Algebra of the Infrared: Massive d=2 N=(2,2) QFT- 0r -A short ride with a big machine KITP, March, 2014 **Gregory Moore, Rutgers University** collaboration with Davide Gaiotto & Edward Witten draft is ``nearly finished"...

2. Knot homology.

3. Categorification of 2d/4d wall-crossing formula.

(A unification of the Cecotti-Vafa and Kontsevich-Soibelman formulae.)

d=2, N=(2,2) SUSY $\{Q_+, Q_+\} = H + P$ $\{Q_-, Q_-\} = H - P$ $\{Q_+, Q_-\} = \bar{Z}$ $[F, Q_+] = Q_+ \quad [F, \bar{Q}_-] = \bar{Q}_-$ We will be interested in situations where two supersymmetries are unbroken: $U(\zeta) := Q_+ - \zeta^{-1} \overline{Q_-}$ $\{U(\zeta), \overline{U(\zeta)}\} = 2\left(H - \operatorname{Re}(\zeta^{-1}Z)\right)$

Outline

- Introduction & Motivations
- Some Review of LG Theory
- Goals, Results, Questions Old & New
- LG Theory as SQM
- Boosted Solitons & Soliton Fans
- Web-based Formalism
- Summary & Outlook

Example: LG Models - 1 $\phi,\psi_{\pm},\psi_{\pm},\ldots$ Chiral superfield $W(\phi)$ Holomorphic superpotential $S = \int d\phi * d\phi - |\nabla W|^2 + \cdots$ Massive vacua are Morse critical points: $dW(\phi_i) = 0 \qquad W''(\phi_i) \neq 0$

Example: LG Models -2 More generally,...

(X, ω): Kähler manifold. (Simplify: $\omega = d\lambda$)

W: $X \longrightarrow \mathbb{C}$ Superpotential (A holomorphic Morse function)

 $\phi: D \times \mathbb{R} \to X$

 $D = \mathbb{R}, [x_{\ell}, \infty), (-\infty, x_r], [x_{\ell}, x_r], S^1$

Boundary conditions for ϕ

Boundaries at infinity:

 $\begin{array}{ll} \phi \to \phi_i & \phi \to \phi_j \\ x \to -\infty & x \to +\infty \end{array}$

Boundaries at finite distance: Preserve ζ-susy:

 $\phi|_{x_\ell,x_r} \in \mathcal{L} \subset X$ $\iota^*_{\mathcal{L}}(\lambda) = dk$

 $\pm \operatorname{Im}(\zeta^{-1}W) \geq \Lambda$

Fields Preserving ζ-SUSY

 $U(\zeta)$ [Fermi] =0 implies the ζ -*instanton* equation:

$$\left(\frac{\partial}{\partial x} + \mathrm{i}\frac{\partial}{\partial \tau}\right)\phi^{I} = \zeta g^{I\bar{J}}\frac{\partial\bar{W}}{\partial\bar{\phi}^{\bar{J}}}$$

Time-independent: ζ -<u>soliton</u> equation:

$$rac{\partial}{\partial x}\phi^I = \zeta g^{Iar{J}} rac{\partialar{W}}{\partialar{\phi}^J}$$

Lefshetz Thimbles

$$rac{\partial}{\partial x}\phi^I=\zeta g^{Iar{J}}rac{\partialar{W}}{\partialar{\phi}^J}$$

The projection of solutions to the complex W plane sit along straight lines of slope ζ W_j If D contains $x \to -\infty$ $\phi \to \phi_i$ L_i^{ζ} W_i R_j^{ζ} If D contains $x \to +\infty$ $\phi \to \phi_j$ W_i R_j^{ζ}

Inverse image in X of all solutions defines left and right Lefshetz thimbles

They are Lagrangian subvarieties of X

For general ζ there is no solution.

$$\zeta = \zeta_{ji} := \frac{W_j - W_i}{|W_j - W_i|} \quad W_j$$
$$W_i$$

But for a suitable phase there is a solution

This is the classical soliton. There is one for each intersection (Cecotti & Vafa)

$$p \in L_i^{\zeta} \cap R_j^{\zeta}$$

(in the fiber of a regular value)

Witten Index

Some classical solitons are lifted by instanton effects, but the Witten index:

$$\mu_{ij} := \operatorname{Tr}_{\mathcal{H}_{ij}^{BPS}} (-1)^F$$

can be computed with a signed sum over classical solitons:

$$\mu_{ij} = \sum_{p \in L_i^{\zeta} \cap R_j^{\zeta}} (-1)^{\iota(p)}$$

These BPS indices were studied by [Cecotti, Fendley, Intriligator, Vafa and by Cecotti & Vafa]. They found the wall-crossing phenomena:

Given a one-parameter family of W's:

Outline

- Introduction & Motivations
- Some Review of LG Theory

Goals, Results, Questions Old & New

- LG Theory as SQM
- Boosted Solitons & Soliton Fans
- Web-based Formalism
- Summary & Outlook

Goals & Results - 1

Goal: Say everything we can about the theory in the far IR.

Since the theory is massive this would appear to be trivial.

Result: When we take into account the BPS states there is an extremely rich mathematical structure.

We develop a formalism – which we call the ``web-based formalism" – (that's the ``big machine") - which shows that:

Goals & Results - 2

BPS states have ``interaction amplitudes" governed by an $L\infty$ algebra

(That is, using just IR data we can define an $L\infty$ - algebra and there are ``interaction almplitudes'' of BPS states that define a solution to the Maurer-Cartan equation of that algebra.)

