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Algebra of the Infrared



Three Motivations 

1. Two-dimensional N=2 Landau-Ginzburg
models.   

2. Knot homology. 

3. Categorification of 2d/4d wall-crossing formula.

(A unification of the Cecotti-Vafa and Kontsevich-Soibelman formulae.) 



D=2, N=2 Landau-Ginzburg
Theory

X:   Kähler manifold 
W: X ö C     Superpotential (A holomorphic Morse function)

Simple question:   

Answer is not 
simple!

What is the space of BPS states on an interval ? 



Witten (2010) reformulated knot homology in terms of 
Morse complexes. 

This formulation can be further refined to a problem in 
the categorification of Witten indices in certain LG 
models (Haydys 2010, Gaiotto-Witten 2011)

Gaiotto-Moore-Neitzke studied wall-crossing of BPS 
degeneracies in 4d gauge theories. This leads naturally 
to a study of Hitchin systems and Higgs bundles. 

When adding surface defects one is naturally led to a 
“nonabelianization map” inverse to the usual abelianization map 
of Higgs bundle theory. A “categorification” of that map should 
lead to a categorification of the 2d/4d wall-crossing formula. 
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Definition of a Plane Web

We show later how it emerges from LG  field theory. 

Vacuum data: 

2. A set of weights 

1.   A finite set of ``vacua’’: 

Definition: A  plane web is a graph in R2, together with a labeling 
of faces by vacua so that across edges labels differ and if an edge 
is oriented so that i is on the left and j on the right then the edge is 
parallel to zij = zi – zj . 

We begin with a  purely mathematical construction.



Useful intuition: We are joining together straight strings under a 
tension zij. At each vertex there is a no-force condition: 



Deformation Type
Equivalence under translation and stretching (but not rotating) of 
strings subject to no-force constraint defines deformation type. 



Moduli of webs with fixed 
deformation type

(zi in generic position) 

Number of vertices, internal edges. 



Rigid, Taut, and Sliding

A rigid web has d(w) = 0. 
It has one  vertex: 

A taut web has 
d(w) = 1: 

A sliding web has 
d(w) = 2 



Cyclic Fans of Vacua
Definition: A cyclic fan of vacua is a cyclically-ordered set  

so that the rays are ordered 
clockwise

Local fan of vacua
at a vertex v: 

and at ¶



Convolution of Webs

Definition: Suppose w and w’  are two plane webs and 
v  V(w)  such that

The convolution of w and w’ , denoted  w *v w’  is the 
deformation type where we glue in a copy of w’  into a 
small disk cut out around v. 





The Web Ring
Free abelian group generated by oriented 
deformation types of plane webs. 

``oriented’’:  Choose an orientation o(w) of Dred(w)



The taut element

Definition: The taut element t is the sum of all taut webs 
with standard orientation

Theorem: 





Extension to the tensor algebra

• vanishes  unless there is some ordering of the vi   so that the fans match up. 

• when the fans match up we take the appropriate convolution. 

Define an operation by taking an unordered set {v1, … , vm} and 
an ordered set {w1,…, wm} and saying



Convolution Identity on Tensor Algebra

satisfies L¶
relations

Two-shuffles:  Sh2(S)

This makes W   into an L¶ algebra



Half-Plane Webs 
Same as plane webs, but they sit in a half-plane  H. 

Some vertices (but no edges) are allowed on the boundary. 

Interior vertices

time-ordered
boundary vertices. 

deformation type, reduced moduli space, etc. …. 



Rigid Half-Plane Webs



Taut Half-Plane Webs



Sliding Half-Plane webs



Half-Plane fans
A half-plane fan is an 
ordered set of vacua,  

are ordered 
clockwise: 

such that successive 
vacuum weights: 



Convolutions for Half-Plane  Webs

Free abelian group generated by 
oriented def. types of half-plane webs 

There are now two 
convolutions: 

Local half-plane fan at a boundary vertex v: 

Half-plane fan at infinity: 

We can now introduce a convolution at boundary vertices: 



Convolution Theorem

Define the half-plane 
taut element:

Theorem:

Proof: A sliding half-plane web can degenerate 
(in real codimension one)  in two ways: Interior edges can 
collapse onto an interior vertex, or boundary edges can collapse 
onto a boundary vertex. 





Tensor Algebra Relations

Sum over ordered 
partitions: 

Extend tH* to tensor algebra operator 



Conceptual Meaning

WH is an L¶ module for the L¶ algebra W

There is an L¶ morphism from the  L¶
algebra W   to the L¶ algebra of the 
Hochschild cochain complex of WH

WH is an A¶ algebra 



Strip-Webs

Now consider webs in the strip

Now taut and rigid strip-webs are the same, and have d(s)=0.  

sliding strip-webs have d(s)=1. 



