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Web Formalism and the IR limit 
of massive 2D N=(2,2) QFT 

A short ride with a big machine  
- or -



So, why isn’t it on the arXiv ?   

The draft seems to have stabilized for a while at 
around 350 pp …..     

In our universe we are all familiar with the fact that

In that part of the multiverse in which we have the 
refined identity

our paper has definitely been published!

So, why isn’t it on the arXiv?  



Several talks on my homepage. 

Much ``written’’ material is available: 

Davide Gaiotto: Seminar at Perimeter, Fall 2013: 
``Algebraic structures in massive (2,2) theories 

In the Perimeter online archive of talks. 

Davide Gaiotto: ``BPS webs and 
Landau-Ginzburg theories,’’  
Talk at String-Math 2014. On the web. 



Three Motivations 

1. IR sector of massive 1+1 QFT with N =(2,2) 
SUSY

2. Knot homology. 

3. Spectral networks & categorification of 2d/4d 
wall-crossing formula [Gaiotto-Moore-Neitzke].

(A unification of the Cecotti-Vafa and Kontsevich-Soibelman formulae.) 



Summary of Results - 1  

Result: When we take into account the BPS 
states there is an extremely rich mathematical 
structure.  

We develop a formalism     

that shows:  

(that’s the big machine)   

– the ``web-based formalism’’ –



Results - 2  
BPS states have ``interaction 
amplitudes’’ governed by an L¶
Maurer-Cartan equation. 

There is an A¶ category of branes, 
with amplitudes for emission of BPS 
particles from the boundary governed 
by solutions to the A¶ MC equation.

If we have a pair of theories then 
we can construct supersymmetric
interfaces between the theories. 



Theories and their interfaces form an A¶ 2-category.  

Results - 3  

The flatness of this connection implies, and is a 
categorification of, the 2d wall-crossing formula. 

The parallel transport of Brane categories is 
constructed using interfaces. 

Given a continuous family of theories 
(e.g. a continuous family of LG superpotentials) 
we show how to construct a ``flat parallel transport’’ 
of Brane categories. 

Such interfaces define A¶ functors between Brane
categories. 
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Basic Example: LG Models

(X,w):   Kähler manifold.   

W: X ö C     A holomorphic Morse function

To this data we assign a 1+1 dimensional QFT 



Morse Theory

M is an infinite-dimensional Kahler manifold. 

Morse function: 



SQM 

Target space for SQM: 

Morse theory is known to physicists as 
Supersymmetric Quantum Mechanics (Witten 1982): 

SQM superpotential



Relation to LG QFT

Massive LG vacua are Morse critical points:  

Label set of LG vacua:  

Plug into SQM action and recover the standard 
1+1 LG model with (LG) superpotential W.  



MSW Complex: Semiclassical
vs. True Groundstates

SQM instanton
equation: 

n(p,p’) counts ``rigid instantons’’  - with zero reduced 
moduli – d2=0 thanks to broken flows at ends. 

Space of SQM groundstates (BPS states) is the cohomology. 

MSW 
complex: 



Apply to the LG model: 

Time-independent: -soliton equation: 

We call this the -instanton equation



Physical Meaning of the
-instanton equation - 1

LG field theory has (2,2) supersymmetry: 



U()[Fermi] =0  implies the -instanton equation: 

We are interested in situations where 
two supersymmetries are unbroken:

Physical Meaning of the
-instanton equation - 2



Boundary conditions for f

Boundaries 
at infinity: 

Boundaries at finite 
distance: Preserve 
-susy: 

(Simplify: w=dl)



Solitons For D=R

For general z there is 
no solution. 

But for a  suitable phase  there is a 
solution 

Scale set 
by W

This is the classical soliton. 
There is one for each 
intersection (Cecotti & Vafa)

(in the fiber of a regular value)



MSW Complex 

(Taking some shortcuts here….) 