There is an A ∞ category of branes/boundary conditions, with amplitudes for emission of BPS particles from the boundary governed by an A ∞ algebra.

 $(A\infty \text{ and } L\infty \text{ are mathematical structures which play an important role in open and closed string field theory, respectivey. Strangely, they show up here.)$

Goals & Results - 3

If we have continuous families of theories (e.g. a continuous family of LG superpotentials) then we can construct half-supersymmetric interfaces between the theories.

These interfaces can be used to ``implement" wallcrossing.

Half-susy interfaces form an $A\infty$ 2-category, and to a continuous family of theories we associate a flat parallel transport of brane categories.

The flatness of this connection implies, and is a categorification of, the 2d wall-crossing formula.

Some Old Questions What are the BPS states $\mathcal{H}^{\mathrm{BPS}}_{ij}$ on $\mathbb R$ in sector ij ?

Fendley & Intriligator; Cecotti, Fendley, Intriligator, Vafa; Cecotti & Vafa c. 1991 Some refinements. Main new point: L∞ structure What are the branes/half-BPS

boundary conditions ?

Hori, Iqbal, Vafa c. 2000 & Much mathematical work on A-branes and Fukaya-Seidel categories.

We clarify the relation to the Fukaya-Seidel category & construct category of branes from IR.

What are the BPS states on the half-line ?

$\mathcal{H}^{\mathrm{BPS}}_{\mathcal{B},j}$

Some New Questions - 2

Given a pair of theories T_1 , T_2 what are the supersymmetric interfaces?

Is there an (associative) way of ``multiplying" interfaces to produce new ones? And how do you compute it?

We give a method to compute the product. It can be considered associative, once one introduces a suitable notion of ``homotopy equivalence'' of interfaces.

There is a way of using interfaces to ``map" branes in theory T_1 , to branes in theory T_2 ?

Example of a surprise:

What is the space of BPS states on an interval ?

The theory is massive:

For a susy state, the field in the middle of a large interval is close to a vacuum:

Does the Problem Factorize?

For the Witten index: Yes

$$\mu_{\mathcal{B}_{\ell},i} = \operatorname{Tr}_{\mathcal{H}^{\mathrm{BPS}}_{\mathcal{B}_{\ell},i}} (-1)^{F} e^{-\beta H}$$

$$\mu_{\mathcal{B}_{\ell},\mathcal{B}_{r}} = \sum_{i \in \mathbb{V}} \mu_{\mathcal{B}_{\ell},i} \cdot \mu_{i,\mathcal{B}_{r}}$$

For the BPS states?

$$\mathcal{H}^{\mathrm{BPS}}_{\mathcal{B}_{\ell},\mathcal{B}_{r}}
eq \sum_{i \in \mathbb{V}} \mathcal{H}^{\mathrm{BPS}}_{\mathcal{B}_{\ell},i} \otimes \mathcal{H}^{\mathrm{BPS}}_{i,\mathcal{B}_{r}}$$
 No!

Enough with vague generalities!

Now I will start to be more systematic.

The key ideas behind everything we do come from Morse theory.

Outline

- Introduction & Motivations
- Some Review of LG Theory
- Goals, Results, Questions Old & New

• LG Theory as SQM

- Boosted Solitons & Soliton Fans
- Web-based Formalism
- Summary & Outlook

SQM & Morse Theory (Witten: 1982)

M: Riemannian; h: $M \rightarrow \mathbb{R}$, Morse function

SQM: $q : \mathbb{R}_{\text{time}} \to M \quad \chi \in \Gamma(q^*(TM \otimes \mathbb{C}))$ $L = q_{IJ}\dot{q}^{I}\dot{q}^{J} - q^{IJ}\partial_{I}h\partial_{J}h$ $+g_{IJ}\bar{\chi}^{I}D_{t}\chi^{J}-g^{IJ}D_{I}D_{J}h\bar{\chi}^{I}\chi^{J}$ $-R_{IJKL}\bar{\chi}^{I}\chi^{J}\bar{\chi}^{K}\chi^{L}$ dh(m) = 0 $\Rightarrow \Psi(m)$ Perturbative vacua: $F(\Psi(m)) = \frac{1}{2}(d_{\uparrow}(m) - d_{\downarrow}(m))$

Instantons & MSW Complex

Instanton $\frac{d\phi}{d\tau} = -g^{IJ}\frac{\partial h}{\partial \phi^J}$ equation:

``Rigid instantons'' - with zero reduced moduli – will lift some perturbative vacua. To compute exact vacua:

MSW complex: $\mathbb{M}^{\bullet} := \bigoplus_{p:dh(p)=0} \mathbb{Z} \cdot \Psi(p)$ $d(\Psi(p)) = \sum_{p':F(p')-F(p)=1} n(p,p')\Psi(p')$

Space of groundstates (BPS states) is the *cohomology*.

Ends of the moduli space correspond to broken flows which cancel each other in computing $d^2 = 0$. A similar argument shows independence of the cohomology from h and g_{IJ} .

1+1 LG Model as SQM

Target space for SQM:

 $egin{aligned} M &= \operatorname{Map}(D,X) = \{\phi:D o X\} \ D &= \mathbb{R}, [x_\ell,\infty), (-\infty,x_r], [x_\ell,x_r], S^1 \ h &= \int_D \left(\phi^*\lambda + \operatorname{Re}(\zeta^{-1}W)dx
ight) \ d\lambda &= \omega \quad \lambda = pdq \end{aligned}$

Recover the standard 1+1 LG model with superpotential: Two –dimensional ζ -susy algebra is manifest.

