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Prologue & Apologia

A few years ago, Dan Freed and | were quite intrigued by the papers of
Kitaev; Fu, Kane & Mele; Balents & J.E. Moore; Furusaki, Ludwig, Ryu &
Schnyder; Roy; Stone, et. al. relating classification of topological phases
of matter to K-theory.

So, we spent some time struggling to understand what these papers had
to say to us, and then we wrote our own version of this story. That paper
is the subject of today’s talk.

I’ll be explaining things that you all probably know, but in a language
which is perhaps somewhat unusual.

This is perhaps not a completely silly exercise because the new language
suggests interesting (?) questions which might not otherwise have been
asked.



Main goal for today:

Give some inkling of how classification of
topological phases can be made

equivariant wrt physical symmetries, just
using basic axioms of guantum mechanics.

and in particular for free fermions how
one is led to twisted equivariant K-theory.



Physical Motivations -1

Topological phases = connected components of continuous
families of gapped nonrelativistic QM systems

Restrict to physical systems with a symmetryfgroup G and
look at contijuous families of systems with Gsymmetry: We
get a refined picture




Physical Motivations - 2

Suppose we have a (magnetic) crystallographic group:

l1-I1—-GIC)—P—1

In band structure theory one wants to say how the (magnetic) point
group P acts on the Bloch wavefunctions. But this can involve tricky
phases. If P(k) is a subgroup of P which fixes k how are the phase-
choices related for different P(k,) and P(k,)?

Textbooks deal with this in an ad hoc and unsatisfactory (to me) way.

The theory of twistings of K-theory provides a systematic
approach to that problem.
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Symmetry in Quantum Mechanics:
Wignher’s Theorem

H Complex Hilbert space
IPH  Pure states: Rank one projectors

Aut (IP,H) Automorphisms preserving TI'(Pl Pz)

quantum overlaps

Wigner's 1  U(1) — Autg(#) — Aut(PH) — 1
Theorem:

Two components: ¢H\ / QSIP’H

unitary & antiunitary M, = {:1}




Symmetry Group G of the Quantum
State Space

1—>U1—>G’f—) G—>1

| el

1 —-U(1 )—>AutR(’H9 —>Azut (PH) —

OH \ \\vy ¢P7—L

My = {£1}




Lighten Up!
We need to lighten the notation.
geG" —» geaG

denotes a lift of g (there are many: torsor for U(1) )

Pc(g) = ¢c(g) € Mz = {+1}

So, just denote all four homomorphisms by ¢;
distinguish by context.




¢-Twisted Extension

So define abstract notion of a ¢-twisted extension of a Z,-graded group

1 —=>U(1) > G7 — G —1
|

N\
h |
3NN ¢
AR
Moy & {::1}
Wigner: Given a quantum symmetry group G of the states we get a
¢-twisted extension of G with a " ¢-twisted representation”

. linear ¢(g) = +1
p"(g) = s L
anti — linear ¢(g) = —1

Aj = GA?9)




Symmetry of the Dynamics

If the physical system has a notion of time-orientation, then a
physical symmetry group has a homomorphism

t:G%MQg{__l}

Time-translationally invariant systems have unitary evolution:
U(s). Then G is a symmetry of the dynamics if:

pT(§)U(s)p™(§)~! = U(t(g)s) = e *H@)sH/R
p"(9)H = c(g)Hp" (g)
c(g) := ¢(9)t(g)




Dynamics - Remarks

c(g)p(g)t(g) =1

Which one is dependent on the other two
depends on what problem you are solving.

If c(g) =-1 for any group element then
Spec(H) is symmetric around zero

So, if H is bounded below and not above
(as in typical relativistic QF T examples)
then c=1 and ¢=t (as is usually assumed).
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Gapped Systems

Definition: A QM system is gapped if O is in the resolvent set
of H, i.e. 1/H exists and is a bounded operator.

