we use twisted equivariant K-theory, and for orientifolds a certain hybrid of twisted and equivariant

KR theory which will be described in forthcoming work with J. Distler and D. Freed. Incidentally, the

assertion (6.6) is not true for flux sectors [13, 14].
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t = B + iJ . Throughout these lectures we work in the large radius regime, and therefore

we regard t as taking values in a kind of upper half plane

t ∈ H2(X,R)⊕ iK (6.8)

where K is the Kähler cone of X.

It has been known for at least 12 years [Ref: Harvey-Moore, 1995] that HΓ
Φ∞,BPS can

change discontinuously as a function of hypermultiplet moduli. In all known examples this

happens when a vectormultiplet and hypermultiplet representation simultaneously becomes

massless. Therefore, to find a computable measure of the number of BPS states we should

introduce an index. For the d = 4,N = 2 algebra the appropriate index is the second

helicity supertrace:

Ω(Γ;Φ∞) := −1

2
TrHΓ

Φ∞,BPS
(2J3)

2(−1)2J3 (6.9)

♣ SHOW THAT VM and HM contribute with opposite signs? ♣
In the known examples the locus where

1. What are BPS states and why do we care about them?

c.) Focus on type II strings on M4 × X and d = 4 susy gauge theory. Common

feature: Moduli space of vacua. Abelian gauge theory. Symplectic product on the

lattice of charges.

d.) Moduli. Dependence of HBPS on moduli. HM moduli and VM moduli. Helicity

supertraces. Define Ω(Γ; t) and Poincaré polynomials Ω(Γ;x, y; t).

2. Physical motivations

a. Review Strominger-Vafa.

b. Topological string theory.

c. Quantum corrections, automorphic forms, BPS algebras.

3. Mathematical motivations:

a. “Stability” of holomorphic vector bundles: Why it is good. Generalization of holo

vb’s are objects in “derived category.” Stability in the derived category is not known.

b. (generalized) Donaldson-Thomas invariants: Enumerative algebraic geometry of

Calabi-Yau 3-folds.

4. Wall-crossing: From BPS bound derive the notion of a wall of marginal stability.

a. Remind people of the spectrum of BPS states in SU(2),Nf = 0 SW, just to

convince them that it certainly happens.

b. Statement of the primitive wall-crossing formula.

c. Statement of the semi-primitive wall-crossing formula.

d. Kontsevich-Soibelman formula will be stated later.
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5. Supergravity tools:

a. Attractor mechanism.

b. Basic trichotomy: regular attractor point, zero of Z, boundary. What it means

for the spectrum. Entropy function and discriminant in the sugra regime.

c. Review multi-centered solutions.

d. Example of D4 splitting to D6-D6bar.

e. Denef’s split attractor flow conjecture.

f. Another example: D6D0 system.

g. (Comment on walls of anti-marginal stability ?)

6. Derivation of the primitive wall-crossing formula from 2-centered solution. Explain

the spin in the electromagnetic field of two dyons and observe that the boundstate

radius goes to infinity.

7. Halo states: Example of D0 halos around a D6. Show that there is a Fock space:

explain the oscillators. Derive the McMahon function. Generalize this and derive the

semiprimitive wall-crossing formula.

8. Kontsevich-Soibelman formula.

a. Statement: group of symplectomorphisms on K-theory torus.

b. Construction of special group elements and statment of KS formula.

c. Recover primitive wc formula.

d. Show how to recover semi-primitive formula (maybe too detailed?)

e. Give examples of SU(2) SW theory for Nf = 0, 1, 2, 3.

7. Lecture 3: Examples and Applications of BPS Wallcrossing

1. Wall-crossing in quiver gauge theories.

a. Define quiver gauge theory and quantum mechanics.

b. State claim that when constituent Z’s are lined up light open string modes are

effectively described by a quiver quantum mechanical system. (Regard this as an

interesting conjecture motivating the study of these quiver systems.)

c. Higgs branch: Kahler quotient and D-terms. FI terms and level of the moment

map.

d. Focus on the example of U(1) QED coupled to n± chiral multiplets of charge ±1.

e. Explain that there is no classical coulomb branch, but that quantum effects lead

to BPS states. Demonstrate this in the Hamiltonian picture by writing out the

superchanges and using the Born-Oppenheimer approximation to derive the effective

supersymmetry charges: These give the |n+−n−| BPS states on the Coulomb branch.
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Show how they disappear from the spectrum when ϑ goes through zero. Recovering

the picture in Denef’s QQHHH paper.

f. Explain the spin paradox and resolution?

g. Other quiver examples ?

2. Applications to moduli of vector bundles. Explain paper with Diaconescu:

a. Define a “stable sheaf.” Example of an extension of rank one torsion free by rank

one torsion free (D4 bound to D0).

b. Now examine the relation between “physical stability” and “mathematical stabil-

ity.” Derive the walls for D4 to split to D4 +D4. Note that they only asymptote to

the wall of mathematical stability:

c. Recover the Gottsche-Yoshioka formulae.

d. Main lesson: Even for a rigid surface, the moduli of D4’s wrapping the surface is

NOT the moduli space of slope-stable sheaves.

3. D6-D2-D0 system.

a.) Gopakumar-Vafa invariants count D2D0 states.

b.) Halos of D2D0 around D6.

c.) The wall-crossing formula.

d.) Resembles the Donaldson-Thomas partition function, which, naively counts all

D6-D2-D0 states.

e.) Explain that only for a specific B-field do you get the Donaldson-Thomas partition

function.

f.) Physical interpretation of the spin 0 vs. spin > 0 GV partition function in terms

of core states and halo states.

g.) New results with Aganagic-Jafferis (?)

8. The OSV conjecture

1. D4-D2-D0 system. P in Kahler cone. Dual description: M5 wrapping holomorphic

surface. We are interested in Ω(Γ; t) - but for which t?

*************************

Singleton decomposition with Narain lattice L = ι∗(H2(X,Z)). Get this by holo-

graphic dual computation of M5 brane partition function via wavefunction of the

M-theory C-field. Interpret sectors as Page charges.

Remarks on polar states: Our understanding even of the polar region and certainly

the polar degeneracies is much more rudimentary. Most important: The degeneracies

depend on the Kahler structure!. This is the topic of the next chapters.

*************************************
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Figure 7: A standard choice of fundamental domain

2. t = t∗(Γ) is the most relevant for the black hole entropy question. But we cannot say

much because we cannot compute it microscopically. Microscopic computation of Ω

available for J → ∞.

3. Show that even

lim
J→∞

Ω(Γ;B + iJ) (8.1)

is not well-defined and one must specify a direction. Changes in direction can produce

big change in entropy (Andryiash example.) Preferred direction J = λP .

4. State OSV formula - rough version.

5. Microscopic description of the D4D2D0 system: Partition function. This is also the

(0,4) elliptic genus.

6. Separate out the Narain partition function: Vector of modular forms of negative

weight. ⇒ apply Fareytail ⇒ define “polar states.”

7. Return to D4 splitting to D6-D6bar. Extreme polar state conjecture.

8. Barely polar states: Explain the “entropy enigma.” Stress the weak gtop vs. strong

gtop regimes. Mention relation to quiver picture: Head of a pin.

9. Statement of a precise version of an OSV formula.

10. Sketch the derivation. Emphasize the swing state conjecture and the core dump

exponent as open problems.

11. Discussion of entropy enigma, k = 2 vs. k = 3, and the degeneracy dichotomy as an

important open problem.
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