Families of Theories

This presentation makes construction of halfsusy interfaces easy:

Consider a *family* of Morse functions

 $W(\phi; z) \ z \in C$

Let \wp be a path in C connecting z_1 to z_2 .

View it as a map z: $[x_1, x_r] \rightarrow C$ with $z(x_1) = z_1$ and $z(x_r) = z_2$

Domain Wall/Interface

Using z(x) we can still formulate our SQM!

$$h = \int_D \left(\phi^*(pdq) + \operatorname{Re}(\zeta^{-1}W(\phi; z(x))dx) \right)$$

From this construction it manifestly preserves two supersymmetries.

MSW Complex

Now return to a single W. Another good thing about this presentation is that we can discuss ij solitons in the framework of Morse theory:

$$\frac{\delta h}{\delta \phi} = 0 \quad \begin{array}{l} \text{Equivalent to the } \zeta \text{-soliton} \\ \text{equation} \end{array}$$
$$M_{ij} = \bigoplus_{\text{solitons}} \mathbb{Z} \cdot \Psi_{ij}$$
$$(\text{Taking some shortcuts here....})$$
$$D = \sigma^3 \mathrm{i} \frac{d}{dx} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \frac{\zeta^{-1}}{2} W'' + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \frac{\zeta}{2} \bar{W}''$$
$$F = -\frac{1}{2} \eta (D - \epsilon)$$

Instantons

$$\left(\frac{\partial}{\partial x} + \mathrm{i}\frac{\partial}{\partial \tau}\right)\phi^{I} = \zeta g^{I\bar{J}}\frac{\partial\bar{W}}{\partial\bar{\phi}^{\bar{J}}}$$

$$\bar{\partial}\phi^I = \zeta g^{I\bar{J}} \frac{\partial\bar{W}}{\partial\bar{\phi}^{\bar{J}}}$$

At short distance scales W is irrelevant and we have the usual holomorphic map equation.

At long distances the theory is almost trivial since it has a mass scale, and it is dominated by the vacua of W.

$\tau = +\infty$ $\phi_{i,j}^{p_2}$ X $\phi \cong \phi_i$ $\phi \cong \phi_j$ $\phi_{i,j}^{p_1}$ X $\tau = -\infty$

BPS Solitons on half-line D:

Semiclassically:

 Q_{ζ} -preserving BPS states must be solutions of differential equation

 $p \in \mathcal{L} \cap R_i^{\zeta}$

Classical solitons on the positive half-line are labeled by:

Quantum Half-Line Solitons

MSW complex: $\mathbb{M}_{\mathcal{L},j} = \oplus_p \mathbb{Z} \cdot \Psi_{\mathcal{L},j}(p)$

Grading the complex: Assume X is CY and that we can find a logarithm:

$$w = {
m Im}\lograc{\iota^*(\Omega^{d,0})}{{
m vol}(\mathcal{L})}$$
 Then the grading is by $f=\eta(D)-w$

Solitons On The Interval

Now return to the puzzle about the finite interval $[x_l, x_r]$ with boundary conditions \mathcal{L}_l , \mathcal{L}_r

When the interval is much longer than the scale set by W the MSW complex is

$$\mathbb{M}_{\mathcal{L}_{\ell},\mathcal{L}_{r}} = \bigoplus_{i \in \mathbb{V}} \mathbb{M}_{\mathcal{L}_{\ell},i} \otimes \mathbb{M}_{i,\mathcal{L}_{r}}$$

The Witten index factorizes nicely: $\mu_{\mathcal{L}_{\ell},\mathcal{L}_{r}} = \sum_{i} \mu_{\mathcal{L}_{\ell},i} \mu_{i,\mathcal{L}_{r}}$ But the differential $d_{\mathcal{L}_{\ell},i} \otimes 1 + 1 \otimes d_{i,\mathcal{L}_{r}}$ is too naïve !

 $d_{\mathcal{L}_{\ell},i}\otimes 1+1\otimes d_{i,\mathcal{L}_{r}}$

Outline

- Introduction & Motivations
- Some Review of LG Theory
- Goals, Results, Questions Old & New
- LG Theory as SQM
- Boosted Solitons & Soliton Fans
- Web-based Formalism
- Summary & Outlook

The Boosted Soliton - 1

We are interested in the ζ -instanton equation for a fixed generic ζ We can still use the soliton to produce a solution for phase ζ

$$\phi_{ij}^{\text{inst}}(x,\tau) := \phi_{ij}^{\text{sol}}(\cos\theta x + \sin\theta\tau)$$
$$\left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial \tau}\right)\phi_{ij}^{\text{inst}} = e^{i\theta}\zeta_{ji}\frac{\partial\bar{W}}{\partial\phi}$$

Therefore we produce a solution of the instanton equation with phase ζ if

$$\zeta = e^{\mathbf{i}\theta}\zeta_{ji} \qquad \qquad \zeta_{ji} := \frac{W_j - W_i}{|W_j - W_i|}$$

The Boosted Soliton - 3

Put differently, the stationary soliton in Minkowski space preserves the supersymmetry:

$$Q_+ - \zeta_{ij}^{-1}Q_-$$

So a boosted soliton preserves supersymmetry :

$$e^{\beta/2}Q_+ - \zeta_{ij}^{-1}e^{-\beta/2}\overline{Q_-}$$

 β is a real boost. In Euclidean space this becomes a rotation:

$$e^{\mathrm{i} heta/2}Q_+ - \zeta_{ij}^{-1}e^{-\mathrm{i} heta/2}\overline{Q_-}$$