Remark: In this case the Hilbert space is Z,-graded by

sign(H): 1 — HO o Hl
E<0/ \ E

So, if G is a symmetry of a gapped quantum system we get a
¢d-twisted extension with:

o ftmear b9 +1 n_ feven clg)=+1
p1(9) = {anti — linear ¢(g) = —1 pr(9) {Odd c(g) = —1

>0




(@, T, c)-Twisted Representation of G

Again, this motivates an abstract definition:

Definition: A (¢, 7,c)-twisted Representation of G is:
1. A ¢-twisted extension:

1-2U1) - G — G —1
2. Together with a Z,-graded vector space V and a

homomorphism p" : GT — End(V)

~/~ | linear #lg) =+1 7.~ _ )even c(g) = +1
pr9) = {anti — linear ¢(g) = —1 p7(9) {Odd c(g) = —1



Continuous Families of Quantum
Systems with Symmetry

Define isomorphic quantum systems with symmetry type (G, ¢, 7,c)

Define notion of a continuous family of gapped quantum
systems with symmetry type (G, ¢, 7, c)

(Hu-Ha G7 ¢7 T, C)O NS (H7H7 Gv ¢7 T, C)l

if there is a continuous family parametrized by [0,1] with end-
systems isomorphic to systems 0 & 1.

TP(G ¢ - C) Set of homotopy classes of gapped
" ¥y Iy

systems with symmetry type (G, ¢, 7, c)



Algebraic Structure -1

In general the only algebraic structure is given by
combination of systems with the same symmetry type.

Hiyo = Hi1 ® Ho

H,.=H®®1+1QHy, —+---

Not much explored....

.... might not be that interesting ...



Algebraic Structure: Free Fermions
HFock — A*Y HDN ~ V@V

Monoid structure: 7'[1_|_2 — H{)N & ’Hé)N

Now define " Free fermions with a symmetry”’

“Group completion” or "quotient” by a suitable
notion of topologically trivial systems”

mmm) Abeliangroup R7T P(G, ¢, T, ¢)

Under special assumptions about the symmetry type (G,9,7,c)
RIT P can be identified with a twisted K-theory group.




Introduction

Review of symmetry in quantum mechanics

Gapped systems and (reduced) topological phases

Equivariant twisted K-theory of a point

Finite-dimensional systems and the 10 CT-groups
Digression: Dyson’s 3-fold way and Altland-Zirnbauer

Bloch Theory
Equivariant twisted K-theory of a groupoid.

Back to Bloch 1o



Equivariant K-theory of a Point

Now let G be compact Lie group. (It could be a finite group.)

Ks(pt) is the representation ring of G. It can be defined in two ways:

Group completion of the monoid of finite-dimensional
complex representations.

Typical element: R, —R,, with R;,R,, finite-dimensional
representations on complex vector spaces.

Rep.(G): Z,-graded fin. dim. cplx reps (with even G-action);

Triv(G) : Those with an odd automorphism P: Pp(g) = p(g) P.

Ka(pt) = Rep,(G)/Trivs(G)



Twisting Equivariant K-theory of a point

There are very sophisticated viewpoints in terms of "nontrivial
bundles of spectra’ ... but here twisting just amounts to changing
some signs and phases in various defining equations.

We'll get a little more sophisticated later.

p(g1)p(92) = A(g1,92)p(9192)

1-U(1) -G -G—1



An example of a twisting of the equivariant K-theory
of a point” is just an isomorphism class of a central

extension of G

Now we can form a monoid of twisted representations
(= projective representations of G = representations of
G7) and group complete or divide by the monoid of trivial

representations to get an abelian group:

K (pt) := Kg-(pt)



Example

Consider a 2-dimensional Hilbert space € = C?
1 >U(l) > U((2) X Zo — SO(3) xZgy — 1
1 ->U(1) = U(2) - SO3) — 1

Kye) C Ksu@yxvua) 2 Kso@yxu@)

Kso@)yxua) = 20+, f2 —1]
Ky (2) = Z[6H, f]




Adding the other ingredients we saw from the general
realization of symmetry in gapped quantum mechanics gives
new twistings:

