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Basic Notation For d=4 N=2

Coulomb branch (special Kihler) u € B

Local system of infrared charges:
(flavor & electromagnetic)

DSZ pairing: (-, ) T, > Z

| N 51

X’YlX’Yz — y<71”72)X71-|—72 V1,72 € L'y

N=2 central charge. Z:I'—=>C
Linearon I,
Z(u)



Supersymmetric Line Defects

Our line defects willbeat R, x{0}c R!3

A supersymmetric line defect L
requires a choice of phase C( :

Example: L = TrgPexp [p .5 ((lo+ A+ (p)

Hp = @’YEF—I-

Physical picture for charge sector y:
An infinitely heavy BPS particle of charge y at x=0.



Framed BPS States

E > —Re(Z, /)

Framed BPS states are states in 7 ,
which saturate the bound.

WBPS(’Y; L,u) CHL

O~ 2J
Q(')/,L,u) TI‘—BPS(%L u)( 1) 3



So, there are two kinds of BPS states:
Ordinary/vanilla:  Q(~; u)
Framed: Q(v; L, u)

Vanilla BPS particles of IR charge y, can bind to
framed BPS states in IR charge sector y. to make new
framed BPS states of IR charge y_+ 7, :

T

Ve

@ — yh




Framed BPS Wall-Crossing 1/2

Particles of charge y, bind toa core” of
charge y . at radius:

<'Yh ﬂ’c)
2Im(Z~,, (u)/C)

Define a  K-wall”’
Wy, ={ul Zy, )| ¢ }

Crossing a K-wall the bound state comes
(or goes).

T —




Halo Fock Spaces

But, particles of charge y,, and also n y,, for any n>0,
can bind in arbitrary numbers: they feel no relative
force, and hence there is an entire Fock space of

boundstates with halo particles of charges ny,.

F. Denef, 2002

Denef & Moore,
2007




Framed BPS Wall-Crossing 2/2

So across the K-walls

Wy, ==l Zy,(u) | ¢}

entire Fock spaces of boundstates come/go.

Introduce " "Fock space creation/annihilaton
operators’ for the Fock space of all bound
vanilla BPS particles of chargeny,,n>0:

R(Vn)



They operate on Hilbert spaces of framed BPS states

__BPS —BPS~
R(Vn) =ﬂ7 —H.,  QF(n)

“Annihilation”: Near the K-wall the Hilbert space

must factorize and

—BPS ~ —BPS
R(w) : H,y, F () = H,,

— Ve

Computing partition functions:

K, (X)) = (1 - X’Yh)(%’%)x% y=-1



This picture leads to a physical interpretation
& derivation of the Kontsevich-Soibelman
wall-crossing formula.

Gaiotto, Moore, Neitzke; Andriyash, Denef, Jafferis, Moore (2010); Dimofte, Gukov & Soibelman (2009)

Consider a family of line defects along a path in B

Suppose the path p in the
Yo ? W’Y

Coulomb branch 3B crosses walls R

The BPS Hilbert space changes by the operation:

- R(78) R (Ya)



Derivation :of the KSWCF




Categorified KS Formula ??

R (v2) e+ R (m)
R_l' (’Yl ) ...... ﬁ+ (72)
R(vn) — K%(’Yh) gives the standard KSWCF.

Applied to BPS Hilbert space (considered as a complex with a
differential) gives quasi-isomorphic spaces
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SQM & Morse Theory
(Witten: 1982)

M: Riemannian; h: M - R, Morse function

saM: ¢ : Riime = M X € I'(g*(TM ® C))
L =g154"¢" — 9"’/ 0rhosh

+grix!Dix? — '/ DiDyhx!x? —Risxrx'x’x*x"

Perturbative  p/ (p) — 0

vacCua: P2

F(¥(p)) = 3(dy(p) —dr(p))

Ps3 DPa



Instantons & MSW Complex

Instanton dqb __ IJ Oh
equation: g 3¢J

Instantons lift some vacuum degeneracy.
To compute exact vacua:

MSW Me® -— @p:h’(p):oz - U (p)

complex:

d(¥(p)) := ZPI;F(p')_F(p)zl n(p,p’)¥(p’)

Space of groundstates (BPS states) is the cohomology.