We can discuss ij BPS states using Morse theory: 

Equivalent to the -soliton
equation



A soliton of type ij preserves 
the supersymmetry algebra 
generated by: 

Differential obtained from counting solutions 
to the -instanton equation with  = ji and 
no reduced moduli: 



Scale set 
by W





Example of a categorified WCF: 



BPS Index
The BPS index is the Witten index: 

``New supersymmetric index’’ of  Fendley & Intriligator; 
Cecotti, Fendley, Intriligator, Vafa;  Cecotti & Vafa c. 1991

Remark: It can be computed as a signed sum 
over classical solitons: 



These BPS indices were studied by [Cecotti, Fendley, 
Intriligator, Vafa and by Cecotti & Vafa]. They found the 
wall-crossing phenomena: 

Given a one-parameter family of W’s: 



One of our goals is to ``categorify’’ this 
wall-crossing formula. 

That means understanding what actually 
happens to the ``off-shell complexes’’ 
whose cohomology gives the BPS states.

We just defined the relevant complexes: 



Replace wall-crossing for indices: 



Sometimes categorification is 
not always so straightforward:

An example is provided by studying BPS 
states on the interval [xl,xr]. 



BPS Solitons on half-line D: 
Boundary condition preserves U()

U() -preserving BPS states must be solutions of

Classical solitons on the 
positive half-line are labeled by: 



MSW complex: 

Assume X is CY  and that we can find a logarithm:  

Grading on complex? 

BPS States on half-line D: 



Scale set 
by W

Half-Plane Instantons



The theory is massive:

For a susy state, the field in the middle of a large 
interval is close to  a vacuum:

What is the space of BPS states on an interval ? 



Naïve categorification?   

No!

Witten index on the interval  



Solitons On The Interval

So Witten index factorizes nicely: 

But the differential  

is too naïve !

When the interval is much longer than the 
scale set by W the MSW complex is





Instanton corrections to the naïve 
differential 
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The Boosted Soliton - 1

Therefore we produce a solution of the instanton
equation with phase z if 

We are interested in the -instanton equation for a fixed generic 

We can still use the soliton to produce a solution for phase 



The Boosted Soliton -2

Stationary 
soliton

``Boosted 
soliton’’

These will define 
edges of webs…



The Boosted Soliton - 3
Put differently, the stationary soliton in Minkowski space 
preserves the supersymmetry: 

So, a boosted soliton preserves supersymmetry : 

b is a real boost: In Euclidean space this becomes a 
rotation: 

And for suitable q this will preserve U()-susy



More corrections to the naïve 
differential 





Path integral on a large disk 

Consider a cyclic ``fan of solitons’’   
Choose boundary conditions preserving -supersymmetry: 



Localization

The path integral of the LG model with these 
boundary conditions localizes on moduli space of  
-instantons: 

We assume the mathematically nontrivial statement that, 
when the ``fermion number’’ of the boundary condition at 
infinity is positive then the moduli space is nonempty. 



Gluing

Two such solutions can 
be ``glued’’ using the 
boosted soliton solution -



Ends of moduli space
This moduli space has several “ends” where 
solutions of the -instanton equation look like 

We call this 
picture a 
 - web: w



-Vertices & Interior Amplitudes

The red vertices represent solutions from the 
compact and connected components of 

The contribution to the path integral from such 
components  are called ``interior amplitudes.’’  
For the zero-dimensional moduli spaces they 
count (with signs) the  solutions to the -instanton
equation. 



The state created by the path integral with fan 
boundary conditions should be U()-invariant.

L¶ identities on the interior amplitudes

Path Integral With Fan Boundary Conditions
Just as in the Morse theory proof of d2=0 using ends of moduli space 
corresponding to broken flows, here the broken flows correspond to webs w
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Definition of a Plane Web

It is motivated from LG  field theory. 

Vacuum data: 

2. A set of weights 

1.   A finite set of ``vacua’’: 

Definition: A  plane web is a graph in R2, together with a coloring 
of faces by vacua (so that across edges labels differ) and if an 
edge is oriented so that i is on the left and j on the right then the 
edge is parallel to zij = zi – zj . (Option: Require vertices at least 3-valent.)

We now give a  purely mathematical construction.





Deformation Type
Equivalence under translation and stretching (but not 
rotating) of edges subject to slope constraints defines 
deformation type. 



