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Preliminaries
X:d=4, Smooth, compact, oriented, dX = @.
b5 (X) : Odd & positive
We study a TQFT on X
d=4 N=2* SYM. G = SU(2),50(3)

The partition function generalizes both the
Donaldson invariants and the Vafa-Witten
Invariants, and interpolates between them.


Presenter
Presentation Notes
This talk will be based on something called topologically twisted d=4 N=2* supersymmetric Yang-Mills theory with gauge group G = SU(2) or SO(3). 
But you don’t need to know what all that means to follow many of the main messages. 


Preliminaries

The theory depends on a choice of
background spin-c structure s.

Labastida-Marino [1995] noticed need to introduce s

The detailed dependence has not previously been
discussed. Including it turns out to be nontrivial.
We believe we have solved the problem completely.

Long, long, ago, at the ITP In 1998....
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Preliminary: Spin®-structure
Spin€(4) = { (uy, uy)|det(uy) = det(uy)} c U(2) X U(2)

1->U() - Spin“(4) - S0(4) - 1

Spin-c structure on X:
Reduction of structure group of TX to Spin‘(4)

“"Spinors”: Associated rank 2 bundles W=
c(s) = c;(detW?*) € H*(X; Z)

c(s)2 -2y —30
{,:() X

€ 7
8
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Presentation Notes
MARCOS STORY: 1998 KITP 


Preliminary: Spin® & ACS
An ACS 7 defines a canonical spin-c structure s(7) :

Almost Complex Structure (ACS):
Reduction of structure group of TX to U(2)

Spin©(4) == { (uy,uy)|det(uy) = det(u,)} c U(2) X U(2)
Use diagonal homomorphism U(2) — Spin‘©(4).

For c = c(s) for s an ACS we have

c°=2y+30 £ =0


Presenter
Presentation Notes
MARCOS STORY: 1998 KITP 
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Intro & Main Claims — 1/6

Data needed to formulate the partition function:

2TTL Ty

Tw EH ;qyy = ¢

meC A:UVscale t:=m/A

(UV) Spin-c structure: s, c¢,, := c,(s) € H*(X,Z)

v € H2(X; Z/27)


Presenter
Presentation Notes
Say: Comparison with Freedman’s topological classification of four-manifolds shows there is a huge difference between the topological and smooth categories. Very deep. 


Intro & Main Claims — 2/6

Path integral defines a "~ function”

Z,(Typ, Cyp, t): H (X, Z) - C

206 T ) = f el Eul(e;D)
k=0 Mok

My x: Moduli of nonabelian monopole connections
on a principal SO(3) bundle P - X with v = w, (P)
and instanton no. = k

wH, (X, Z) —» H* (Mg ; Q)

E. . U(1)-equivariant virtual bundle



Intro & Main Claims — 3/6

Special cases were studied In
[Moore & Witten 1997, Labastida & Lozano 1998 |

Those studies were limited to spin manifolds
with trivial spin-c structure.

Related work: Vafa-Witten & Dijkgraaf, Park, Schroers

1998 N=1 deformation of N=4 SYM,
Kahler 4-folds with b; > 3 & no observables

Also related: Recent work of

Gottsche, Kool, Nakajima, and Williams




Physical Mass Limits
m — 0
IN =2*SYM| - [N = 4 SYM]

SW94:
m — 00 & @y, = 0

AA(L) =4 m4qu

= pure SYM



Intro & Main Claims — 4/6

1A: Fors=3(J) and t - 0

Ly (x, Tuvr Cuvy t) - ZKW(Tuv)

1B: For ANY spin-c structure,
m — o & q,, = 0 with A} == 4m*q,,, fixed:

denorm (xl Tuv: Cuv» t) — Z’\l/)W(x)

What we mean by Z;¢"°"™ Is an
Interesting story best discussed later



Intro & Main Claims — 5/6

Central Claim:
Z,, can be computed by studying an integral

over Coulomb Branch = Base of Hitchin system
=(this case: modular curve H /T'(2) = C — 3pt)

2a. Writing a single-valued measure
= Implications for class S generalization

2b: Integrand Is a total derivative
of a mock Maass-Jacobi form.