And for suitable θ this will preserve ζ -susy

Path integral on a large disk

Choose boundary conditions preserving ζ -supersymmetry: Consider a cyclic ``fan of vacua'' I = {i₁, ..., i_n}. $\mathcal{F} = \phi_{i_1 i_2}^{\text{inst}} \otimes \cdots \otimes \phi_{i_n i_1}^{\text{inst}}$

Ends of moduli space

Path integral localizes on moduli space of ζ -instantons with these boundary conditions:

Path Integral With Fan Boundary Conditions

Just as in the Morse theory proof of $d^2=0$ using ends of moduli space corresponding to broken flows, here the broken flows correspond to webs w

Label the ends of $\mathcal{M}(\mathcal{F})$ by webs \mathfrak{w} . Each end produces a wavefunction $\Psi(\mathfrak{w})$ associated to a web \mathfrak{w} .

The total wavefunction is Q-invariant

$$Q\sum_{\mathfrak{w}}\Psi(\mathfrak{w})=0$$

The wavefunctions $\Psi(w)$ are themselves constructed by gluing together wavefunctions $\Psi(r)$ associated with rigid webs r

 $L_{\scriptscriptstyle \!\infty\!}$ identities on the interior amplitude

Example:

Consider a fan of vacua {i,j,k,t}. One end of the moduli space looks like:

The red vertices are path integrals with rigid webs. They have amplitudes β_{ikt} and β_{iik} .

$$\mathcal{M} = \mathbb{R}^2_{transl} \times \mathbb{R}^+_{scale} ?$$

Ends of Moduli Spaces in QFT

In LG theory (say, for $X = \mathbb{C}^n$) the moduli space cannot end like that.

In QFT there can be three kinds of ends to moduli spaces of PDE's:

UV effect: Example: Instanton shrinks to zero size; bubbling in Gromov-Witten theory

Large field effect: Some field goes to ∞

Large distance effect: Something happens at large distances.

None of these three things can happen here. So, there must be another end:

Amplitude: $\beta_{jkt}\beta_{ijt}$

The boundaries where the internal distance shrinks to zero must cancel leading to identities on the amplitudes like:

$$\beta_{ijk}\beta_{ikt} - \beta_{jkt}\beta_{ijt} = 0$$

This set of identities turns out to be the Maurer-Cartan equation for an $L\infty$ - algebra.

This is really a version of the argument for $d^2 = 0$ in SQM.

At this point it is useful to introduce a formalism that facilitates writing the identities satisfied by the various amplitudes - the "web-based formalism"

Outline

- Introduction & Motivations
- Some Review of LG Theory
- Goals, Results, Questions Old & New
- LG Theory as SQM
- Boosted Solitons & Soliton Fans
- Web-based Formalism
- Summary & Outlook

Definition of a Plane Web

We now give a purely mathematical construction.

It is motivated from LG field theory.

Vacuum data:

- 1. A finite set of ``vacua'': $i,j,k,\dots \in \mathbb{V}$
- 2. A set of weights $z: \mathbb{V} \to \mathbb{C}$

<u>Definition</u>: A *plane web* is a graph in \mathbb{R}^2 , together with a labeling of faces by vacua so that across edges labels differ and if an edge is oriented so that *i* is on the left and *j* on the right then the edge is parallel to $z_{ij} = z_i - z_j$. (Option: Require all vertices at least 3-valent.)

Useful intuition: We are joining together straight strings under a tension z_{ii} . At each vertex there is a no-force condition:

$$z_{i_1,i_2} + z_{i_2,i_3} + \cdots + z_{i_n,i_1} = 0$$

Deformation Type

Equivalence under translation and stretching (but not rotating) of strings subject to no-force constraint defines *deformation type*.

Moduli of webs with fixed deformation type $\dim \mathcal{D}(\mathfrak{w}) = 2V(\mathfrak{w}) - E(\mathfrak{w})$ $V(\mathfrak{w}), E(\mathfrak{w})$ Number of vertices, internal edges. (z_i in generic position) $\mathcal{D}^{\mathrm{red}}(\mathfrak{w}) = \mathcal{D}(\mathfrak{w})/\mathbb{R}^2_{\mathrm{transl}}$ $\dim \mathcal{D}^{\mathrm{red}}(\mathfrak{w}) = d(\mathfrak{w})$ $d(\mathfrak{w}) := 2V(\mathfrak{w}) - E(\mathfrak{w}) - 2$

Rigid, Taut, and Sliding

 i_5 2

Cyclic Fans of Vacua

Definition: A cyclic fan of vacua is a cyclically-ordered set

$$I = \{i_1, \ldots, i_n\}$$

so that the rays $z_{i_k,i_{k+1}}\mathbb{R}_+$

are ordered clockwise

Local fan of vacua at a vertex *v*:

and at ∞

 $I_{\infty}(\mathfrak{w})$

Convolution of Webs

<u>Definition</u>: Suppose w and w' are two plane webs and $v \in \mathcal{V}(w)$ such that

$$I_v(\mathfrak{w}) = I_\infty(\mathfrak{w}')$$

The <u>convolution of w and w'</u>, denoted $w *_v w'$ is the deformation type where we glue in a copy of w' into a small disk cut out around v.

The Web Ring

W Free abelian group generated by oriented deformation types of plane webs.

