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1. Introductory Remarks

1.1 Preamble

It’s a real pleasure to be speaking at this conference honoring Ron Donagi. I’ve always

very much enjoyed discussing Physical Mathematics with him. My first really interesting

discussions with Ron were about the relation between a certain class of supersymmetric

black holes and K3 surfaces with complex multiplication, but there have been many others

since then.

Also – as I’m sure many other people will mention - Ron deserves high praise for

initiating the String-Math conferences: These have been a great success, filling in a real

need.

So happy birthday Ron!
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1.2 Today’s Topic

My topic today concerns a mathematical way of formulating the “space of BPS States”

in d=4 N=2 field theories.

If you like, it is a categorification of motivic DT invariants, at least in some special

situations such as P1 families of resolved ADE singularities. I’m pretty sure that for some

of the mathematicians present it will be a “new” formulation of BPS states. Moreover, the

counting of BPS states will literally involve the computation of a character-valued index

of a Dirac-type operator:

HBPS = kerL2 /D (1.1)

and the wall-crossing will literally be due to the failure of that Dirac-operator to be Fred-

holm. One of the main goals of the talk is to make this statement more intelligible and

perhaps plausible.

But actually, it is not a new formulation - in fact, it is the oldest formulation there

is, going back to the original paper of Witten and Olive in 1978. But it uses one of the

physicist’s secret weapons, possibly not generally appreciated by mathematicians that work

on homological mirror symmetry. For the physicists here they will probably think the talk

is pretty trivial, but I thought it might be useful for the mathematicians.

The secret weapon is the “semiclassical approximation.” For d=4 N=2 field theories

with a Lagrangian description we are talking about supersymmetric Yang-Mills theory,

possibly coupled to matter multiplets, and semiclassically we can think in terms of BPS

states as the groundstates of a particle moving in the moduli space of magnetic monopoles.

The considerable details were worked out in a project with Andy Royston at TAMU

and Dieter van den Bleeken, at Bogazici U. in Turkey. Two papers were posted on

the arXiv at the end of December: a long one, and a short summary that is meant to be

readable. Since the long paper is long on details I thought I would balance that by giving

a talk a bit short on details.

2. Monopole Moduli Space

We begin with a review of magnetic monopoles in YMH theory.

YMH means we choose a compact simple group G and a principal G-bundle P → M4.

The fields are a connection A on P and a section X of adP. The action is

S =
1

g2

∫

M4

(F, ∗F ) + (DX, ∗DX) (2.1)

We can also add a theta angle and in the quantum theory the more relevant parameter is ♣Save on

blackboard for

modification later.

♣τ =
ϑ

2π
+

4πi

g2
(2.2)

We’re going to be talking about the limit

Imτ → ∞ (2.3)

limit, and the leading approximation there is classical physics.
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2.1 Smooth Monopoles

We are interesting in static smooth solutions on R×R
3 with finite minimal energy subject

to the boundary condition that on large spheres of sufficiently large radius

X : S2
∞ → O ⊂ g (2.4)

maps to an orbit of a regular element. Homotopy classes are in Λcr and in a suitable gauge

(fixing a framing at a point at infinity):

X → X∞ −
γm
2r

+ · · · r → ∞

F →
1

2
γmω + · · ·

(2.5)

where ω is a volume form on S2 and γm is in the coroot lattice. Such solutions must satisfy

the Bogomolnyi equation

F = ∗DX (2.6)

on R
3.

We are in fact interested in the moduli space M(γm;X∞) of such solutions. Let’s

discuss some properties:

1. X∞ is regular so it selects a CSA t and system of simple (co)roots: HI , αI . Then

solutions exist iff γm is a strongly dominant coroot. Then M is a HK quotient and

is a smooth HK manifold of quaternionic dimension

〈ρ, γm〉 (2.7)

2. If we choose a splitting of R3 = C × R then we choose a complex structure and in

this complex structure the moduli space can also be viewed as the space of rational

maps (Donaldson, Hurtubise, Jarvis)

Hol(P1 → F := Gc/B) (2.8)

3. There are two triholomorphic groups of Killing symmetries that will be important to

us: One is the an actin by T , via conjugation of the holomorphic map. The other

(more obvious in from the symmetries of the Bogomolnyi equation) is induced by

translations in space. In addition there is an so(3)rot Killing symmetry induced by

rotation around some origin. It is not triholomorphic. Rather it rotates the complex

structures.