2c: Value of the integral is a nonholomorphic
completion of a mock modular form.




Intro & Main Claims — 6/6

For b; > 1 Z, is alinear combination
of SW invariants with coefficients in a
ring of modular forms for 7,,,, and obeys
the "proper” S-duality covariance

Today | will skip much of the physics
background — See previous talks.
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N\ N\

Equations Of Motion”

AeEAMP) MeTW'® adP ® C)

W+ - X : Positive chirality rank two bundle
associated to uv spin-c structure s

0 —fixed
FT +

point equations (need Riemannian metric)

M,M] =0 DM = 0

“'Nonabelian monopole/SW equations”

[Labastida-Marino; Losev-Shatashvili-Nekrasov]

When s Is associated to an ACS these are

equivalent to the Vafa-Witten equations.



Index Computations

ci,— 2y +30)
4

vdim M, = dimG
N.B. Independent of instanton number k!

3
dika = 8k —E()(-FO')

3
Index D = —8k + 5 (cz, — o)

= Correlation functions on H,.(X) infinite g, - series



Operators In The TOFT
0:H.(X,Z) > Q — coho

pEHy(X;Z) O(p) =[Tr ¢*(p)]

SEH,(X;Z) O(S) = [fTT(qu +P2)]

What do these mean mathematically?



U(1), Symmetry
Ft+[M,M|=0 DM=0

U(l), : M->e'®M
U(1), acts on the moduli space M, ofthese egs.

Q- coho = Hl*](l)b(MQ»k)

t=%: U(1), eguivariant parameter

[Labastida-Marino; Losev-Shatashvili-Nekrasov]

O(x) & u(x)



Generating Function Of Correlators

7y (X Ty Cupr ) = (€9 ) 5o

Q-symmetry:  Path integral » [, -

<eO(x)>N=2* — quv] e‘u(x)EUI(gs;t)

k=0 M.k

E. . Obstruction bundle for elliptic complex
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S-Duality

In the SU(2) theory Z,, is the partition
function In the presence of ‘t Hooft flux
v € H*(X; Z)

The Z,, span a vector space V

But arbitrary linear combinations
aren’t physically meaningful



Three Distinct Theories

T
7(55:1(2)) Pt
/X
/’,I
T(506)) = T(S0(3),)
- |
I

Gailotto, Moore, Neitzke 2009;
Aharony, Seiberg, Tachikawa 2013



Partition Functions For The
S0(3)+ Theories

250(3)+ _ 2 einv-pr

p
700 =3 7
0

LT
AS = ? P2 (WZ (p)) Aharony, Seiberg, Tachikawa 2013

im/-pZ
P




w

S-Duality Transformations
T:Zy = ¢y Zy

S: 7, = (—i 7g)¥ Z el ™7,

Derivation from 6d ?



Orbit Of Partition Functions -1/2

The Z,, span a vector space V

The physical partition functions of the
theories form an orbit in that vector space.

It Is a finite covering of the triangle of theories.



| . SU(2)
For simplicity, work in PV Zy i-)

S0(3)_ S0(3)_—

[ZV+W2(X)] e [Zv ]

A\ [ZSO(3)Jr ] /

V+Wws (X)

SU(2)
[Zv+w2(X)] S



Full Modular Transformation Law

x =(p,S) €EHy(X) D Hy(X) T := Tyy

. at+b
ZV (ﬁ) S} cT + d) — (CT + d)W Z Bﬂ,V(y)Z[J,(pJ S) T)
U
S

S —
(cTt + d)?

1

5 = T d)y (p — 2mic (ct + d)S?)
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Coulomb Branch Integral

In principle defined for general class S theory.