``oriented'': Choose an orientation o(w) of $\mathcal{D}^{red}(w)$

$$*: \mathcal{W} \times \mathcal{W} \to \mathcal{W}$$

$$I_{v}(\mathfrak{w}_{1}) \neq I_{\infty}(\mathfrak{w}_{2}) \implies \mathfrak{w}_{1} *_{v} \mathfrak{w}_{2} = 0$$

$$\mathfrak{w}_{1} * \mathfrak{w}_{2} := \sum_{v \in \mathcal{V}(\mathfrak{w}_{1})} \mathfrak{w}_{1} *_{v} \mathfrak{w}_{2}$$

$$o(\mathfrak{w} *_{v} \mathfrak{w}') = o(\mathfrak{w}) \wedge o(\mathfrak{w}')$$

The taut element

<u>Definition</u>: The taut element t is the sum of all taut webs with standard orientation

$$\mathfrak{t} := \sum_{d(\mathfrak{w})=1} \mathfrak{w}$$

Theorem:

$$\mathfrak{t} \ast \mathfrak{t} = 0$$

Proof: The terms can be arranged so that there is a cancellation of pairs:

 $\mathfrak{w}_1 * \mathfrak{w}_2$ $\mathfrak{w}_3 * \mathfrak{w}_4$ They represent the two ends of a one-dimensional (doubly reduced) sliding moduli space.

SKIP TO WEB REPRESENTATIONS & INTERIOR AMPLITUDES: SLIDES 87-93

Extension to the tensor algebra

Define an operation by taking an unordered set $\{v_1, \dots, v_m\}$ and an ordered set $\{w_1, \dots, w_m\}$ and saying

$$\mathfrak{w} *_{\{v_1,\ldots,v_m\}} \{\mathfrak{w}_1,\ldots,\mathfrak{w}_m\}$$

- vanishes unless there is some ordering of the v_i so that the fans match up.
- when the fans match up we take the appropriate convolution.

 $T\mathcal{W} := \mathcal{W} \oplus \mathcal{W}^{\otimes 2} \oplus \mathcal{W}^{\otimes 3} \oplus \cdots$ $T(\mathfrak{w}) : T\mathcal{W} \to \mathcal{W}$ $T(\mathfrak{w})[\mathfrak{w}_1 \otimes \cdots \otimes \mathfrak{w}_n] := \mathfrak{w} *_{\mathcal{V}(\mathfrak{w})} \{\mathfrak{w}_1, \dots, \mathfrak{w}_n\}$

Convolution Identity on Tensor Algebra

 $\mathfrak{t} * \mathfrak{t} = 0 \longrightarrow T(\mathfrak{t}) \xrightarrow{\text{satisfies } L_{\infty}} relations$

 $\sum_{\mathrm{Sh}_2(S)} \epsilon \ T(\mathfrak{t})[T(\mathfrak{t})[S_1], S_2] = 0.$ $S = \{\mathfrak{w}_1, \dots, \mathfrak{w}_n\}$ Two-shuffles: Sh₂(S) $S = S_1 \amalg S_2$

This makes \mathcal{W} into an L_{∞} algebra
Half-Plane Webs

Same as plane webs, but they sit in a half-plane \mathcal{H} .

Some vertices (but no edges) are allowed on the boundary.

 $\mathcal{V}_i(\mathfrak{u})$ Interior vertices $\mathcal{V}_\partial(\mathfrak{u}) = \{v_1, \dots, v_n\}$ <u>time-ordered</u> boundary vertices.

deformation type, reduced moduli space, etc.

$$d(\mathfrak{u}) := 2V_i(\mathfrak{u}) + V_\partial(\mathfrak{u}) - E(\mathfrak{u}) - 1$$

Rigid Half-Plane Webs

 $d(\mathfrak{u})=0$

Taut Half-Plane Webs

Sliding Half-Plane webs

1

Half-Plane fans

A half-plane fan is an ordered set of vacua,

such that successive vacuum weights:

$$z_{i_s,i_{s+1}}$$

are ordered clockwise:

$$J = \{i_1, \ldots, i_n\}$$

Convolutions for Half-Plane Webs

We can now introduce a convolution at boundary vertices:

Local half-plane fan at a boundary vertex v: $J_v(\mathfrak{u})$ Half-plane fan at infinity: $J_\infty(\mathfrak{u})$

 $\mathcal{W}_{\mathcal{H}}$ Free abelian group generated by
oriented def. types of half-plane webs

There are now two $\mathcal{W}_{\mathcal{H}} \times \mathcal{W}_{\mathcal{H}} \to \mathcal{W}_{\mathcal{H}}$ convolutions: $\mathcal{W}_{\mathcal{H}} \times \mathcal{W} \to \mathcal{W}_{\mathcal{H}}$

Convolution Theorem

Define the half-plane taut element: $\mathfrak{t}_{\mathcal{H}} := \sum_{d(\mathfrak{u})=1} \mathfrak{u}$

Theorem: $\mathfrak{t}_{\mathcal{H}} * \mathfrak{t}_{\mathcal{H}} + \mathfrak{t}_{\mathcal{H}} * \mathfrak{t}_p = 0$

Proof: A sliding half-plane web can degenerate (in real codimension one) in two ways: Interior edges can collapse onto an interior vertex, or boundary edges can collapse onto a boundary vertex.