4. The moduli space is a quotient

M =
R
4 ×M0

Z
(2.9)

and the metric product with R
4 is obtained by looking at the orbits of the translations

and the T action in the direction X∞. M0 is called the strongly centered moduli

space.
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5. One of the main results of the talk is

(Physics) Theorem: H0,∗
L2 (M0, ∂̄ + v̄), where v̄ is the wedge with the (0,1)

part of the T-action by v ∈ t, is primitive wrt a natural sl(2) action. (In

particular, concentrated in the middle degree.

This is just a teaser. More details later.

2.2 Singular Monopoles

We will also be interested in “singular monopoles.” . Choose a point in R3, call it the

origin and also demand

X = −
P

2r
+ · · · r → 0

F =
1

2
Pω + · · ·

(2.10)

P describes the embedding of a Dirac monopole singularity in the nonabelian theory and

is valued in the cocharacter lattice:

P ∈ ΛG
∼= Hom(U(1), T ). (2.11)

For singular monopoles γm is in the torsor P + Λcr.

Again we are interested in the moduli space (modulo gt’s commuting with P at r → 0)

Denote it by M(P, γm,X∞).

Analogous properties:

1. M is HK with singularities. Conjecturally the space is nonempty iff the relative magnetic charge♣What kind of

singularities??? ♣

is dominant. The relative magnetic charge is defined by

γ̃ := γ − P− (2.12)

where where P− is theWeyl image in the anti-fundamental chamber. When nonempty

the moduli space has quaternionic dimension 〈ρ, γ̃〉.

2. There is a formulation in terms of rational maps and the map should have a singularity

like zP . ♣SHOULD SAY

THIS BETTER!! ♣

3. There is a group SO(3)rot × T of Killing symmetries where T is hyperholomorphic

and SO(3) is not.

4. There is an analogous statement about the L2 ∂̄ + v̄ cohomology of M in any of its

complex structures.
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3. New Features From N=2 SUSY

We now embed the YMH theory into an N=2 SYM for gauge group G.

I will now make 10 loosely related remarks about the new ingredients and features we

get with N=2 SUSY:

1. In terms of field content there is a second section of adP denoted Y . The bosonic

action of the pure VM theory is:

S =
1

g2

∫

M4

(F, ∗F ) + (DX, ∗DX) + (DY, ∗DY ) + ([X,Y ], [X,Y ]) (3.1)

plus a ϑ-term. Finite energy implies

Y∞ ∈ t (3.2)

2. We are also interested in “adding matter fields.” That means there are fields which

are sections of the bundle associated to P by a quaternionic representation R of G.

The only new coupling constants are “mass parameters”:

m ∈
(

Sym2R∨
)G

(3.3)

Altogether, an N=2 SYM theory is completely specified by a semisimple compact ♣Is this the right

place? ♣

group G and a quaternionic representation R of G. The only parameters in the

Lagrangian are gauge couplings τi for each simple factor Gi and mass parameters. It

is “UV complete” if for each simple factor C2(Ri)−2h∨i ≤ 0 whereRi is R considered

as a representation of Gi. ♣Is this relevant?

