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A Motivating Question

Given an arbitrary four-dimensional field theory
with N=2 supersymmetry, is there an algorithm for
computing its BPS spectrum?

Who cares?

A good litmus test to see how well we
understand these theories...
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- Getting there Is half the fun!”




Goal For Today

We describe technigues which should lead to such
an algorithm for

A, theories of class S”

Some isolated examples of BPS spectra are known:
1. Bilal & Ferrari: SU(2) N;=0,1,2,3
2. Ferrari: SU(2), N =2* SU(2) N~4

3. GMN: A, theories of class S



Outline

1. Review of some N=2,d=4 theory

2. Theories of Class S
a. 6d (2,0) and cod 2 defects
b. Compactified on C
c. Related Hitchin systems
d. BPS States and finite WKB networks

3. Line defects and framed BPS States

4. Surface defects
a. Uv and IR
b. Canonical surface defects in class S
c. 2d4d BPS + Framed BPS degeneracies

5. 2d/4d WCF
6. Algorithm for theories of class S
/. Overview of results on hyperkahler geometry



€ -2 d=4 Field Theory

Coulomb branch: B,

generic point u € B

Local system of charges, with integral antisymmetric form:

0—=1¢r—1-—=>1,-0,

Ff . Charges of unbroken flavor symmetries

F : Symplectic lattice of (elec,mag) charges of IR
) abelian gauge theory






Self-dual IR abelian gauge field
V=1,8R FeQ(M)RV
df =0 [ = %[

]F:dAZBIFI—I—GIG]

S:fImT[JFI*FJ+ReT[JFIFJ



Central charge: Z € Hom(I', C)
H = @WEF%W B > ‘Zv‘
HEOPS = {Y: B = |Z, [y}

(s usy) = Tep, (—1)2 (—y)> 25

Q(v;u) = Try, (—1)%/



Selberg-Witten Moduli Space

@ C M=T:eR/(21Z)
b

U > B

Hyperkahler target space of 3d sigma model

from compactification on R3 x St
Seiberg & Witten




9 Theories of Class S

Consider nonabelian (2,0) theory T[g] for gauge algebra” g

The theory has half-BPS codimension two defects D(m)

Compactify on a Riemann surface C with D(m,) inserted at
punctures z,

so(5)r — so(3)r @‘30(2)3

|

Twist to preserve d=4,N=2

omn 2000 T [g, C, m]

Gaiotto, 2009

J




Seiberg-Witten = Hitchin

Tlgl
7 X
T\g,C,m] 5D g SYM

NZe

F+ R?[p,¢] =0
sModel: R1:2 3 A D =0




Digression: Puncture Zoo

Reqgular sinqular points:

dz
p~ S trreg

t. Diag{ml, ma, ..., mk} “Full puncture”

Diag{ma ce ey T, _(k_l)m} ~Simple puncture”
Irreqular singular points:

D ~ (Z_dzza)ﬁt + reg




Seiberg-Witten Curve
Y det(A—p(z,2)=0CT*C
A=mpdq Ay  sw differential
For g=su(k) 7 :>2 — (C

IS a k-fold branch cover

A+ AN 200 (2) + -+ Pp(2) = 0



Local System of Charges

D -
\4

ker m, : Jac(X) = Jac(C)
determines ' C Hy(X;Z)

A local system over a torsor for spaces of holomorphic
differentials...



BPS States: Geometrical Picture

BPS states come from open M2 branes stretching
between sheets i and j. Here ,}, =1,..., k. This leads
to a nice geometrical picture with string networks:

Klemm, Lerche, Mayr, Vafa, Warner; Mikhailov; Mikhailov, Nekrasov, Sethi,

Def: AWKB path on C is an integral path
<)\z — )\j, 8t> - Giﬁ

Generic WKB paths have both
ends on singular points z,




Finite WKB Networks - A

But at critical values of 3=3. finite WKB networks appear’:




Finite WKB Networks - B

Closed WKB path

L / = \ Vectormultiplet




Finite WKB Networks - C

At higher rank, we get string ok
networks at critical values i 7k
of 9: o

A finite WKB network” is a union of WKB paths
with endpoints on branchpoints or such junctions.