A= fdudufl-[‘ll
B

H 1s holomorphic and metric-independent

Y: NOT holomorphic and metric- DEPENDENT
—indefinite theta function”

Today: ue C=B
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Seiberg-Witten Review — 1/6

3
Eu yZ — H(x — ai) ad; = Uu ei(Tuv) T mzei(Tuv)z
i=1

e;(t,y) half-periods of £, = C/(Z + 1,,Z)

Discriminant ~ n%*(t,,) Hf’:l(u — mzei(Tuv))z



u; = mée;(1o)



Special Geometry

H,(E,;7Z): Fibers of alocal system over B*

Definition: A duality frame” is a
local choice of A, B —cycles

Periods of A define homomorphism Z,,: H{(E,;Z) — C

a(u) = £/1 ap(u) = fxl

B

Fact: There is a locally dF
holomorphic function F(a) “v = a



d_a_ d_x dap [ dx dap

d2F
du Juy du Jzy T_da_daz

N.B.
7(u, m, t,,) should not be confused with 7,

lim 7(u,m, 7)) = Tyy lim 7(u, m, Tyy) = Ty
m—0 U—00



Weak Coupling Prepotential

u — oo: 3 Canonical duality frame (“weak coupling”) :

F(a,m) = Eruvaz +-

m? (log (2a> ° ;log (m))

f.,(t,,,): polynomials: Z ( )
£ E B wt=on—2 & /2, n(Tw)

[Minhahan, Nemeschansky, Warner; Dhoker, Phong] n=

Nekrasov: Instanton partition function =

A, m dependence (also A,B couplings):
[Manschot, Moore, Xinyu Zhang 2019]



Modular Parametrization

Remarkably: One can invert these equations and
express periods as bimodular forms in 1,1y,

5 % : B 19;}} (T)I%L (Tuv) — 19:4%} (T)ﬁf (Tuv)
m du] n°(Tyw)

812 (Tww) €23(7) + cycl.
e1(Typ)ezs (1) + cycl

m~2u(t, 7yy,) =

B =H/T'(2) =F(rQ2))



T=100U=1U

i

0
T=0 o u=u,

1 2
T=1 e u=u,

e
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Coulomb Branch Measure
7CB — f 0
F(T'(2))
Q=dtAdT H ¥,

Begin with Maxwell partition function ¥

W S mccical Frame dependent.
-~ € Not holomorphic.

fluxes Metric dependent.



The Period Point” ]
b >1 =78 =0

by =1 ZCB %0

« ] =]
H?(X; R) J* =1

] € Forward
Light Cone



Maxwell Partition Function

P~ Z o) T fE+T(W) f2

fluxes

Sum over the first Chern class
A€2L+v, L=H*X;7)

Ly
1111{ = z afE){ q 2 pTl Az
AE2L+V

du
Z = Cyy V(T,Tyy) +S -


Presenter
Presentation Notes
Say: derivative of Erf(x) goes to zero rapidly, so the sum is actually convergent, even though the holomorphic power of q has the wrong sign. 


Maxwell Partition Function

1 .
Z 0-E] g F emidz

AE2L+V

du

Z = Cyp, V(T,Tyy) + S — p

X

= Erf(x;) Erf(x) :=J et dt

0

Imz

=+VImt(l+ )]

Imrt


Presenter
Presentation Notes
Say: derivative of Erf(x) goes to zero rapidly, so the sum is actually convergent, even though the holomorphic power of q has the wrong sign. 


Maxwell Coupling To s,,,,

~exp(vabf++vaf )

V= = (ap — at)/m

Determines bimodular v(t, 7,,,)

192 (V) ZT) . 192 (OIZT‘LLU)
U3 (v, 27) R 93(0,27y,)



Presenter
Presentation Notes
SAY: THIS WAS A KEY INGREDIENT MISSING IN THE LATE 90’s AND LED TO THE PROBLEMS ENCOUNTERED THEN. It also violates folklore because people would generally expect the coupling to the background spin-c structure to be topological and holomorphic 


Holomorphic Part Of Measure

2

— O X rCuv
Hbare — 1A2 A3
Include observables:

'S 4 G2
H = Hpare AZ Ag Ag

Depend on duality frame —
- but the local system has nontrivial monodromy.