Skip? ♣

3. Because of N=2 SUSY we have the whole apparatus of the “Coulomb branch of

vacua” and “BPS states.” The Coulomb branch means that there is a special Kähler

manifold B and a local system of lattices with integral antisymmetric form

Γ → B∗ (3.4)

over B minus a “discriminant locus,” equipped with a “central charge function”

Z : Γ → C (3.5)

4. To put this into some context for mathematicians, for an important class of N=2

theories – sometimes called “theories of class S” – we can identify B as the base of a

Hitchin system on some punctured Riemann surface C:

B = ⊕jH
0(C,K⊗dj ⊗O(Dj)) (3.6)

and then the local system Γ is the fibration by H1 of the Jacobian or Prym variety

of the spectral curve:

Σ ⊂ T ∗C det(λ− ϕ) = 0 (3.7)
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where λ is the canonical Liouville 1-form. In the field theory context Σ is called the

Seiberg-Witten curve and λ is called the Seiberg-Witten differential. The antisym-

metric product on Γ is the intersection product of homology classes on Σ and the

central charge function is defined by the periods of λ. Indeed, a great paper by Donagi

and Witten in 1995 was the first to point out this relation to Hitchin systems. Ron

also went on to write a very nice review of the relation to integrability as it was then

known. From the class S viewpoint, the unifying principle is the six-dimensional

(2, 0) superconformal theories, which can be compactified on Riemann surfaces C

preserving 8 supersymmetries. For example, for pure SU(N) SYM with no matter

the relevant Hitchin system is an SU(N) system on P
1 with two irregular singular

points. So, in a suitable (holomorphic) gauge the Higgs field has the form:

ϕ ∼

(

eN1

z
+ JN +O(z)

)

dz

z
z → 0 (3.8)

5. For this talk one of the most important new features of N=2 SUSY is the existence of

BPS states. The supersymmetry algebra implies a bound on the energy of quantum

states in the Hilbert space on R
3:

E ≥ |Z| (3.9)

and by definition BPS states are states that saturate the bound. We denote them

by

HBPS(γ;u) γ ∈ Γu u ∈ B∗ (3.10)

These spaces are representations of

so(3)rot ⊕ su(2)R (3.11)

This is part of the Lie algebra of the little group of a particle at rest: so(3)rot
generates rotations around the particle and su(2)R is a global symmetry that rotates

supersymmetry charges and is known in physics jargon as an “R-symmetry.” In some

contexts the character of this representation defines the “motivic DT invariants” and,

as I said at the beginning, our goal is to give a formulation in terms of monopole

moduli spaces.

6. Another feature of N=2 theories we will need are supersymmetric line defects. Quite

generally, in QFT one can consider defects supported on submanifolds of spacetime

of various dimensions. Local operators are supported at points. “Line defects” are

supported on one-manifolds. A famous example in gauge theories is the “Wilson line”

– it is just the trace of holonomy in a rep R:

TrRPexp

∮

γ
A (3.12)

In N=2 theories one can consider line defects that preserve supersymmetry, so for

example the Wilson line is generalized to

TrRPexp

∮

γ
(A+ Y ds) (3.13)
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for a suitably normalized line element ds along γ. For supersymmetric line defects

one always needs to choose a phase ζ which governs which supersymmetries that are

preserved by the defect. That phase enters here through the relation

Y = Re(ζ−1ϕ) (3.14)

where ϕ is the complex adjoint-valued scalar field in the supersymmetric “vector-

multiplet” with the gauge field. In general I’ll denote a line defect with phase ζ as

Lζ .

7. The electromagnetic dual of a Wilson line is an ’t Hooft line. In this talk we split

space and time Rt × R
3 and consider ’t Hooft lines localized at a point ~x0 ∈ R

3 and

stretching along the time direction:

γ = Rt × {~x0} (3.15)

In this case an ’t Hooft line defect is defined by specifying singular monopole bound-

ary conditions on the fields around ~x0. So the defect depends on the data of the

cocharacter P . We call these line defects LP,ζ.

