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Motivation

e This talk is a progress report on work done over a period of
several years with J. Distler and D. Freed

| want to explain how an important subject in string theory-the
theory of orientifolds makes numerous contact with the interests
of Is Singer.

 Historically, orientifolds played an important role in the
discovery of D-branes. They are also important because the
evidence for the alleged landscape of string vacua” (d=4, N=1,
with moduli fixed) relies heavily on orientifold constructions.

e S0 we should put them on a solid mathematical foundation!

(even for type | the worldsheet theory has not been written)



Theme 1

Index theory

Geometry of anomaly cancellation
Twisted K-theory

Differential generalized cohomology

Quadratic functors, and the theory of self-dual fields

Is Singer’s work Is closely related to all the above




Theme 2

Our second theme Is the remarkable interplay
between the worldsheet and spacetime
formulations of the theory.

Recall that a basic ingredient in string theory Is
the space of maps:

Q2 — X

2. 2d Riemannian surface
X: Spacetime endowed with geometrical
structures: Riemannian,...



2d sigma model action:

1
expl— [ 5 lldp? 4
by

Based on this D. Friedan showed — while
Is Singer’s student — that:

2D Conformal Field ” Einstein metrics
Theories on X on X

It's a good example of a deep relation between
worldsheet and spacetime structures.



Orientifolds provide an interesting example where
topological structures in the world-sheet (short-
distance) theory are tightly connected with
structures in the space-time (long-distance) theory.

| will emphasize just one aspect of this:

We will see that a " twisted spin structure”
on X Is an essential ingredient both In
worldsheet anomaly cancellation and in the
formulation of the self-dual RR field on X.




What Is an orientifold?

Let’s warm up with the idea of a string theory orbifold

w:2—=Y

Smooth Y has finite isometry group I'

Gauge the I'-symmetry:

Principal i i Y
I" bundle ¢ i{

v Spacetime
Physical oo YT groupoid

worldsheet



For orientifolds, 2J is oriented,

In addition: 1 — Ty — 57, — 1

~  I'y: Orientation preserving

On 2 I';1: Orientation reversing
S 5 v
o 3 }
Orientation S
double cover —— 2 — Y/
v o v Space
Unoriented — % — Y//T' *— time




More generally: Spacetime X is an orbifold”
(Satake, Thurston...) with double cover X,

There Is an iIsomorphism:
" (w) = wi(X)

Y’ : Orientation double cover of &



For those — like me — who are afraid of stacks,
it Is fine to think about the global quotient:
X, =Yy X=Y/I

Just bear in mind that cohomology in this
case really means Borel equivariant

cohomology Hj (Y//F) — H%(Y)

and we will again need to be careful about K



Worldsheet Measure

In string theory we integrate over worldsheets”

For the bosonic string, space of worldsheets” is

S = {(2, )} = Moduli(X) x MAP(Z — X)
exp[— [5,53 I de |I’] - A

Ap = exp|2mi fz/s ©*(B)]

B Is locally a 2-form gauge potential...



Differential Cohomology Theory

In order to describe B we need to enter the world
of differential generalized cohomology theories...

If £ is a generalized cohomology
theory, then a machine of
Hopkins & Singer produces £

0= EI"NM,R/Z) = EI(M) — Qz(M; E(pt) @ R)T —= 0

etc.



Orientation & Integration

The orientation twisting of £(M)
is denoted 7¢ (T M) :

It allows us to define an “integration”
in &-theory:

& ETITM+I (M) — £3 (pt)



For the oriented bosonic string B is a local
geometric object, e.g. iIn one model it is a
gerbe connection, denoted 3 € obH*(X)

Its gauge equivalence class Is an element of
differential conomology: [B] c H?(X)

For bosonic orientifolds: 3 € obH Y3 (X))

Ap = expl2mi [y,¢ " (B)] € HY(S)

Integration makes sense because ¢*(w) = wq(X)

Surprise!l For superstrings: not correct!




Orientifold Superstring Worldsheets

Spin structure o. on Y
Fermifields ¢ € I'(ST @ 7*p*(TX)) ...

Path integral: Integrate over @, 9, 2.

For dim X = 10, the integral over Fermi fields
gives a well-defined measure on

A

S = SpinModuli(X) x Map(X — X))

times two problematic factors ...




Ap - Pfaff(Dg, (7 o*(TX — 2))

This must be canonically a function on S.
But in truth Pfaff Is the section of a line bundle:

Lw%s

23 years ago, Is Singer asked me:
“"How do you sum over spin structures in
the superstring path integral?”

It's a good question!!