(qb, C) G — Mg,z = {::1} X {::1}
prwisted 1 L U(1) 5 GT = G =1

extension

A(gla gZ)A(gng: 93) — A(QZ) g3)¢(gl)A(gla 9293)

¢K8c(pt) - Reps(GTa ¢7 C)/TI‘iVS(GT, Qb, C)

“Pairing of

“Trivial” Pp'T (g) — C(g)pT (g)P particles and

holes”




Example
G = (o) = M,
¢(0’) = +1 1—->U(l) >U(1) x Mg > My — 1

p(c)=—1 1-U1)—>Pin"T(2) > M —1

dp(c) =—1 1—U()—=Pin"(2) > M —1
Kz, (pt) =2 Z & Ze Sign rep.
qbK%;_ (pt) = Z f] Real rep f = R?
gbK%; (pt) - Zq]— H-rep. q=H, odd

powers
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Finite-Dimensional Systems

Continue to take G to be a compact group.

Restrict to finite-dimensional Hilbert space #
Tpﬁnite(Gv qbv T, C) — Reps(G7 ¢7 T, C)

Proof: 1. Homotope Hto H>=1 & (twisted) reps of compact
groups are discrete.

For R P: Use monoid structure provided by free fermions:

With a suitable notion of " trivial system’” — perhaps justified
by pairing of particles and holes’” we obtain:

RTPﬁnite(Ga ¢7 T, C) — qngC(pt)



5 subgroups: / T \
There are 10 possible ¢-twisted
extensions. They are determined \ T /

by whether the lifts T,C satisfy: 1

T2 = 41 and/or Cz = +1




t(T)

~1,t(C)=+1 ¢(T) =+1,¢(C) = -1

Theorem: The category of (A, ¢, 7, c)-twisted representations,
where A is a subgroup of M, , , is equivalent to the category

of modules of real or complex Clifford algebras.
A 1 |diag [{*x1} x1| € |1x{x1}| € |{x1}x1| € |1x{x1}| €
T? +1 +1 ~1 —1 ~1 +1
c? —1 ~1 ~1 +1 +1 +1
R C]'g CIEI ClO C‘1—1 Cl_) Cl_3 Cl__l Cl_:; Cl_g Cl—T

Various versions of this statement have appeared in Kitaev; Ludwig et.

al.; Fidkowski & Kitaev; Freed & Moore

It is also related to the Altland-Zirnbauer-Heinzner-Huckleberry solution
of the free fermion Dyson problem. (See below.)



Relation to standard K-theories

There is in turn a relation between twistings of K-theories,
central simple superalgebras, and simple degree shift of K-
groups, so that in the very special case where

GT:ATxGO

Go = ker(t, ¢)

A ! |diag |{£1} x1| € [1x{x1}| € [{xi}x1| € |1ix{x1}| @

i +1 +1 ~1 —1 ~1 +1

C? —1 ~1 —1 +1 +1 +1
“Kef || K, | KGl| KOY, |Kogl| Kogz? | Kog*| Kog! |Kog’| Kozt | Kog!
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Digression: Dyson’s 3-fold way

Dyson’s Problem: Given a symmetry type (G,®,7) with c=1 and
F, what is the ensemble of commuting Hamiltonians?

Schur’s lemma for irreducible ¢-twisted representations:
Z(F€)) is a real associative division algebra.

Frobenius theorem: There are three real associative
division algebras R,C,H.

H = OANN Q@ Ha
Z(H) = @)\El’ld(N)\) X Dy
D), € {R, (C,H}



Generalizes to 10-fold way

Given a symmetry type (G,¢,7,c) and F, what is the
ensemble of graded-commuting Hamiltonians?

Schur’s lemma for irreducible (¢,7,c)-twisted representations:
Z(F€)) is a real associative super-division algebra.

Theorem (Wall, Deligne): There are ten real associative
super-division algebras:

Di = {060,221,222,2237 (CEO,l, H}
H= @)\N)\ X ’H)\
ZS(H) = @)\End(N)\) &) Di
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Noncompact groups?