8. In general, a susy line defect localized at a point ~x0 in space modifies the Hilbert

space H → HL. For Lζ the Bogomolnyi bound is modified to

E ≥ −Re(ζ−1Z) (3.16)

Then “framed BPS states” are states in HL saturating the Bogomolnyi bound. The

charges of these states are valued in a torsor ΓL for Γ. We denote the space of framed

BPS states in the presence of L with charge γ ∈ ΓL at a point u ∈ B by

H(L, γ;u) (3.17)

Framed BPS are very useful in deriving wall-crossing formulae. For example my

favorite derivation of the Kontsevich-Soibelman WCF for ordinary - vanilla - BPS

states is obtained rather easily by demanding consistency of the a much more easily

derived WCF for the framed BPS states.

Finally, two extra side remarks:

9. If a theory of class S is compactified on a circle of radius R, so spacetime is S1
R ×R

3

then the moduli space of vacua becomes not the base B but the entire Hitchin moduli

space MHitchin. It is a HK manifold with a HK metric that depends on R. Moreover,

if a supersymmetric line defect of phase ζ is wrapped on the circle then the path

integral 〈Lζ〉 is a holomorphic function on Hitchin moduli space in complex structure

ζ, where ζ is on the equator of the twistor sphere, so that ζ = 0 corresponds to the

complex structure in which the Hitchin fibration is holomorphic. This remark will

play a role at the end of the talk.
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10. As a side remark, in an effort to make the monopoles I’m talking about a little more

relevant to the mathematicians here, I should mention that the Hitchin moduli space

for SU(N) that I just mentioned on C = P
1 − {0,∞} with two irregular singular

points with the R-dependent HK metric is also a moduli space of periodic monopoles

on S1
1/R×R

2 for gauge group SU(2) with magnetic charge N . So there is an isometric

isomorphism of the form

MHitchin ∼= MMonopole(S1
1/R × R

2, G = SU(2), γm = N) (3.18)

This statement has a nice generalization to linear quiver gauge theories. This follows

from results of Diaconescu, Hanany-Witten, and Cherkis-Kapustin. So as R → 0

some Hitchin moduli spaces becomes the monopole moduli space I’m talking about.

4. Semiclassical Analysis

Now we want to consider the limit of the quantum theory as g → 0, that is, as Imτ → ∞.

This translates into taking a path ut ∈ B∗ to infinity.

Although walls of marginal stability do extend to infinity, along these paths there is

eventually no wall-crossing and the space of BPS states stabilizes.

Moreover there is an (almost) canonical electric-magnetic duality splitting

Γg = Λcr ⊕ Λwt

γ = γm ⊕ γe
(4.1)

Now in physics there is a procedure for systematically accounting for the quantum

corrections to the classical theory in this region known as collective coordinates and the

main upshot is that

HBPS(γ;u) is the space of supersymmetric groundstates of a supersymmetric

particle moving on M(γm;X∞).

H
BPS

(LP,ζ , γ;u) is the space of supersymmetric groundstates of a supersym-

metric particle moving on M(P, γm;X∞).

These statements look a bit odd: What is X∞? and what about γe?

One at a time: A result of the collective coordinate analysis is that the Higgs fields

are derived from ζ and a point u ∈ B via

X∞ = Im(ζ−1a)

Y =
4π

g2
Y∞ +

ϑ0

2π
X∞ = Im(ζ−1aD)

(4.2)
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where ζ is determined by the line defect or in the case of ordinary BPS states, ζ is the phase

of the central charge, and a, aD ∈ tc are standard coordinates of special Kähler geometry.

In the Hitchin context

aI =

∮

AI

λ

aD,I =

∮

BI

λ
(4.3)

Now, in the SQM for pure VM theory a quantum state is specified by a section of the

spinor bundle over M or M, and one of the four supersymmetry operators is a Dirac-like

operator

DY := /D + Y (4.4)

where /D is the ordinary where Y means Clifford multiplication with the 1-form dual to the

vector field induced by the Lie algebra element Y ∈ t.

When we include matter with quaternionic representation R the universal bundle

induces a hyperholomorphic bundle VR over M or M and now a quantum state is a

section of S ⊗ VR and /D is the corresponding Dirac operator.