Convolution Identity for Strip t’s

Convolution theorem: 

where for strip webs we denote time-concatenation by





Conceptual Meaning

WS :  Free abelian group generated 
by oriented def. types of strip webs. 

+ … much more 

W S is an A¶ bimodule

There is a corresponding elaborate identity 
on tensor algebras …



Outline

33

Introduction & Motivations  

Web Constructions with Branes

Supersymmetric Interfaces

Summary & Outlook

Landau-Ginzburg Models & Morse Theory

Web Representations

Webs, Convolutions, and Homotopical Algebra



Web Representations
Definition: A representation of webs is 

a.) A choice of Z-graded Z-module Rij for every ordered 
pair ij of distinct vacua. 

b.) A degree = -1 pairing 

For every cyclic fan of vacua introduce a fan representation: 



Web Rep & Contraction

Given a rep of webs and a deformation type w
we define the representation of w : 

by applying the contraction K to the pairs Rij
and Rji on each edge: 

There is a natural contraction operator: 





L¶ -algebras, again

Now, 

Rep of the rigid webs. 



Half-Plane Contractions
A rep of a half-plane fan: 

r(u) now contracts 

time ordered!



The Vacuum A¶ Category

Objects:  i  V. 

Morphisms: 

(For the positive half-plane H+ )



Hint of a Relation to Wall-Crossing

The morphism spaces can be defined by a Cecotti-
Vafa/Kontsevich-Soibelman-like product as follows: 

Suppose V = { 1, …, K}.  
Introduce the elementary K x K matrices eij

phase ordered!



Defining A¶ Multiplications
Sum over cyclic fans: 

Interior 
amplitude: 

Satisfies the L¶
``Maurer-Cartan equation’’  



Proof of A¶ Relations



Hence we obtain the A¶ relations for : 

and the second line vanishes.

Defining an A¶ category : 



Enhancing with  CP-Factors
CP-Factors:   Z-graded 

module 

Enhanced A¶ category : 



Example: Composition of two morphisms



Boundary Amplitudes
A Boundary Amplitude  B   (defining a Brane) is 
a solution of the A¶ MC:  
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Constructions with Branes
Strip webs with Brane boundary conditions help answer 
the physics question at the beginning. 

The Branes themselves are 
objects in an A¶ category 

Given a (suitable) continuous path  of data  
we construct an invertible functor between Brane
categories, only depending on the homotopy class of the 
path.  (Parallel transport of Brane categories.) 

(“Twisted complexes”:  Analog of the derived category.) 



Convolution identity implies: 



Interfaces webs & Interfaces
Given  data  

These behave like half-plane 
webs and we can define an 
Interface Amplitude to be a 
solution of the MC equation: 

Introduce a notion of ``interface webs’’ 



Composite webs
Given  data  

Introduce a notion of ``composite webs’’ 



Composition of Interfaces

Defines a family of A¶ bifunctors: 

Product is associative up to homotopy
Composition of such bifunctors leads to categorified
parallel transport

A convolution identity implies: 
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Physical  ``Theorem’’ 

Finitely many critical points with critical values in general position. 

• Vacuum data. 
• Interior amplitudes. 
• Chan-Paton spaces and boundary amplitudes. 
• “Parallel transport”  of Brane categories.  

(X,w):   Kähler manifold (exact)

W: X ö C  Holomorphic Morse function

Data

We construct an explicit realization of above: 



Vacuum data: 
Morse critical points fi

Actually, 

Connection to webs uses BPS states: 

Semiclassically, they are solitonic particles. 

Worldlines preserving “-supersymmetry”
are solutions of the “-instanton equation”





Now, we explain this more 
systematically … 



SQM & Morse Theory
(Witten: 1982) 

M: Riemannian;  h: M ö R,  Morse function

SQM: 

MSW 
complex: 



1+1 LG Model as SQM
Target space for SQM: 

Recover the standard 1+1 LG model with superpotential: 
Two –dimensional -susy algebra is manifest. 



Boundary conditions for f

Boundaries 
at infinity: 

Boundaries at finite 
distance: Preserve 
-susy: 



Lefshetz Thimbles
Stationary points of h are solutions to the differential equation

If D contains x ö -¶

The projection of solutions to the complex W plane sit along 
straight lines of slope z

If D contains x ö +¶

Inverse image in X 
defines left and right 
Lefshetz thimbles 

They  are  Lagrangian
subvarieties of X 



Solitons For D=R

For general z there is 
no solution. 