These networks lift to closed cycles y in £ and
represent BPS states with

L = ggv A= e’V

Z,



e Line Defects &

Framed BPS States

Aline defect (say along R, x {0 } ) is of type £ ifit
preserves the susys:

Qé + ngﬁ,QﬁA

Example: L¢ = exp thxa (% + A+ %S_ﬁ)
Hr = Oyertr,y
E > —Re(Z,/()




Framed BPS States saturate this bound, and have
framed protected spin character:

Q P — TI. _1)2J3(_y)2J3—|—213

bps (
HL,’Y

Q(L,7v;y; ¢ u)
Piecewise constant in  and u, but has wall-crossing
across BPS walls” (for Q(y)= 0):

W, = {(u,C) : Zy(u)/¢ € R}

Particle of charge y binds to the line defect:

mmmm)  Similar to Denef’s halo picture



Wall-Crossing for ()

F(L) =3 QL,v;y) X,
X’YlX’YQ — y<71’72>X'71‘|‘”72

Across W(y,) Denef’s halo picture leads to:
F—l_(L) — (I)(th)F_(L)(I)(X”Yh)_l

(I)(Xﬂyh ) constructed from Q(’Yh; y)



Wall-Crossing for §)

Consistency of wall crossing of framed BPS states
Implies the Kontsevich-Soibelman ~“motivic WCF” for

Q(v;v)

This strategy also works well in supergravity to prove the
KSWCF for BPS states of Type Il/Calabi-Yau
(but is only physically justified for y=-1)

Andriyash, Denef, Jafferis, Moore



Line defects in T|g,C,m]

6D theory T[g] has supersymmetric
surface defects S(R, ¢ )

For T[g,C,m]

consider oc=R X {O} X

Line defect in 4d labeled *2
L G (Ra & ) by isotopy class of a oron

closed path p and R oruda




Complex Flat Connections

(A, ) solve Hitchin equations iff

A=R("p+ A+ R(p

is a complex flat connectionon C  V( € C*

On R3 x S? line defects become local
operators in the 3d sigma model:

(L¢(R, ) = TrrHol(A, )



Sat ! =22 =0

@ Surface defects 1~ |

Preserves d=2 (2,2) supersymmetry subalgebra

Twisted chiral multiplet :

Finite set of vacua 3 ¢ V

S[R — fd4.ibd4(9 .F(&)

[ d?xd?6 WelI ()



Effective Solenoid
Vi ‘ i
=

fA:%;EV:Fg@R

Vi =nre’ + o' eg , L ARE
aweff QUANTIZED

77_|_T°Ck: oa



Torsor of Effective Superpotentials

A choice of superpotential =
a choice of gauge =
a choice of flux v,

Z%: F = Weff
Doyt =W + 7

Extends the central charge to a T -torsor T’



Canonical Surface Defect In
Tlg,C,m]

For z e C we have a canonical surface defect S,

It can be obtained from an M2-brane
ending at x}=x*=0 inR*and zin C

In the IR the different vacua for this M2-brane are the
different sheets in the fiber of the SW curve over z.

Therefore the chiral ring of the 2d theory should be

the same as the equation for the SW curve! Alday, Gaiotto, Gukov,
Tachikawa, Verlinde;

Gaiotto

AN+ AN 200 (2) + -+ r(2) = 0



Example of SU(2) SW theory

Chiral ring of the

. 2d-4d instanton
CP1 sigma model.

effects
Twisted mass Gaiotto




Superpotential for S, In T g,C,m]

Yii Homology of an open path on 2’ joining
J X; 10 X; In the fiber over §,

vij € Iy C Hi(X,{wi, 25} Z)



New BPS Degeneracies: u

¥ (’ym ) 2D soliton degeneracies.