Physical states should be L2 and so we arrive at one of our main statements:

The space of framed BPS states of magnetic charge γm for LP,ζ in a weak

coupling chamber u is kerL2DY .

with a similar statement for the ordinary BPS states (skating over a subtlety here).

Now, what about the electric charge γe?

Well, the T action is hyperholomorphic. It lifts to the spinor bundle and commutes

with the Dirac operator, so there is an isotypical decomposition:

kerL2DY = ⊕γe∈Λwt(kerL2DY)γ
e

(4.5)

We finally arrive at:

H
BPS

(LP,ζ , γ;u) = (kerL2DY)γ
e

(4.6)

More is true: Recall that there is an so(3)rot Killing symmetry of M,M. Again it lifts

to the spin bundle and while it does not commute with the Dirac operator it does preserve

the kernel and of course it commutes with t so each isotypical component (kerL2DY)γ
e

is

a representation of so(3)rot.

Moreover, if the moduli space has real dimension 4N then the commutant of the

holonomy defines an SU(2) group acting on the tangent bundle:

SU(2) × Sp(N) ⊂ SO(4N) (4.7)

Again the SU(2) lifts to the spin bundle and again, while it does not commute with the

Dirac operator it preserves the kernel so (kerL2DY)γ
e

is a representation of

so(3)rot ⊕ su(2) (4.8)
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Now, as I already mentioned, the space of BPS states is a representation of so(3)rot ⊕

su(2)R. Our identification above is meant to be an isomorphism of representations.

5. Math Predictions

5.1 No-Exotics

Now we come to the math predictions.

The first is based on a “physics theorem” known as the no-exotics theorem. It says -

basically - that the the SU(2) “R-symmetry” acts trivially on the space of BPS states.

More precisely, for the framed case it acts trivially and in the case of vanilla BPS states

we have

HBPS(γ;u) ∼= [(2;1)⊕ (1;2)]⊗HBPS
0 (γ;u) (5.1)

In this case the no-exotics theorem says that SU(2)R acts trivially on HBPS
0 (γ;u).

The theorem was proven for pure SU(N) SYM by

C(huang), D(iaconescu),M(anschot),M(oore),S(oibelman)

using the motivic structure of the moduli space of representations of a certain quiver,

and this was extended to ADE groups by

del Zotto and Sen

But recently a proof of much greater applicability has been found by

Cordova and Dumitrescu

Here is the geometrical meaning:

First the above factorization of BPS spaces reflects the factorization of the moduli

space

M =
R
4 ×M0

Z
(5.2)

So, actually, the proper formulation of vanilla BPS states is actually the L2-kernel of Dirac

on the strongly centered moduli space M0 that is suitably equivariant under the action of

the Deck group Z. (The details of the latter are a bit subtle.)

HBPS
0 (γ;u) = (kerL2DY

0 )
γe,Z (5.3)

Second: −1 ∈ SU(2) acts on the spin bundle as the Clifford volume element in the

orientation given by any of the complex structures. Therefore, the L2-kernel is purely chiral

and not anti-chiral. The dimension is the index.

Third: If we choose a complex structure then

S ∼= Λ0,∗ ⊗K1/2 (5.4)

with K1/2 trivializable and a combination of supersymmetry operators becomes

∂̄ + Y0,1 (5.5)

Moreover the generators of the su(2)R have a kind of Lefshetz form:

I3|Ω0,q =
1

2
(q −N)1

I+ = ω0,2∧ I− = ι(ω2,0))
(5.6)
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so the statement of the no-exotics theorem says that the L2-cohomology of the twisted ∂̄

operator is primitive. This is the basis for the teaser made towards the beginning of the

talk.