Local Topological Interactions

1

Ay =1;(u—u;)s =

(2m)® N (Tyy) > (1)

(94 (1) *93(Typ)* — 93 (T)* 04 (Tyyp)*)3

1

h= ()
3

y S d*F ANz 9,(271,2v)
— eX — 2 T 1 — | —
’ v dm? m 1922 (Tur ) V4 (27)




With all these Iingredients we can
now check that the CB measure
IS Indeed monodromy Invariant

and hence well-defined.
(Nontrivial!)

What about defining the inteqgral
of the measure?




u—>uj
£

H - qj_E F(t,y,) (1 + (?(qj))

U= 00 .e. T = Ty,

3 m 1
— — I E—— — 2 [ ]
(T Tuv)£ E e A (T~ Tup) 254

A

Do the phase integral first.
(as In string theory)
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Relation To Mock Modular Forms -1.1

Z&B A sum of integrals of the form
I, = L drdt (Imt)™° f(1,T)

o0

Supportofcis  f(r,7) = z c(m,n)g™ g"
bounded below Wy g

Strategy: Find h(z,T) such that | -
dzh = (Im71)™S f(1,7)
h (z,T) is modular of weight (2,0)

<7<



Presenter
Presentation Notes
Say in words the measure is modular invariant . Say in words that modularity of h-hat is crucial so that the finite boundaries do not contribute. 


Relation To Mock Modular Forms — 1.2

We choose an explicit solution
0-R = (Im7t)™° f(7,T)
vanishing exponentially fast at Imt — oo

R 1s not modular, but it’s failure to
be modular must be holomorphic.

h(t,7) = h(t) + R
h(t) : mock modular form

h(D) = ) dm)q™  q = e

mez



Doing The Integral ™

Note: d(0) undetermined by diffeq but fixed
by the modular properties: Subtle!



Evaluation Of CB Integral ?

ZSBzf Q Q=ditAdT HY,
F(T(2))

AE2L+V
du

da
O=dA A=ditH G LIJ1{=076

Z=Cyp V(T,Tyy) + S5 —



Evaluation Of CB Integral ?

1. -
\{11{: 2 (’)TE/{ q 41 e—Zm)l-z

AE2L+vV
y) = 0-G
v — Ut
G = 2 E/—{ g% p—2Mil-z
AE2L+v

??2? NoOm Jim Ej = 41



Evaluating Difference Of CB Integrals
W/ — Yl = 0~ G )12

— 1
GJ1)2 = 2 E){l»]zq—zﬂze—ZEi/l-z
AE2L+vV

E;? = Erf(xg*) — Erf(x;?)

Converges nicely!

= Can use this to evaluate the difference

ZfB’h — ZfB’]Z by a sum of residues.



Metric Dependence

Discontinuous jumps across walls:
Involves modular functions

For the boundary at u — oo the modular parameter
T = T,,. 1NIS leads to continuous metric dependence.

Closely related: Nonholomorphic in 7.,

(CPP¢ is a degenerate case.)



The Coulomb Branch Integral As
Harmonic Maass Form

ZSB(Tuv) :f Q(T, Typ)
F(T(2))

758 transforms under SL(2,Z) as above

0

——— 78" = y‘fn‘ZXZ K[A4, A-1g%q
0Ty



The Special Period Point

For any manifold with b =1
3 special J, such that ‘PJO factorizes:

plo = £ 0, (1,2)

1
_ J —FA%  _omiA
fv— aTEAq4ean
/1v



Measure As A Total Derivative

O=dA A=dtH G

Where we can write ¢ explicitly so that A is:

1. Well-defined
2. Nonsingular away from 7 € {0,1,i o, T}
3. Good g; expansion near cusps



Harmonic Jacobi-Maass Forms

These conditions determine G uniquely.