When we generalize to noncompact groups and infinite-
dimensional Hilbert spaces there are many possibilities.

One physically important case is where we consider a crystal

C cE:.=R?

A set of points C with atoms, spins or currents invariant under
translation by a rank d lattice Il. Then C is invariant under the magnetic
crystallographic group. So there is an extension:

1 -1 —-GC)—P—1
Pc O(d) xz, is a finite group: = "Magnetic point group”

There are still too many possibilities for (¢,7) to say something about
J&P (p,7) so we narrow it down using some more physics.



Bloch Theory -1
CCFE:=R?

Single electron approximation:
H = L*(E; W)

W is a finite dimensional vector
space. e.g. for internal spin:

W =~ C?

The Schrodinger operator H is invariant under G(C)



Bloch Theory -2

Now, because G(C) is a symmetry of the quantum system the
Hilbert space # is a (¢,7,c)-twisted representation of G(C) for
some (¢,7,C).

G(C)™ acts on Hilbert space

For simplicity assume II acts without central extension
(i.e. no magnetic field).

1 —>II—->GC) - P —1



Bloch Theory -3

Now reinterpret € as the Hilbert space of sections of a
twisted equivariant Hilbert bundle over the Brillouin torus.

Y(k,z + R) = "k, 2)

R eIl ke T*

T .= E~ /H* Brillouin torus; Irreps of 11



Bloch Theory - 4

T := FE/II  Dual torus
Poincare line bundle: L = T*xT

Sections of L are equivalent to IT-equivariant functions:

T xFE — C
V(k,x + R) = et* Bk, )
LeT* & :=L*T;Lz;)
W= [2(E W) = L2(T* £ QW)



Insulators

The Hamiltonian H defines a continuous family of self-adjoint
operators on €. This gives the usual band structure:

_—
u7r '——:r—e., E:
\ :

UK b2 r

In an insulator there wil be a gap, hence an energy E; so that
we have a direct sum of Hilbert bundles:

EXEQET
E < By E > Ey



Equivariant Insulators: Two Cases

& and & are finite and infinite-dimensional Hilbert
bundles over T*, respectively.

For some purposes it is useful to focus on a finite number of
bands above the Fermi level and make &* a finite-
dimensional bundle.

Thus, there are two cases: &' has finite or infinite dimension.

Through the Fourier transform to Bloch waves this translates

into & and & being
“twisted equivariant bundles over the groupoid T*//P “ .

We next spend the next 10 slides explaining this terminology.
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Groups As Categories

Now we want to give a geometrical interpretation to (¢,7,c)-twisted
representations of G.

Suppose G is a group, and thlnk of it g
as acting on a point: f :

919/192
0—»0

(Two points are identified)
Therefore, we have

a category: One object: @  Morphisms are group elements
Axioms of a category are (This is a special category
equivalent to existence of because all morphisms are

identity and associativity. invertible.)



Central Extensions as Line Bundles

Now, for every group element g we give a complex line L,
together with a product law:

Aga,gr - Ligy @ Lgy — Lg,g,
Aga,g1 - bgy @ Ly — )\(92:91)£9291

Require associativity:

L93 & ng & Lgl — L939291

This defines a line bundle over the space of morphisms with a product
law. Then G7 is the associated principal U(1) bundle over G.



¢-Twisted Extensions

For a complex vector b %4 qﬁ = +1

space V define notation: . X7
: V ¢=-1

Now each arrow, g, has ¢(g) =+ 1 attached and we
modify the product law to

Aga,g1 - qb(gl)ng ® Lg, — Lg,g,

g2,9

Require associativity:

¢(9291)Lg3 X ¢(91)L92 & Lgy = Lgzgag:



(#,7,c)-twisted representations, again

First we use the homomorphism c: G - M, to give a
Z,-grading to the lines L.