Tensor Algebra Relations Extend $t_{\mathcal{H}}^*$ to tensor algebra operator $T(\mathfrak{t}_{\mathcal{H}}): T\mathcal{W}_{\mathcal{H}} \otimes T\mathcal{W} \to \mathcal{W}_{\mathcal{H}}$ $\sum \epsilon T(\mathfrak{t}_{\mathcal{H}})[P_1, T(\mathfrak{t}_{\mathcal{H}})[P_2; S_1], P_3; S_2]$ $+\sum \epsilon T(\mathfrak{t}_{\mathcal{H}})[P;T(\mathfrak{t}_{p})[S_{1}],S_{2}]=0.$ $S = \{\mathfrak{w}_1, \dots, \mathfrak{w}_n\} \ P = \{\mathfrak{u}_1, \dots, \mathfrak{u}_m\}$ Sum over ordered $P = P_1 \amalg P_2 \amalg P_3$ partitions:

Conceptual Meaning

 $\mathcal{W}_{\!\mathcal{H}} \text{ is an } L\infty \text{ module for the } L_\infty \text{ algebra } \mathcal{W}$

 $\mathcal{W}_{\!\mathcal{H}} \text{ is an } A\infty \text{ algebra}$

There is an L_{∞} morphism from the L_{∞} algebra \mathcal{W} to the L_{∞} algebra of the Hochschild cochain complex of $\mathcal{W}_{\mathcal{H}}$

Strip-Webs

Now consider webs in the strip $\mathbb{R} \times [x_{\ell}, x_r]$

$$d(\mathfrak{s}) := 2V_i(\mathfrak{s}) + V_\partial(\mathfrak{s}) - E(\mathfrak{s}) - 1$$

Now *taut* and *rigid strip-webs* are the same, and have d(s)=0.

sliding strip-webs have d(s)=1.

Convolution Identity for Strip t's

$$\mathfrak{t}_s := \sum_{d(\mathfrak{s})=0} \mathfrak{s}$$

Convolution theorem:

$$\mathfrak{t}_s * \mathfrak{t}_{\mathcal{H}_-} + \mathfrak{t}_s * \mathfrak{t}_{\mathcal{H}_+} + \mathfrak{t}_s * \mathfrak{t}_p + \mathfrak{t}_s \circ \mathfrak{t}_s = 0$$

where for strip webs we denote time-concatenation by

$$\mathfrak{s}_1 \circ \mathfrak{s}_2$$

Conceptual Meaning

 $\mathfrak{t}_s \ast \mathfrak{t}_{\mathcal{H}_-} + \mathfrak{t}_s \ast \mathfrak{t}_{\mathcal{H}_+} + \mathfrak{t}_s \ast \mathfrak{t}_p + \mathfrak{t}_s \circ \mathfrak{t}_s = 0$

 W_S : Free abelian group generated by oriented def. types of strip webs.

There is a corresponding elaborate identity on tensor algebras ...

 \mathcal{W}_{S} is an A_{∞} bimodule

+ ... much more

Web Representations

Definition: A *representation of webs* is

a.) A choice of \mathbb{Z} -graded \mathbb{Z} -module R_{ij} for every ordered pair ij of distinct vacua.

b.) A degree = -1 pairing $K: R_{ij} \otimes R_{ji} \to \mathbb{Z}$

For every cyclic fan of vacua introduce a *fan representation*:

$$I = \{i_1, \dots, i_n\}$$

Web Rep & Contraction

Given a rep of webs and a deformation type wwe define the <u>representation of w</u>:

$$R(\mathfrak{w}) := \otimes_{v \in \mathcal{V}(\mathfrak{w})} R_{I_v(\mathfrak{w})}$$

There is a natural contraction operator:

$$\rho(\mathfrak{w}): R(\mathfrak{w}) \to R_{I_{\infty}}(\mathfrak{w})$$

by applying the contraction K to the pairs R_{ij} and R_{ii} on each internal edge:

 L_{∞} -algebras, again $R^{ ext{int}}:=\oplus_I R_I$ Rep of the rigid webs. $\rho(\mathfrak{t}_p): TR^{\mathrm{int}} \to R^{\mathrm{int}}$ $\sum_{\mathrm{Sh}_2(S)} \epsilon \ \rho(\mathfrak{t}_p)[\rho(\mathfrak{t}_p)[S_1], S_2] = 0.$ $S = \{r_1, \dots, r_n\} \quad r_i \in R^{\text{int}}$ $S = S_1 \amalg S_2 \qquad \epsilon \in \{\pm 1\}$

$L\infty$ and $A\infty$ Algebras - 1

If A is a vector space (or Z-module) then an ∞ -algebra structure is a series of multiplications:

 $egin{aligned} &m_n(a_1,\ldots,a_n)\in A\ & ext{Which satisfy quadratic relations:}\ &S=\{a_1,\ldots,a_n\}\ &L_\infty:\ &\sum_{\mathrm{Sh}_2(S)}\epsilon m_{s_1+1}(m_{s_2}(S_2),S_1)=0 \end{aligned}$

 $A_{\infty}: \sum_{\mathrm{Pa}_{3}(S)} \epsilon m_{s_{1}+1+s_{3}}(S_{1}, m_{s_{2}}(S_{2}), S_{3})) = 0$

L ∞ and A ∞ Algebras - 2 $V = V^i(x) \frac{\partial}{\partial x^i}$

$$V^{i}(x) = m_{j}^{i}x^{j} + m_{j_{1},j_{2}}^{i}x^{j_{1},j_{2}} + m_{j_{1},j_{2},j_{3}}^{i}x^{j_{1}}x^{j_{2}}x^{j_{3}} + \cdots$$

 $A\infty$ if x^i noncommutative, V degree 1

 $V^{2} = 0$

 $L\infty$ if x^i graded-commutative, V degree 1

Consequence for LG Models

The main claim, in the context of LG models, is that counting solutions to the ζ -instanton equations with fan-boundary conditions and reduced dimension zero defines a solution to the L ∞ MC equation:

$$\rho(\mathfrak{t}_p)(e^\beta) = 0$$

Half-Plane Contractions

A rep of a half-plane fan: $J = \{j_1, \dots, j_n\}$ $R_J := R_{j_1, j_2} \otimes \dots \otimes R_{j_{n-1}, j_n}$

 $\rho(\mathbf{u})$ now contracts

$$\otimes_{v\in\mathcal{V}_{\partial}(\mathfrak{u})}R_{J_{v}(\mathfrak{u})}\otimes_{v\in\mathcal{V}_{i}(\mathfrak{u})}R_{I_{v}(\mathfrak{u})}$$

 $\rightarrow R_{J_{\infty}(\mathfrak{u})}$

time ordered!