LG Models
(X,w) Kéhler manifold.

W . X s (C Superpotential (A holomorphic Morse function)
¢:R? = X
S = [ddp— VW[ + -

Massive vacua are Morse critical points:

W' ¢i) =0  W"(¢i) #0



1+1 LG Model as SQM

Target space for SQM:

M = Maps(¢ : R = X)

h = fR (gb*)\ + Re(C_lVV)d.cU)
d)\ = w

Recover the standard 1+1 LG

Manifest susy:

Qr=Q_ —¢1'Q4 Qr = Q- —(Q+



Fields Preserving C-SUSY

Stationary points: C-soliton equation:

h=0 <= T4l = (g! 00




MSW Complex Of (Vanilla) Solitons
Lol = (g" T 5%

O = @, O = ;)

9

L

Solutions to BVP only exist when
W; =W, | ( +——
M, := BsolitonsZ¥ @i

Matrix elements of the differential:
Count ¢ -instantons

You must
remember this







Families of Theories

SQM viewpoint on LG makes construction of
half-susy interfaces easy:

Consider a family of Morse functions

Wi(p;z) z€ C

Let ¢ be a path in C connecting z, to z,.

View it as a map z: [x, x,] = C with z(x) =z, and z(x,) = z,

<1




Domain Wall/Interface/Janus

Construct a 1+1 QFT (not translationally invariant) using:

h= Jg¢*(A) +Re((T'W(4; 2(z)))dz

AT

Wi(g;z1) | W(g;2(x)) W (¢; 22>)
T

From this construction it manifestly
preserves two supersymmetries.



General: A_-Category Of Interfaces

Interfaces between two theories (e.g. LG with
different superpotentials) form an A_, category

’J = %t(,]dlaﬁ) jl

Morphisms between
interfaces are local operators

[GMW 2015]

Jo

There is a notion of homotopy A, o~
equivalence of interfaces J1 ~ J2

Means: There are boundary-condition changing
operators invertible (under OPE) up to Q



Chan-Paton Data Of An Interface

E(J)ij isamatrix of complexes.




Simplest Example

A., equation: Q% =0 —

Br(Ty, Ty) = {Chain complexes}



Interfaces For Paths Of LG
Superpotentials

For LG interfaces defined by W(¢; z(x)) the matrix of
CP complexes is the MSW complex of forced ¢-solitons:

5(3)@]' — @forced SolitonSZ\Ijij’

“Forced { — solitons”’: gb CaW(¢’z($))

r— —0O0 €T OO

W,(Cbi; zin) =0 W,(¢j’§ Zout) =0



Hovering Solutions

For fixed x, the Morse function W(¢;z(x)) on X has
critical points ¢ (x) that vary smoothly with x:

x | %@ o

For adiabatic variation of parameters:
d
| <1 W (¢; 2(x))

these give the "hovering solutions”

W-plane Wi («'L') S




Binding Points
Critical values of W Wz (.’L') = W((bz (.’L'), Z(.’L’))

for theory @ z(x):

A binding point is
a point x, so that:

¢ii(x; 2(x0))
*’T

W (¢; z1)

¢i()




S-Wall Interfaces

At a binding point a (vanilla!) soliton ¢; has the option to
bind to the interface, producing a new forced ¢-soliton:

These are the framed BPS states in two dimensions.

A small path crossing a binding point defines an interface

GSij(xo) € Br(Teo—e) Tzote)
E(Sij(wo)) = Z1 + M e

MI; is the MSW complex for the (vanilla!) {-solitons
in the theory with superpotential W(¢;z(x,)).

(In this way we categorify S-wall crossing’ and
the detour rules” of spectral network theory.)



Example Of S-Wall CP Data

Suppose there are just two vacua: 1,2

Suppose at the binding point x, there is one soliton of type
12, and none of type 21.