Moduli of webs with fixed 
deformation type

(zi in generic position) 



Cyclic Fans of Vacua
Definition: A cyclic fan of vacua is a cyclically-ordered set  

so that the rays are ordered 
clockwise



Fans at vertices and at 

Local fan of vacua at a vertex v: 

For a web w there are two kinds of cyclic fans we 
should consider: 

Fan of vacua  : 



Convolution of Webs

Definition: Suppose w and w’  are two plane webs and 
v  V(w)  such that

The convolution of w and w’ , denoted  w *v w’  is the 
deformation type where we glue in a copy of w’  into a 
small disk cut out around v. 





The Web Ring
Free abelian group generated by oriented 
deformation types of plane webs. 

``oriented’’:  Choose an orientation o(w) of Dred(w)



Rigid, Taut, and Sliding

A rigid web has d(w) = 0. 
It has one  vertex: 

A taut web has 
d(w) = 1: 

A sliding web has 
d(w) = 2 



The taut element
Definition: The taut element t is the sum of all taut webs 
with standard orientation

Theorem: 
Proof: The terms can be arranged so that 
there is a cancellation of pairs: 

Representing two ends of a moduli space of sliding webs 





Web Representations
Definition: A representation of webs is 

a.) A choice of Z-graded Z-module Rij for every ordered 
pair ij of distinct vacua. 

b.) A symmetric degree = -1 
perfect pairing 

For every cyclic fan of vacua introduce a fan representation: 





Web Rep & Contraction

Given a rep of webs and a deformation type w
we define the representation of w : 

by applying the contraction K to the pairs Rij
and Rji on each internal edge: 

There is a natural contraction operator: 





Extension to Tensor Algebra
Rep of all vertices. 

vanishes, unless 



Example



L¶ -algebras



L¶ and A¶ Algebras  
If A  is a vector space (or Z-module) then an ¶-
algebra structure is a series of multiplications: 

Which satisfy quadratic relations: 



The Interior Amplitude
Sum over cyclic fans: 

Interior 
amplitude: 

Satisfies the L¶
``Maurer-Cartan equation’’  

``Interaction amplitudes for solitons’’ 



Definition of a Theory

By a Theory we mean a collection of data



``Physics Theorem’’ 

The LG model with massive superpotential
defines a Theory in the above sense. 

In particular, the interior amplitudes bI defined 
by counting the number of solutions of the 
-instanton equation with no reduced moduli 
define solutions to the L¶ Maurer-Cartan
equation. 
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Half-Plane Webs 
Same as plane webs, but they sit in a half-plane  H. 

Some vertices (but no edges) are allowed on the boundary. 

Interior vertices

time-ordered
boundary vertices. 

deformation type, reduced moduli space, etc. …. 



Rigid Half-Plane Webs



Taut Half-Plane Webs



Sliding Half-Plane webs



Half-Plane fans

A half-plane fan is an 
ordered set of vacua,  

are ordered clockwise 
and in the half-plane: 

such that successive 
vacuum weights: 



Convolutions for Half-Plane  Webs

Free abelian group generated by 
oriented def. types of half-plane webs 

There are now two 
convolutions: 

Local half-plane fan at a boundary vertex v: 

Half-plane fan at infinity: 

We can now introduce a convolution at boundary vertices: 



Convolution Theorem

Define the half-plane 
taut element:

Theorem:

Proof: A sliding half-plane web can degenerate 
(in real codimension one)  in two ways: Interior edges can 
collapse onto an interior vertex, or boundary edges can collapse 
onto a boundary vertex. 





Half-Plane Contractions

A rep of a half-plane fan: 

r(u) now contracts R(u): 



The Vacuum A¶ Category

Objects:  i  V. 

Morphisms: 

(For H =  the positive half-plane )



Categorified Spectrum 
Generator/Stokes Matrix 

The morphism spaces can be defined by a 
Cecotti-Vafa/Kontsevich-Soibelman-like product: 

Suppose V = { 1, …, K}.  
Introduce the elementary K x K matrices eij

phase ordered!

Taking the index produces the matrix S of Cecotti-Vafa. 



A¶ Multiplication

Interior 
amplitude: 

Satisfies the L¶
``Maurer-Cartan equation’’  





Enhancing with  CP-Factors
CP-Factors:   Z-graded 

module 

Enhanced A¶ category : 



Example: Composition of two morphisms



Proof of A¶ Relations



Hence we obtain the A¶ relations for : 

and the second line vanishes.