The Vacuum A_∞ Category (For the positive half-plane \mathcal{H}_{+}) Objects: $i \in \mathbb{V}$. \widehat{R}_{ij} $\operatorname{Re}(z_{ij}) > 0$ Morphisms: $\operatorname{Hom}(j,i) = \begin{cases} \widehat{R}_{ij} & \operatorname{Re}(z_{ij}) > 0 \\ \mathbb{Z} & i = j \\ 0 & \operatorname{Re}(z_{ij}) < 0 \end{cases}$ Objects: $i \in V$. $\widehat{R}_{i_1,i_n} := \bigoplus_J R_J$ $J = \{i_1, \dots, i_n\}$ $\widehat{R}_{i_1,i_n} = R_{i_1,i_n} \oplus \cdots$

Hint of a Relation to Wall-Crossing

The morphism spaces can be defined by a Cecotti-Vafa/Kontsevich-Soibelman-like product as follows:

> Suppose $\mathbb{V} = \{1, ..., K\}$. Introduce the elementary K x K matrices e_{ii}

$$1 + \bigoplus_{\operatorname{Re}(z_{ij})>0} \widehat{R}_{ij} e_{ij} = \bigotimes_{\operatorname{Re}(z_{ij})>0} (1 + R_{ij} e_{ij})$$

Defining A_m Multiplications Sum over cyclic fans: $R^{\text{int}} := \bigoplus_I R_I$ $\rho(\mathfrak{t}_p): TR^{\mathrm{int}} \to R^{\mathrm{int}}$ Interior $eta \in R^{ ext{int}}$ Satisfies the L $_{\scriptscriptstyle \infty}$ ``Maurer-Cartan equation" amplitude: $\rho(\mathfrak{t}_p)(e^\beta) = 0$ $m_n^{\beta}[r_1,\ldots,r_n] := \rho(\mathfrak{t}_{\mathcal{H}})[r_1,\ldots,r_n;e^{\beta}]$ $r_s \in \operatorname{Hom}(i_{s-1}, i_s)$

Proof of A_m Relations $\mathfrak{t}_{\mathcal{H}} \ast \mathfrak{t}_{\mathcal{H}} + \mathfrak{t}_{\mathcal{H}} \ast \mathfrak{t}_{p} = 0$ $\sum \epsilon \ \rho(\mathfrak{t}_{\mathcal{H}})[P_1, \rho(\mathfrak{t}_{\mathcal{H}})[P_2; S_1], P_3; S_2]$ $+\sum \epsilon \ \rho(\mathfrak{t}_{\mathcal{H}})[P;\rho(\mathfrak{t}_{p})[S_{1}],S_{2}]=0.$ $S = \{r_1, \dots, r_m\} \quad S = S_1 \amalg S_2$ $P = \{r_1^{\partial}, \dots, r_n^{\partial}\} \quad P = P_1 \amalg P_2 \amalg P_3$ $r_a \in R^{\text{int}}$ $r_s^{\partial} \in \widehat{R}_{i_{s-1},i_s}$

 $\sum \epsilon \ \rho(\mathfrak{t}_{\mathcal{H}})[P_1, \rho(\mathfrak{t}_{\mathcal{H}})[P_2; S_1], P_3; S_2]$ $+ \sum \epsilon \ \rho(\mathfrak{t}_{\mathcal{H}})[P; \rho(\mathfrak{t}_p)[S_1], S_2] = 0.$

$$S = \{\beta, \dots, \beta\}$$

and the second line vanishes.

Hence we obtain the $A\infty$ relations for :

$$m^{\beta}[P] := \rho(\mathfrak{t}_{\mathcal{H}})[P; e^{\beta}]$$

Defining an A ∞ category : $\mathfrak{Vac}(\mathbb{V}, z, R, K, \beta)$

Enhancing with CP-Factors CP-Factors: $i \in \mathbb{V} \longrightarrow \mathcal{E}_i$ Z-graded module $\operatorname{Hop}(i,j) \longrightarrow \mathcal{E}_i \otimes \operatorname{Hop}(i,j) \otimes \mathcal{E}_i^*$ $m_n^eta \otimes m_2^{ m CP}$ m_n^β

Enhanced A ∞ category : $\mathfrak{Vac}(\mathbb{V}, z, R, K, \beta; \mathcal{E}_*)$

Example: Composition of two morphisms

Boundary Amplitudes

A Boundary Amplitude \mathcal{B} (defining a Brane) is a solution of the A_{∞} MC:

 $\mathcal{B} \in \bigoplus_{i,j} \operatorname{Hop}(i,j)$ $\mathcal{B} \in \bigoplus_{\operatorname{Re}(z_{i,i})>0} \mathcal{E}_i \otimes \widehat{R}_{i,j} \otimes \mathcal{E}_j^*$ $\sum_{n=1}^{\infty} m_n^{\beta} [\mathcal{B}^{\otimes n}] = 0$ $\rho(\mathfrak{t}_{\mathcal{H}})[\frac{1}{1-\mathcal{B}};e^{\beta}]=0$

Constructions with Branes

Strip webs with Brane boundary conditions help answer the physics question at the beginning.