Modular completion of an Appel-Lerche sum

. e—Zniz (_1)nq7’l2—%
(t,2) ~ 9,(27) 1 + e4mizg2n-1

nez

du
Z = Cyp V(T,Typy) +S % (T, Tuw)



The Integral Is a Mock Modular Form

For s = s(J) we find:

Z1(/:B = Jv (Tuv:fuv) O (Tuv)/nzx(l-uv)

1%

-
g, =3 Z H(4n — Z,u)quv2

n=0



... but other s generalize ...

For CP* & ¢y, =1 (acs=c,, =3)

0 3 _
Ly :yuvz 77_2 E, G)v(_fuv)

0T,



Including Observables

Hol. part of 7(7yy)° @ 2[uD]

+3q311/4+6qw4+...
_I_SOQLH + ...

15/4
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Contributions Of The Cusps u;

Physics = Near eachcuspu;, j =1,2,3
the description of the vacuum changes:

We have a U(1) VM coupled to a charge 1 HM.
(In the appropriate duality frame) [Seiberg-Witten 94]

There Is a separate contribution to the path integral
coming from the path integral of these three LEET.

We add the contributions, because we sum over vacua:
3

Z, =758 + Z Zy7
j=1



When b} > 1 ZB vanishes —
- we get true topological invariants:

3
— SW
j=1

So It Is quite Interesting to determine
The three effective actions



u; = mée;(1o)



General Form Of Effective
Action Near U;

a: Local special coordinate vanishing at u;

S]:S'W — Jz:;cn(a;’cuv;t) On + Q(*)

d,,. Possible local topological couplings

_ A
. | |Fn,j(Tuvr t) "
localize
n

SW
e




Possible Topological Couplings A,
X=> Yy o

Cupyy,V = C2) Cyp V. V2

2
Cir = Cip Cir " Cup Cir =V

S = Sz S'Cir S'Cuv

P



Determination Of Effective Action

ZSW 2 SW(cir) 1_[ Fn] (Tyw; t)

FINITE SUM!

MWQ97: The couplings k, at u; can be

determined from the wall-crossing
behavior of Z3% from u;

_ Explicit formulae!



Comparison: Witten Conjecture

LTT

Zy" (p,S) = 214 xne T2 (Z,, 5, (0, S) + Zy,3(p, )]

_X+a
Xh — A

LTT
Zv,z (p, S) SW(Cir7v-cir
-

Lr

K=2y+30






2

(Cir+cuv)
2

18 KRR Y W
:

Lr

Fy = t3(774(1-uv)193 (Tuv/z))_l

Fy = (2 nlz(Tuv/Z))_l

Fr = 03(Tyup/2) /04 (Tys/2)






There are similar expressions
for the other two cusps.

: ¢ 2 \ A
B 19\ —Xh (1\ / m) 3 ?7(7_111:) -
Zswipu(Tuy) = (—2 N(27Tuw) ) ( A0)(Tue )2 U3(2T ) ) ( V3(27Tuy )

_ V3 (2Tuy ) ©
E N (c; .
X S\ (tlr) (1}2 (QTuV))

x=2pu mod 2L

| —(A/m)? ‘
Z T ¢ uv ) — 2 ?271"3}.1}2 ( (
5[11,3?1.5(7 ) ¢ (}7(7‘]“?)4 "ll};g(('-"_uv =+ 1)/2)4)

< (2n9((re +1)/2)1) " ( 2??5#“)1 /2))

J3((Tay + 1)
2B(x,u l}3((7—11 + 1)/2) g
XZSV\ (cir) (—1)2P= }(1}4((“1 +1)/2)) |



Relation To Previous Results

For s(J) and m — 0 we recover and generalize
formulae of [VW;DPS] for VW invariants.

For ¢, = 0 we recover formulae
of Labastida-Lozano

Form - o, q,, — 0 after suitable renormalization we
recover the Witten conjecture” for the Donaldson
Invariants in terms of the Seiberg-Witten invariants.