R\

+>

,//l\\ Flux: ;5 € L'y

For S, in T[su(k),C,m], pn Is a signed sum of
open finite BPS networks ending at z



New BPS Degeneracies: o

Flux: v € I’
% ) \\T

+>

AN

Degeneracy:  w(7; ;)

Wi +7) = wlv;v) + Q) 7)



Supersymmetric Interfaces - A

S LC S/

UV: —@L_

;N\,

AN

Flux: /ij’ — FZ]’

4

i
o



Supersymmetric Interfaces -B

HsrLs = @n,, er,, HsLs vy,

Our interfaces preserve two susy’s of type { and
hence we can define framed BPS states and form:




Susy Interfaces for T[g,C,m] - A

Interfaces between S, and S, are labeled by
open paths ¢ on C

/

Z
So: framed BPS states are graded by open
paths y; on X with endpoints over z and z’

Fij/ C Hl(Z, {CC@', $j/}; Z)



Susy interfaces for T[g,C,m] - B

Wrapping the interface on a circle In
R3 x St compactification:

(L¢(R,p)) = prHOl(A, p)

A=R(ro+ A+ RCo



Framed BPS Wall-Crossing

Across BPS W, walls the framed BPS degeneracies undergo wall-crossing.

Now there are also 2d halos which form across walls

W’Yuc + = {(uv C) : Z%:k (U’)/C S R—}

h C
Vik Yy’

F(L) = SF(L)S™! S =1+ p(yix) X,

As before, consistency of the wall-crossing for the framed BPS
degeneracies implies a general wall-crossing
formula for unframed degeneracies p and o.




Framed Wall-Crossing for
Tlg,C,m]

The separating WKB paths of phase C
on C are the BPS walls for

Q LCP zz’)afyzy

Ke 4



Formal Statement of 2d/4d

WCF

1.Four pieces of data

2.Three definitions
3.Statement of the WCF
4.Relation to general KSWCF

5.Four basic examples



2d-4d WCF: Data

A. Groupoid of vacua, ¥V : Objects = vacua of S:

1=1,..., k & one distinguished object 0.
Morphism spaces are torsors for I', and the
automorphism group of any object is iIsomorphic
toT: A




2d-4d WCF: Data
B. Central charge Z € Hom(Y, C) :

Z(a+b) = Z(a) + Z(b)

Here a, b are morphisms y vy; y; ; valid when the
composition of morphisms a and b, denoted a+b, is defined.

C.BPSData: /(7Vij) €Z & w(y,a) €Z

w(via+7v") =wlyia) + Qy)(v,7)

D. Twisting function: o(a, b) € Zo when a+b is defined



2d-4d WCF: 3 Definitions
A. ABPS ray Is a ray in the complex plane:

ly=2Z()R- F w(7y,:) # 0
by, = Z(vij)R- F p(ij) 7 0

B. The twisted groupoid algebra C[V]:

XX, — {U(a, b) Xoip a+b composable
0 else



2d-4d WCF: 3 Definitions

C. Two automorphisms of C[V]:
_like: pnoo

CV-like: S%j :

Xg — (1 - /*L(%j)X%j )X&<1 + ILL(/Y?;].)X'WJ‘)

ik a- W
KS-like: /C,y

X, — (1-X,)va X,



2d-4d WCF: Statement

Fix a convex sector: <Z

A() =[] S8 K2

Yij

The product is over the BPS rays in the
sector, ordered by the phase of Z

WCF:

A(<{) IS constant as a function of Z, so long as no
BPS line enters or leaves the sector



2d-4d WCF: Relation to KSWCF

Kontsevich & Soibelman stated a general WCF attached to any
graded Lie algebra g with suitable stability data.