Defining an A¶ category : 



Boundary Amplitudes
A Boundary Amplitude B   (defining a Brane) is 
a solution of the A¶ MC:  

``Emission amplitude’’ from the 
boundary: 



Category of Branes

The Branes themselves are 
objects in an A¶ category 

(“Twisted complexes”:  Analog of the derived category.) 
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Families of Data

?? How does the Brane category change?? 

We wish to define a ``flat parallel transport’’ of 
Brane categories. The key will be to develop a theory 
of supersymmetric interfaces. 

Now suppose the data of a Theory varies 
continuously with space: 

We have an interface or Janus between the theories 
at xin and xout. 



Interface webs & amplitudes
Given  data  

These behave like half-plane 
webs and we can define an 
Interface Amplitude to be a 
solution of the MC equation: 

Introduce a notion of ``interface webs’’ 



Category of Interfaces
Interfaces are very much like Branes,   

Note: If one of the Theories is trivial we simply 
recover the category of Branes. 

In fact we can define an  A¶ category of 
Interfaces between the two theories: 

Chan-Paton: 



Composition of Interfaces -1 

Want to define a ``multiplication’’ of the Interfaces…



Composition of Interfaces - 2 



Mapping of Branes

Special case: ``maps’’  branes in theory T 0 to 
branes in theory T + : 



Technique: Composite webs
Given  data  

Introduce a notion of ``composite webs’’ 



Def: Composition of Interfaces
A convolution identity implies: 

Physically: An OPE of susy Interfaces

Theorem: The product is an A¶ bifunctor

Interface 
amplitude



Associativity? 



Homotopy Equivalence

Product is associative up to homotopy equivalence

(Standard homological algebra)



Webology: Deformation type, taut element, 
convolution identity, … 



An A¶ 2-category

Objects, or 0-cells 
are Theories:

1-Morphisms, or 1-cells 
are objects in the 
category of Interfaces: 

2-Morphisms, or 2-cells 
are morphisms in the 
category of Interfaces: 





Parallel Transport of Categories
For any continuous path:

we want to associate an A¶ functor:



Interface-Induced Transport

Idea is to induce it via a suitable Interface: 

But how do we construct the Interface? 



Example: Spinning Weights

constant

We can construct explicitly: 



Technique: Curved Webs

Webology: Deformation type, taut element, 
convolution identity, … 



Reduction to Elementary Interfaces: 
The Interface is trivial except as some special “binding points” 



Future stable Past stable



CP-Factors for 

In this way we categorify the ``detour rules’’ of the 
nonabelianization map of spectral network theory. 

Future stable

Past stable



General Case? 

You can’t do that for arbitrary ƒ(x) !

To continuous  we want to associate an A¶ functor

etc. 





Categorified Cecotti-Vafa Wall-
Crossing

We cannot construct F[ƒ] keeping  b and Rij constant! 

Existence of suitable Interfaces needed for flat 
transport of Brane categories implies that the 
web representation jumps discontinuously: 



Categorified Wall-Crossing

In general: the existence of suitable wall-crossing 
Interfaces needed to construct a flat parallel 
transport F[ƒ] demands that for certain paths of 
vacuum weights the web representations (and 
interior amplitude) must jump discontinuously. 

Moreover, the existence of wall-
crossing interfaces  constrains how 
these data must jump.
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Summary
1.Motivated by 1+1 QFT we constructed a web-based 

formalism

2. This naturally leads to L¶ and A¶ structures. 

3. It gives a natural framework to discuss Brane
categories and Interfaces and the 2-category structure

4. There is a notion of flat parallel transport of Brane
categories. The existence of such a transport implies 
categorified wall-crossing formulae 



Other Things We Did

1.  Detailed examples (ZN symmetric theories)

2. There are several interesting generalizations of the 
web-based formalism, not alluded to here. (Example: 
Colliding critical points.) 

3. The web-based formalism also allows one to discuss 
bulk and boundary local operators in the TFT. 

4.  Applications to knot homology



Outlook

The generalization of the categorified 2d-4d 
wall-crossing formula remains to be understood. 
(WIP: with Tudor Dimofte)

We need a better physical interpretation of 
the interaction amplitudes bI