The Branes themselves are objects in an A_{∞} category

$$\mathfrak{Br}(\mathbb{V},z,R,K,eta)$$

("Twisted complexes": Analog of the derived category.)

Given a (suitable) continuous path of data $(\mathbb{V}, z, R, K, \beta)(x)$ we construct an invertible functor between Brane categories, only depending on the homotopy class of the path. (Parallel transport of Brane categories.)

Interfaces webs & Interfaces
Given data
$$(\mathbb{V}^{\pm}, z^{\pm}, R^{\pm}, K^{\pm}, \beta^{\pm})$$

Introduce a notion of ``interface webs''
 (\mathbb{V}^{-}, z^{-}) (\mathbb{V}^{+}, z^{+})
These behave like half-plane
webs and we can define an
Interface Amplitude to be a
solution of the MC equation:
 $\rho(\mathfrak{t}^{-,+}) \left[\frac{1}{1-\mathcal{B}^{-,+}}; e^{\beta} \right] = 0$

Composition of Interfaces A convolution identity implies:

$$\rho(\mathfrak{t}^{-,0,+})\left[\frac{1}{1-\mathcal{B}^{-,0}},\frac{1}{1-\mathcal{B}^{0,+}};e^{\beta}
ight]\in\mathfrak{Br}^{-,+}$$

Defines a family of A_{∞} bifunctors:

 $\mathfrak{Br}^{-,0} \times \mathfrak{Br}^{0,+} \to \mathfrak{Br}^{-,+}$

 $\mathfrak{Br}^{-,0} \times \mathfrak{Br}^{0,1} \times \mathfrak{Br}^{1,+} \to \mathfrak{Br}^{-,+}$

Product is associative up to homotopy Composition of such bifunctors leads to categorified parallel transport

Physical ``Theorem" Data

(X,ω): Kähler manifold (exact)

W: $X \longrightarrow \mathbb{C}$ Holomorphic Morse function

Finitely many critical points with critical values in general position.

We construct an explicit realization of above:

- Vacuum data.
- Interior amplitudes.
- Chan-Paton spaces and boundary amplitudes.
- "Parallel transport" of Brane categories.
Vacuum data:

 $\begin{array}{ll} \mathbb{V} & \text{Morse critical points } \phi_{\mathrm{i}} & dW(\phi_{i}) = 0 \\ \\ z_{i} \sim W_{i} := W(\phi_{i}) & \left(\text{Actually, } z_{i} = \mathrm{i}\zeta \overline{W}_{i} \right) \end{array} \end{array}$

Connection to webs uses BPS states:

Semiclassically, they are solitonic particles.

Worldlines preserving " ζ -supersymmetry" are solutions of the " ζ -instanton equation"

$$\left(\frac{\partial}{\partial x} + \mathrm{i}\frac{\partial}{\partial \tau}\right)\phi^{I} = \zeta g^{I\bar{J}}\frac{\partial\bar{W}}{\partial\bar{\phi}^{\bar{J}}}$$

$$\phi \cong \phi_i \qquad \qquad \phi \cong \phi_j \qquad \qquad x$$

$$\phi \cong \phi_i \qquad \qquad \phi \cong \phi_j \\ \clubsuit x$$

A Natural Conjecture

Following constructions used in the Fukaya category, Paul Seidel constructed an A ∞ category FS[X,W] associated to a holomorphic Morse function W: X to \mathbb{C} .

Tw[FS[X,W]] is meant to be the category of A-branes of the LG model.

But, we also think that Br[Vac[X,W]] is the category of A-branes of the LG model!

So it is natural to conjecture an equivalence of $A\infty$ categories:

 $\mathsf{Tw}[\mathsf{FS}[\mathsf{X},\mathsf{W}]] \cong \mathsf{Br}[\mathsf{Vac}[\mathsf{X},\mathsf{W}]]$

"ultraviolet"

Parallel Transport of Categories

To \wp we associate an $A\infty$ functor

 $\mathbb{F}(\wp): Br[Vac[W_1]] \to Br[Vac[W_2]]$

(Relation to GMN: "Categorification of S-wall crossing")

To a composition of paths we associate a composition of $A\infty$ functors:

$$\mathbb{F}(\wp_1 \circ \wp_2) = \mathbb{F}(\wp_1) \circ \mathbb{F}(\wp_2)$$

To a homotopy of \wp_1 to \wp_2 we associate an equivalence of A ∞ functors. (Categorifies CVWCF.)

Outline

- Introduction & Motivations
- Some Review of LG Theory
- Goals, Results, Questions Old & New
- LG Theory as SQM
- Boosted Solitons & Soliton Fans
- Web-based Formalism

Summary

1. Instantons effects can be thought of in terms of an ``effective theory" of BPS particles.

2. This naturally leads to $L\infty$ and $A\infty$ structures.

- 3. As an application, the set of BPS states on an interval does not satisfy the naïve clustering of classical BPS solitons.
- 4. When there are families of LG superpotentials there is a notion of parallel transport of the A ∞ categories.

Outlook

1. Relation to S-matrix singularities?

2. Are these examples of universal identities for massive 1+1 N=(2,2) QFT?

3. Generalization to 2d4d systems: Categorification of the 2d4d WCF.

4. Computability of Witten's approach to knot homology? Relation to other approaches to knot homology?