Related: How does the spacetime spin structure
enter the worldsheet theory?



Pfaffians

Later on we’ll need to be more precise

A spin structure o on 3 determines, locally,
a pair of spin structures on X of opposite
underlying orientation

| holonomy is
B le IS flat... E— Computed byn

(Bismut-Freed)

Atiyah-Patodi-Singer flat index theorem gives...



KO % N
Loy :fz/55'90 (TX —2)
c obKO~2(S) — obI?(S)
fQ(S) Graded line-bundles with connection

a flat element of differential KO.
) - heuristically, it measures the difference
between left and right spin structures.

Since Pfaff is problematic,
the B-field amplitude, Apg,

must also be problematic.

What Is the superstring B-field anyway !?



How to find the B-field

 To find out where B lives let us turn to the
spacetime picture.

 The RR field must be formulated in terms
of differential K-theory of spacetime.

 The B-field twists that K-theory

e For orientifolds, the proper version of K-
theory is KR(X,,) (witten)



X is a “stack” = careful with K R(X,,)

For X =Y//T" use Fredholm model
(Atiyah, Segal, Singer )

‘H: Zo-graded Hilbert space with stable I'-action

I'p: Is linear I'y: Is anti-linear

F: Skew-adjoint odd Fredholms

Assume all goes well for KR(X,,)



Twistings

We will consider a special class of twistings with geometrical
significance.

We will consider the degree to be a twisting, and we will twist
by a ‘graded gerbe.”

The twistings are objects in a groupoid. They are classified
topologically by a generalized cohomology theory.

But to keep things simple, we will systematically mod out by
Bott periodicity.



Twisting K (mod Bott)

When working with twistings of K (modulo
Bott periodicity) it is useful to introduce a

ring theory: R — k0<0 o 4>
TR = Z[n, p]/(deg > 5)
Twistings of K(X) classified by R~1(X)

As a set: HO(X,Zs) x HY(X,Zs) x H3(X,7)



Twistings of KR
For twistings of KR(X,,): R¥~1(X)

HO(X,Z5) x HY(X,Zs) x H*+3(X,7Z)

Warning! Group structure Is nontrivial, e.g.:
—1 AU
RY (pt//ZQ) — Zg
Reflecting Bott-periodicity of KR.

(Choose a generator 0 for later use. )



The Orientifold B-field

So, the B-field is a geometric object whose
gauge equivalence class (modulo Bott) Is

5] € R*~1(X)

Topologically: [3] = (t,a,h) € HY x H' x Hv+3

t=0,1: lIB vs. lIA.

a. Related to (-1)" & Scherk-Schwarz
h: Is standard



The RR field Is self-dual

We conclude from the above that the RR current iIs
jRR = KRQ (Xw)

But self-duality imposes restrictions on the B-field

We draw on the Hopkins-Singer paper
which, following Witten, shows that a central
Ingredient In a self-dual abelian gauge theory

IS a quadratic refinement of the natural pairing
of electric and magnetic currents...




Quadratic functor hierarchy

In fact, the HS theory produces compatible
guadratic functors in several dimensions
with different physical interpretations:

dim=12 ¢ : KR(M) — 7
dim=11 ¢:KR(N)— R/Z
dim=10 ¢q: KR(X) — I*(pt)

(In families over T: Mapto  1%12(T) )



Parenthetical Remark: Holography

If spacetime X is the boundary

of an 11-fold N: ON = X

Then we may view 7 on X as the

boundary value ot a gauge field on N.

Sel
hol

f-dual gauge theory on X is
ographically dual to Chern-Simons

gauge theory on N with action ¢(7).




Defining our quadratic function

Basic idea Is that we want a formula of
the shape

a(j) = [y Ji €L
How to make sense of it?
j—jje KROHP(M,) is real”
B + (@ induces a twisting 5)%(5) of KOy,



J—Jjj
KR%(M,) — KO, (M,)

But, to integrate, we need:

I(OZ2 B
KORO(M,) - Kog ™ =123,

I(OZ2 B
KO%Q (T My, 12)(Mw)%KOZ;12(pt)

KOZleZ(pt) =7 @ el — 7




Twisted Spin Structure

The twisted spin structure is an iIsomorphism
of KO,,-twistings

k:R(B) = 78O (TM, —12)

Note: A spin structure on M allows us to integrate
In KO. It is an iIsomorphism

0 — 7HBO(TM — 12)



One corollary of the existence of a twisted spin
structure Is a constraint relating the topological
class of the B-field (mod Bott) to the topology of X

8] = (t,a,h) € H° x H' x H¥*3
w1 (X) = tw
wo(X) = tw? + aw

(The quadratic function also allows us to define
the RR charge of orientifold planes.”
| will return to this at the end. )



Examples

Zero B-field

If [3]=0 then we must have IIB theory on
X which Is orientable and spin.