(@) = () 5 )

0 Z-9(2)
1 1) 1 .- 29
L0
2 2




Homotopy Property Of The Interfaces

For any continuous path £ of superpotentials:

W (¢; 2(x))

we have defined an interface:

Ip] € Be(T™, Tout)
p~p mp JIpl~ I

We want to use this to write the interface for
£ in a simpler way:



Composition of Interfaces -1

J=0 e BV FUt € Bl

GMW define a 'multiplication” of the
interfaces...



Composition offIinterfaces - 2

3=+ = 370K 30

c SBr

EQ™T) =€(370)EE™T)

@ But the differential is not the naive one!



Reduction to Elementary Interfaces:

So we can now try to “factorize” the interface by factorizing the path:
Tm 7‘01_11:

L




Factor Into S-Wall Interfaces

Suppose a path z(x)

contains binding points: T1 <" <IN

W&, zin)

j[g,)] ~ 6'131.7'1 (55'1) X .- GiNjN (:BN)

(ujo, Lo @oo quM/a/Ee/rwe o/f oaxlieﬂ/ow/)



Categorified Cecotti-Vafa WCF -1/3

In a parameter space of superpotentials define walls:
MS(ijk) = {param's|z;; || zjx}

2 » T
. tJ
ik ° Zik
— +
“jk 2%

Also define "'S-walls” (analogs of ~'K-walls”’ in 4d ) :

Si; () = {param’s|z;; || ¢}






Categorified Cecotti-Vafa WCF -3/3
6,N6, K&, ~ 6 KG KNG,
(ujo/ to @oo eq/uw/afe/nce o/f caxliegmm)

So, for the Chan-Paton data:
— £ E- ~ET.EL.ET
gjk Eik 5153' Ngij Eik gjk

Up to quasi-isomorphism of chain complexes.

Witten index:
1 0 0\** /1
0 1 1 0
0 0 1 0

1\ P+ /1 1
0 0 1
1 0 0

Q= O

\——/
=
& |



A 2d4d Categorified WCF?

GMN 2011 wrote a hybrid wcf for BPS indices of both
2d solitons and 4d bps particles.

An ongoing project with Tudor Dimofte and Davide
Gaiotto has been seeking to categorify it:

One possible approach: Reinterpret S-wall interfaces as
special kinds of functors: They are mutation functors of
a category with an exceptional collection.

We are seeking to define analogous ~K-wall functors” .
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Knot Homology -1/3

(Approach of E. Witten, 2011)

Study (2,0) superconformal
theory based on Lie algebrag IR X Mg X D

f 1

TIME x° CIGAR

M,: 3-manifold containing a link L

(Surface defect wraps R x L x {p} )



Knot Homology — 2/3

Now, KK reduce by U(1) isometry of the cigar D with
fixed point p to obtain 5D SYM on
RxM; xR,

P e R

y € RT



Knot Homology — 3/3

Hilbert space of states depends on M; and L:

HBPS (M?n L)

is the “"knot” (better: link) homology of L in M.

This space is constructed from a chain complex
using infinite-dimensional Morse theory:

“Solitons”: Solutions to the Kapustin-Witten equations.

“Instantons”: Solutions to the Haydys-Witten equations.

Very difficult 4d/5d partial differential equations: Equivariant Morse theory on
infinite-dimensional target space of (complexified) gauge fields.



Gaiotto-Witten Reduction

View the link as a tangle: ( 1 )
An evolution of complex numbers ZCL L

xL,e R

b

:‘*

2 € R

\§

Za(xl)



Gaiotto-Witten Model 1: YYLG

Claim: When G=SU(2) and z, do not depend on x! the Morse complex
based on KW/HW equations is equivalent to the MSW complex of a
finite dimensional LG theory in the (x°x!) plane: YYLG model.:

(wi,...,wy) € X = Conf,,(C— {2,})

w, ,i=1,..,m: Fields of the LG model

W =3, o kalog(w; — z5) — >, . log(w; — w;)?