A (¢,7,c)-twisted representation is a Z,-graded vector space V
(“vector bundle over a point”) together with a C-linear and
even isomorphism:

pg: P (Ly@V) =V

. fhnear ) =41 . _ Jeven c(g)=+1
pr(9) = {anti — linear ¢(g) = —1 p7(9) {Odd c(g) = —1



Groupoids

Definition: A groupoid ¢ is a category all of whose
morphisms are invertible

9
f O f — Points = objects
2 J1
/ are now NOT
identified.

f

Example: Group G acts on a topological space X.
Objects = X, Morphisms = X x G. Groupoid denoted G=X//G

CCOLOQ'CU



Composable Morphisms

go 0 O 0

GG 0=——>0

Ga  {(f,f,): end(f,)=beg(f,)) fz"f/' fz

0—»0

g3 {(f1zfz;f3): end(fi)=beg(fi+1)}

etc.



Twisting K-theory of a groupoid
Homomorphism of a groupoid G -M,: [} : Ql — M2

u(f2 o f1) = p(fo)u(f) (f1,f2) € G2

Definition: Let ¢ be a groupoid with homomorphisms
¢,c: G ->M,. A (¢,c)-twisting of the K-theory of ¢ is:

a.) A collection of Z,-graded complex lines L;, V fe ¢,, Z,-graded by c(f).

b.) A collection of C-linear, even, isomorphisms (data on G,):

Moo 2?9 Ly, ® Ly — Lisor,

c.) Satisfying the associativity (cocycle) condition (on G,)



Remarks

We define a twisting of K-theory of § before defining the K-theory!

We will think of twistings of T*// P as defining a symmetry
class of the band structure problem.

These twistings have a nice generalization to a class of
geometrical twistings given by bundles of central simple
superalgebras and invertible bimodules.

Isomorphism classes of such twistings, for G =X//G are given,
as a set, by

He(X;Z2) x Hg(X;Z2) x HE(X;Zg)

(There are yet more general twistings,....)



Definition of a (@, 7, ¢)-twisted bundle

a.) A complex Z,-graded bundle over ¢,

b.) A collection of C-linear, even isomorphisms

over G, f

pa:,f : qb(f) (Lf X V«'L'l) — sz

c.) Compatibility (gluing) condition on G,



Definition of twisted K-theory on a
groupoid

Isomorphism classes of v-twisted bundles form a
monoid Vect’(G) under &.

Triv¥(@) is the submonoid of bundles with an odd
automorphism P: V- V

K" (G) := Vect”(G) /Triv” (G)
K"(X//G) := ?K§°(X)

is a generalization of equivariant KR-theory with twistings and

groupoids. For X=pt recover previous description.
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Back to Bloch
H= (T (ETQET) QW)

The magnetic point group P™ acts on F#€ to define a twisted
equivariant bundle over T* with a canonical twisting v

can

" FINITE CT INFINITE

Vean " projects onto:
sVect”*™ (I / / P)|  veetveon (T //P)

TP

RTP



Relation to more standard K-groups

Take & to be infinite-dimensional, and assume:

(G(C)Tv P, C) = (ATv P, C) X Go

A N

I



Cases studied in the literature
G(C) = (P) x H
d(P) = t(P) =

(P
( ) ( ) —4 (% Kane, et. al.
o(T) = 4(T) = —1 KT

G(C)=(T,PyxIl KO (T

K(Z)2 (T* ) Turner, et. al.

Remark: Kane-Mele and Chern-Simons invariants descend to
RT P and are equal. KO invariant refines Kane-Mele invt.



Example: Diamond Structure

P = (I) x Cubic KVean(T*//P) =7
Localization:

S—1KVean (T )/ P) =2 S—LEK Mean) (T%)T)
(T*)I 8 Fixed Points under k — - k

[' U Orbit of 4 L-points U Orbit of 3 X-points



A K-theory invariant

which is an element of Rep(Zz X D4) X Z[%]



Things To Do

Compute the canonical twisting and the equivariant
K-groups for more elaborate (nonsymmorphic)
magnetic crystallographic groups.

Relate K-theory invariants to edge-phenomena and
entanglement spectra.

Are there materials which realize twistings other than
the canonical twisting? They would have to be exotic.