The 2d-4d WCF (with y=-1) is a special case for the
following Lie algebra

A Twisted algebra of functions on the Poisson torus T — F* ® C*

Generated by ]@ yvyﬁ — 0‘(7’ &)y’}/‘l"?
g = My(A) ® SymplVect(T)



Four types” of 2d-4d WCF-A

A. Two 2d - central charges sweep past each other:

Z(ij) Z(Vjk)
—> Z(”sz) ) AZ(’V”UC)
Z(Vjk ) Z(ij)

/ / /
S:UJ , S:UJ SM — SM S’UJ S,LL Cecotti-Vafa

Yii  Yil V4l Yil T Yil T Vij



Four types” of 2d-4d WCF - B

B. Two 4d — central charges sweep past each other:




Four types” of 2d-4d WCF - C

C. A 2d and 4d central charge sweep past each other:




Four types” of 2d-4d WCF - D

D. Two 2d central charges sweep through a 4d charge:

Z (%;j) Z(Vji)

Hn/ Sﬁw Ny szl K%ﬁ Hn\ S,/;ji_l_n,y —

Hn/‘ S/’;Lj Tny Hm 1 an\ ’yj—l—nfy



’]"'j'.ll 'I‘ Y

{vji +nv}

Vii 27

Vi L

{’T«.e g

4

it

e
=1

+ nvy}

Yij + 27

Vij + Y

ig



@ The Algorithm

Fix aphase 3 .Onthe UV curve C draw the
separating WKB paths of phase 3 : These

A begin at the branch points but end at the singular
points (for generic 3 )

Massive
Nemeschansky-
Minahan Eg theory,
4 realized as a trinion
theory a la Gaiotto.




B Label the walls with the appropriate S* factors
— these are easily deduced from wall-crossing.

Now, when a Ij-line intersects a jk-line,
new lines are created. This is just the CV
wall-crossing formula SSS = SSS.

ik 1k 417

i ] ik



C: lterate this process.

Conjecture: It will terminate after a finite number

Of Ste pS (given a canonical structure near punctures).

Call the resulting structure a  minimal S-
wall network” (MSWN)

D: Now vary the phase 9.

This determines the entire 2d spectrum

p(yij)  forall Sz, 1, ]



The MSWN will change isotopy class precisely when
an S-wall sweeps past a K-wall in the (- plane.
Equivalently, when an (ij) S-wall collides with an (ij)
branch point:




FE- Finally, use the 2d/4d WCF to determine the 4d BPS
spectrum:

Z(vij) Z(v)
®e Z(Vij +17)
Z/V’Lj ‘ | Z’Y o* Z(7ij + 1)
Z(7) Z(vi)

(1 o Xw)w(%%j) — me/zm

$ij 1= Y peo M(Vij + 1) X7



Z%j H ZW H Z~jz’

fy ] Z (73’?3 )
<Z <Z (7)
Z(vji) Z (i)

I = zw o (Vigs Vji) Yig 251 X

[ = [[oe, (1-X)«inois)



Concluding slogan for this talk

The 2D spectrum

controls

the 4D spectrum.



Spectrum Generator?

Can we work with just one £ ?

Perhaps yes, using the notion of a
spectrum generator” and omnipop”

This worked very well for T[su(2),C,m] to give an algorithm
for computing the BPS spectrum of these theories.

Stay tuned....



Hyperkahler Summary - A

Hyperkahler geometry: A system of

1 holomorphic Darboux coordinates for SW
moduli spaces can be constructed from a
TBA-like integral equation, given Q.

y From these coordinates we can construct
* the HK metric on M.

3. (L¢,p) = ny Q(Lﬁ)yv



Hyperkahler Summary - B

For T[su(2),C,m], Y, turn out to
be closely related to Fock-
Goncharov coordinates

We are currently exploring how the
coordinates for T[su(k),C,m] are
related to the "higher Teichmuller
theory” of Fock & Goncharov




Hyperkahler Summary - C

6.  ForT[su(2),C,m] the analogous
functions: -
unctions y%j, associated to

<LC,77(Z,Z’)>

are sections of the universal bundle over M, and

allow us moreover to construct hyper-holomorphic
connections on this bundle.

(. EXxplicit solutions to Hitchin systems
(a generalization of the Iinverse scattering
method)