R, =su(2) irrep of dimension k_+1

z, a=1,.. Parameters of the LG model

Variations of parameters: 2, ({El)

give interfaces between theories



Gaiotto-Witten Model 2: Monopoles
X = R4 X Mo

Moduli space of smooth SU(2) monopoles on R3 of charge m

X = RatMap™(CP") = {(P(u),Q(u))}
Q(u) = H:); (u—w;) K(u)= H?:l(“ — 2q)%e

W =31 Resymuw, - gpey 2 — log P(w;) + cw;

Integrate out P:

mmms) Recover YYLG model.



Braiding & Fusing Interfaces

Braiding Interface: 5 (

Cup & Cap
Interfaces: 2

oK'y
“(U)

A tangle gives an x'-ordered set of

braidings, cups and caps



Proposal for link chain complex

Let the corresponding x*-ordered sequence of
interfaces be

ST 1Y

glink .— 3, K ... K Iy

IS an Interface between a trivial theory and itself,

Jlink ¢ 8¢(7y,Ty) = {Chain complexes}

So it is a chain complex. m:ﬂ/

T




The Link Homology

The link (co-)homology is then:
. *x,% (~Link Link
Hp := H**(J , () )
The link (co-)homology is bigraded:

P = —# de F = Fermion number

Poincare polynomial: P(q, t) — r:[‘I'HL thF

(Chern-Simons) X(Q) — TrHL qP(—l)F

knot polynomial:



Vacua For YYLG

Vacuum equations of YYLG

kg 1 | —
Za Wi —Zq 2 Z]?é?, W; —w;, €= 0

_ —2
W; = Zg(;) — ¢ +O0(c™%)
Points z, are unoccupied (-) or occupied (+) by a single w..

Example: Two z’s & One w

\* o & <

* @ * © * ©
z1—1/c zo—1/c

(+—) (= +)

+, - like spin up,down in two-dimensional rep of SU(2),

w




Recovering The Jones Polynomial

The relation to SU(2), goes much deeper and a
key result of the Gaiotto-Witten paper:

X(H*’*(jLink, QLink))
= Jr(q)

But the explicit construction of knot
homologies in this framework remained open.



Computing Knot Homology

This program has been taken a step
further in a project with Dima Galakhowv.

YYLG solitons: (..., +, -, ....)to (..., -, +, ...)

w; () T

U :b

All other w;(x) approximately constant. Za Zb




Chan- Paton Data For Basic I\/Ioves

R




Bi-Grading Of Complex

The link homology complex is supposed to have a bi-grading.
P=—-24§dW F=¢uw

where w is a one-form extracted from the asymptotics of
the CFIV "new’ supersymmetric index for interfaces:

Qijr = TT’H,,;J-,(—1)Fe‘5H[wi(w);Csza(w)]

using Cecotti-Vafa tt* equations.






Example: Hopf Link

TITT TITT TITT 7T 7T
Sisinksinkinink
L B E ] ] o | L Je=

kbt~ ~ F=F= H$=F= +-%- + =

£1 = (0 — Z[¥1] — Z[Y2] & Z[V3] — Z[W4] & Z[¥s] — 0)

Differential obtained by I ;
counting (-instantons, ~ DX@MPIe: waaquy =1~ L\ J |

H*(&1,Q¢) = Z[¥y — Vs

P(q,t|/Hopf) = (% + %) (gtz | qtz_)




Reidemeister Moves

The complex depends on the link projection:
It does not have 3d symmetry

Need to check the homology DOES have 3d symmetry:
= N W
~ q_% t ~
S N\ ‘ | N
~ I
N~ AN
I

~N



N — o
DO G (N
@
T KO
D T
XX
S
XX
Il

N\
\/

b .

®
KXC
i
KX
B




Obstructions & Resolutions -1/2

In verifying invariance of the link complex up to quasi-
isomorphism under Rl and RIll we found an obstruction for
the YYLG model due to walls of marginal stability and the
non-simple connectedness of the target space.