Op-planes
X=RPH xR"JZy p+r=29

Compute: wi(X) =rw wy(X) = "Hw?

0 r=0,3 mod4

boe {w r=1,2 mod 4




How to sum over worldsheet spin
structures

Now let us return to our difficulty on the ws:
Ap - Paff (D¢ (7% * (T X — 2))
must be canonically identified with a function.

Ap= expl2mi [ 0" (3)

NO! Integrand is not a proper density
for integration in R-theory!



The B-line

Orientations in R-theory are induced by
orientations in KO, but ¥ does not have a
spin structure!

Use the class 0 constructed from the
spin structure o on X.:

R & ./ 77
Lp := f2/55°90 (eﬁ)v §
€ obR2-2(S) — obI2(S)

Comes with a canonical section
which we define to be Ap



We are In the process of proving the following

Theorem: A twisted spin structure k induces
a canonical trivialization of Lg ® Ly,

iIdea of the proof...

Recall that the Pfaffian i1s a section of
Ly = f;f/g 0 - p*(TX —2) € obI?(S)

and R Is a quotient of KO...



Let r classify twistings of KO mod Bott:
me (1) = Zs[nl/(n°, 2n)

1. [%96.o*(TX —2) in I2(S)

only depends on the image of ©*(T'X — 2)
in r%(2), which is @*(72°9(TX — 2))

2. [F5-¢*(0-B) in I2(S)
only depends on the image of ¢*(8 - 3)
in r(X), which is ¢*(R(5))




Homework solution (23 years late)

Il Since a twisted spin structure gives
a canonical trivialization of Lp & Ly,

Ap - Pfaff: Canonically a function

Therefore, the same datum that allows us
to define the RR field in spacetime, also

IS the key ingredient that leads to anomaly
cancellation on the worldsheet.




Some key tests

 w=0: Ordinary type |l string. Changing t=0
to t=1 correctly reproduces the expected

change in the GSO projection due to the
mod-two index of Dirac.

Bl = (=100 Ap=(—1)moda(ar)

* A change of spacetime spin structure
changes the amplitude in the expected way.




RR charge of O-planes

Components of the fixed-point loci in X,
are known as orientifold planes.”

They carry RR charge
Mathematically, the charge is the center of
the quadratic function: d(j) = q(2u-j)

Once we Invert 2 we can compute p using
localization of a KO,,-Iintegral. Then the
charge localizes to the O-planes and Is:



1

1 K E(F)
{ 27% \ Y1 /2(k~ 1 Euler(v))
Inclusion of a component F of

the fixed point set with normal
bundle v

L F— X,

Y1/2: Multiplicative inverse of Adams )2

=(F): KO-theoretic Wu class
(related to Bott's cannibalistic class”)

KO

o () = [ O E(F)a



The physicists’ formula

Taking Chern characters and appropriately
normalizing the charge we get the physicist’s
formula for the charge in de Rham cohomology:

—\JA(TX)eh() =

:Qp_4b*x/

$¢/4

L' (TF)

L' (v)



Predicting Solitons (w=0)

5-brane —

P |Magnetic | Electric
0 0 R (pt) = Zs
1 0 RP(pt) = Z
2 0 0

3 0 0

4 0 0

5 R*pt)=7Z O

6 0 0

7 R2(t)=2Z9 0

8 |R7(pt) =17, 0

9 |[R(pt) =Z 0

«— string



Orientifold Precis : NSNS
Spacetime

1. X: dim=10 Riemannian orbifold with dilaton
2. Orientifold double cover: w € H' (X, Zs)

3. B-field: Geometric twisting of K R(X,,).
mod Bott: [#] € R¥~H(X)

4. Twisted spin structure:

k:R(B) — TBO(TX —2)



Orientifold Préecis: Conseguences

1. Well-defined worldsheet measure.
2. K-theoretic definition of RR charge of O-planes

3. Localization formula (inverting (1 —¢) )

_ 1 kTITE(F)
K= (¢1/2(’<§ 1EU161’(V)))

4. Well-defined spacetime fermions,
and well-defined coupling to RR field

5. Possibly, new solitons




Conclusion

The main future direction is in applications
Destructive String Theory?

*Tadpole constraints (Gauss law)

eSpacetime anomaly cancellation



Thank you Is!

And Happy Birthday !