5.2 Exact Spectrum

Once we have a BPS spectrum in one chamber of the Coulomb branch we can – in principle

– find it in every other chamber by wall-crossing. One nice thing is that in the chamber

with Y we know the spectrum of vanilla BPS states immediately! Then the Dirac operator

becomes the ordinary Dirac operator, but then it is easy to see there are no L2 harmonic

spinors on M0, unless M0 is a point. This is only the case when γm is a simple coroot,

and then quantization of the remaining R
3×S1 factor is straightforward so we get the BPS

spectrum:

1. VM’s γ = 0⊕ α, α ∈ ∆(g)

2. HM’s γ = ±HI ⊕ nαI , n ∈ Z.

For G= SU(N) this was also shown using quiver techniques by Chuang et. al.

5.3 Wall-Crossing

It is not difficult to translate the usual criteria for wall-crossing into this semiclassical

language. One finds a linear condition on X∞, Y∞ of the form

(γm,Y) + 〈γe,X〉 = 0, (5.7)

for suitable electromagnetic charges γm⊕ γe, at which the Dirac operators DY must fail to

be Fredholm.

The details are in our papers.

It would be nice to give a direct mathematical explanation of why they fail to be

Fredholm.

6. Deriving An Index Theorem?

Finally, I would like to sketch something I’m trying to figure out right now.

Let us focus on theories of class S: So it is some N=2 SYM associated to a Hitchin

system for GS on a punctured Riemann surface C with some boundary conditions at

punctures. (In general, GS is a compact Lie group different from the four-dimensional

gauge group G.)

I mentioned that on S1 × R
3 with the line defects wrapped around the circle at a

definite point in R
3 the path integral 〈Lζ〉 for ζ-supersymmetric line defects becomes a

holomorphic function on the Hitchin moduli space in complex structure ζ. As a holomor-

phic symplectic manifold this is isomorphic to the moduli space of Gc
S local systems with

prescribed monodromy at the punctures.

In that context, a typical supersymmetric line defect is defined by a choice of GS-rep

R and an isotopy class of a path ℘ ⊂ C. Then

〈LR,℘,ζ〉 = TrRHol(℘) (6.1)
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Now in some work with Gaiotto and Neitzke we argued that there should be an exact

expansion for these functions in terms of the BPS index for framed BPS states:

〈Lζ〉 =
∑

γ∈ΓL

Ω(L, γ)Yγ (6.2)

where Yγ are a set of holomorphic functions on Mζ satisfying

Yγ1Yγ2 = (−1)⟪γ1,γ2⟫Yγ1+γ2 (6.3)

and satisfying some integral TBA-like equations. If we choose a basis for Γ then the Yγi

are Darboux coordinates for the holomorphic symplectic manifold Mζ , closely related to

“shear” or “Fock-Goncharov” coordinates. They are patchwise defined and related across

patches by cluster-like transformations.

On the other hand, Ito-Okuda-Taki performed a localization computation of the path

integral for a certain class of theories (including the N = 2 theories studied by Donagi and

Witten) and for ’t Hooft lines they found an expression of the form

〈LP,ζ〉 =
∑

γm∈P+Λcr

e2πi(b,γm)Zγm(a) (6.4)

where (a, b) are complexified Fenchel-Nielson-type coordinates on the moduli space of local

systems: The a describe the conjugacy classes of holonomies around a system of cutting

curves for a pants decomposition of C and b is a dual set of coordinates.

Okuda et. al. furthermore claim that Zγm(a) is related to an integral of certain

characteristic classes over moduli spaces of monopoles. (This comes directly out of the

localization computation.)

Now, in general, in patches where we can compare these coordinates the transformation

of variables is very complicated.

However, in a weak-coupling chamber, there should be an asymptotic change of coor-

dinates that is simple enough that we can compare the two expressions. The net result

seems to lead to a formula like

Trker
L2 (DY )t(−y)2J3 =

∫

M

µ (6.5)

where µ is constructed from equivariant characteristic classes. So we get a kind of L2-index

theorem in this context. Many details remain to be clarified here.

7. Conclusions

So, to conclude, the oldest formulation of BPS states can be combined with recent insights

to yield some interesting results. I hope you found the talk amusing. Thank you.
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