Problem can be traced to the
fact that in the YYLG W; 7é Wy Wy ?é Za

These problems are cured by the monopole model.
W =3 o kalog(w; — za) — >, ; log(w; — w;)2+ed, w;

W =>"", Resy—uw, K(g)(i)(“) — log P(w;) + cw;

Qu) =TI2 (u—w;)  K(u) =[]} (u— 2q)"




Obstructions & Resolutions -2/2

Conclusion: YYLG does not give link homology,
but MLG does.

Unpublished work of Manolescu reached
the same conclusion for the YYLG.

M. Abouzaid and I. Smith have outlined a totally
different strategy to recover link homology from MLG.
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The Really Hard Question

Data Determining A Framed BPS State In (Lagrangian) d=4 N=2 Theory

Compact semisimple Lie group G

Action: Quaternionic representation R

Mass parameters 777 & Adj(Gﬂavor) X (C
Line defect L: C = ewl [(P, Q)]

Infrared: u € B v e L'y

ﬁBPS(L, u,y) = 1777



For d=4 N=2 theories with a Lagrangian formulation at weak coupling
there IS a quite rigorous formulation — well known to physicists...

Uu— o0 ina semiclassical chamber”

S = [on Im(1o)TXF % F + - -
IIIl(’T()) — OQ

Method of collective coordinates:

Manton (1982); Sethi, Stern, Zaslow; Gauntlett & Harvey ;
Tong; Gauntlett, Kim, Park, Yi; Bak, Lee, Yi; Bak, Lee, Lee, Yi;
Stern & Yi; Manton & Schroers; Sethi, Stern & Zaslow;
Gauntlett & Harvey ;Tong; Gauntlett, Kim, Park, Yi;
Gauntlett, Kim, Lee, Yi; Bak, Lee, Yi; Lee, Weinberg, Yi;
Tong, Wong;....



The Answer

One constructs a hyperholomorphic
vector bundle over the moduli space E = M
of (singular) magnetic monopoles:

and Dirac-like operators D, on : SRE — M

Ker(D+y) is a representation of
Tﬂavor X Tgauge X SO(?’)rot X SU(2)R

ﬁBPS(L, u,y) = ker , Dy

as representations of SO(3)r0t X SU(2)r
We use the only thedata G, R, m,(, P, Q),u, "y



Exotic (Framed) BPS States
EBPS(L, u,Y) 50(3)mt & 5u(2)R -reps

Exotic BPS states: States transforming
nontrivially under su(2);

Definition:

Conjecture emn): Su(2), acts
trivially: exotics don’t exist.

Many positive partial results exist.

Cordova & Dumitrescu: Any theory with Sohnius”
energy-momentum supermultiplet (vanilla, so far...)



Geometrical Interpretation Of The

No-Exotics Theorem - 2
Choose any complex structure on M.

S22 ANHTM)® K—1/2
Qs +iQs~0y Yet
su(2), becomes Lefshetz s1(2)”

I*[poa = 5(g — N)1

I ~wh2A I~ (w?Y)

EQCXWoW



Geometrical Interpretation Of The
No-Exotics Theorem - 4

vanishes except in the middle degree g =N,

and is primitive wrt " Lefshetz s1(2)”.

VY et

SU(2) N=2* m — 0O recovers the famous
Sen conjecture
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Conclusion -1/2

Lots of interesting & important questions remain about BPS indices:

We still do not know the topological string partition function for a
single compact CY3 with SU(3) holonomy !

We still do not know the DT invariants for a single compact CY3 with
SU(3) holonomy !

Nevertheless, we should also try to understand the
spaces of BPS states themselves. Often it is useful to
think of them as cohomology spaces of some
complexes — and then these complexes satisfy
wall-crossing — that ~"categorification” has been

an important theme of this talk.



Conclusion —2/2

A very effective way to address the (vanilla) BPS
spectrum is to enhance the zoology to include
new kinds of BPS states associated to defects.

As illustrated by knot theory and the generalized
Sen conjecture, understanding the vector spaces of
(framed) BPS states can have interesting math
applications.