But for a  suitable phase  there is a 
solution 

Scale set 
by W

This is the classical soliton. 
There is one for each 
intersection (Cecotti & Vafa)

(in the fiber of a regular value)



MSW Complex 

(Taking some shortcuts here….) 



Instantons
Instanton equation 

At short distance scales  W is irrelevant and we 
have the usual holomorphic map equation. 

At long distances  the theory is almost trivial since it has 
a mass scale, and it is dominated by the vacua of W. 



Scale set 
by W





The Boosted Soliton - 1

Therefore we produce a solution of the instanton
equation with phase z if 

We are interested in the -instanton equation for a fixed generic 

We can still use the soliton to produce a solution for phase 



The Boosted Soliton -2

Stationary 
soliton

Boosted 
soliton

These will define 
edges of webs…



Path integral on a large disk 

Consider a cyclic fan of vacua I = {i1, …, in}. 

Consider the path integral on a large disk:  

Choose boundary conditions preserving -supersymmetry: 



Ends of moduli space

This moduli space has several 
“ends” where solutions of the -
instanton equation look like 

Path integral localizes on moduli space of -
instantons with these boundary conditions: 



Label the ends by webs w.  Each end produces 
a wavefunction (w) associated to a web w. 

The total wavefunction is 
Q-invariant

L¶ identities on the interior amplitude

The wavefunctions (w)  are themselves constructed by gluing 
together wavefunctions (r)  associated with rigid webs r

Interior Amplitude From Path Integral 



Half-Line Solitons
Classical solitons on the right 
half-line are labeled by: 

MSW complex: 

Grading the complex: Assume X is CY  and that we can 
find a logarithm:  

Then the grading is by 



Scale set 
by W

Half-Plane Instantons



The Morse Complex on R+
Gives Chan-Paton Factors

Now introduce Lagrangian boundary conditions L : 

define boundary conditions for the -
instanton equation: 

Half-plane fan 
of solitons: 





Boundary Amplitude from Path Integral

Again Q=0 implies that counting solutions to the instanton
equation constructs a boundary amplitude with CP spaces 

Construct differential on the complex on the strip. 

Construct objects in the category of Branes



A Natural Conjecture
Following constructions used in the Fukaya category, Paul Seidel 
constructed an A¶ category FS[X,W] associated to a holomorphic 
Morse function W: X to C. 

Tw[FS[X,W]]  is meant to be the category of A-branes of the LG 
model. 

But, we also think that Br[Vac[X,W]]  is the category of A-branes of 
the LG model!

Tw[FS[X,W]]  @ Br[Vac[X,W]] 

So it is natural to conjecture an equivalence of A¶
categories: 

“ultraviolet” “infrared” 



Solitons On The Interval

The Witten index factorizes nicely: 

But the differential  

is too naïve !

Now consider the finite interval [xl, xr] with boundary 
conditions Ll, Lr

When the interval is much longer than the scale set by 
W the MSW complex is



Instanton corrections to the naïve 
differential 
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Families of Theories

Now consider a family of Morse functions

Let  be a path in C connecting z1 to z2. 

View it as a map z: [xl, xr] ö C with z(xl) = z1 and z(xr) = z2

C



Domain Wall/Interface

From this construction it manifestly 
preserves two supersymmetries. 

Using z(x) we can still formulate our SQM!



Parallel Transport of Categories

To  we associate an   A¶ functor

To a homotopy of 1 to 2 we associate an equivalence 
of A¶ functors. ( Categorifies CVWCF.) 

To a composition of paths we associate a composition of A¶
functors: 

(Relation to GMN:  “Categorification of S-wall crossing”) 
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Summary
1.We gave a viewpoint on instanton corrections in 1+1 

dimensional LG models based on IR considerations. 

2. This naturally leads to L¶ and A¶ structures. 

3. As an application, one can construct the (nontrivial) 
differential which computes BPS states on the interval. 

4. When there are families of LG superpotentials there is 
a notion of parallel transport of the A¶ categories.



Outlook
1. Finish proofs of parallel transport statements. 

2.  Relation to S-matrix singularities? 

4. Generalization to 2d4d systems: Categorification of 
the 2d4d WCF. 

5. Computability of Witten’s approach to knot homology? 
Relation to other approaches to knot homology?   

3. Are these examples of universal identities for 
massive 1+1 N=(2,2) QFT?  