Recover and generalize explicit evaluation of u-plane integral
for CIP%, 5% x §? of Moore-Witten, Malmendier-Ono

A generalization and unification of the 1990’s formulae:



VIRTUAL REFINEMENTS OF THE VAFA-WITTEN FORMULA

LOTHAR GOTTSCHE AND MARTIJN KOOL

with an appendiz by Lothar Gottsche and Hiraku Nakajima

VERLINDE FORMULAE ON COMPLEX SURFACES I:
K-THEORETIC INVARIANTS

L. GOTTSCHE, M. KOOL, AND R. A. WILLIAMS

REFINED SU(3) VAFA-WITTEN INVARIANTS AND
MODULARITY

LOTHAR GOTTSCHE AND MARTLIN KOOL

VIRTUAL SEGRE AND VERLINDE NUMBERS
OF PROJECTIVE SURFACES

L. GOTTSCHE AND M. KOOL

SHEAVES ON SURFACES AND VIRTUAL INVARIANTS

L. GOTTSCHE AND M. KOOL



Concept This paper GKNW

Geometry Smooth, compact four- | Projective complex surface
manifold X with b; = 0 of | § with b5 > 1, by = 0 of
SW simple type SW simple type

Mass/Scale m/AN=t t

Modular param- | g, xt

eter

UV Spin-c struc-
ture

Cav € Wa(X) + Hy(X, 27)

Canonical class Kg

IR Spin-c struc-
ture

ciy € Wa(X) + Ha(X, 2Z)

SW basic class Kg — 2a;

't Hooft flux

2p € H2(X,Z)

first Chern class ¢

0-observable

P

—U

2-observable

S

1z

Table 9: Dictionary between some of the concepts in this paper and in [13, 14,

(a



U(1), Localization

Ft+[M,M] =0 DM =0

Fixed point set for M — e M has TWO branches
Branch 1: M,.;: M =0& FT =0

Branch 2. M ;. M ~ (O *)

0 0
U(1)p: fM - o va[

...+fM

asd, k ab

Q.k



SW
Zv,z

Zv,l

_|_

SW

SW
Zv,3



Concluding Remarks

Twisted N = 2" on four-manifolds with a spin-c structure
unifies and generalizes previous expressions for
iInvariants of 4-manifolds derived from SYM.

Paper on the arXiv should appear soon.”

Hamiltonian formulation (Floer theory)?

Derivation from 6d (2,0) theory?

Generalization of these technigues to class S

X complex: Compute Refined Versions From Physics



REMARKS ON CLASS S
SLIDES FROM MY
STRING MATH 2018
TALK IN SENDAI, JAPAN



Class S: General Remarks
11X
l

a'\ % 3
— qX B°
H=a*pf det(duj) Aphys

Aphys @ holomorphic function on B with first-
order zeros at the loci of massless BPS hypers

a, £ will be automorphic forms on
Teichmuller space of the UV curve C

a, [ are related to correlation functions for fields
In the (0,2) QFT gotten from reducing 6d (0,2)



Class S: General Remarks

Y ~ z ein/’l-fe—in’f()l+,/’l+)—inr()L_.)[_)+...
A

1€ +T ® H2(X: 7) ['c H'(Z; Z)
’ ' Lagrangian
§ el ® H*(X; R) sublattice

If&=p&@w,(X) mod2 then WC from interior
of B will be cancelled by SW invariants

= No new four-manifold invariants...



¥ comes from a partition function” of
alevel 1 SD 3-formon M, =X X X

Quantization: Choose a QRIF Q on H3(M; Z)

Natural choice: [Witten 96,99; Belov-Moore 2004]

Q(x) =exp(im WCS(OUx; ST x Mg))

Choice of weak-coupling duality frame +
natural choice of spin® structure gives

E=pQ wy(X)


Presenter
Presentation Notes
Mention: Btw – this quadratic refinement isn’t quite canonical: Rather, it depends on a choice of Wu structure. It is related to work I’m doing with Samuel Monnier,   I will talk about closely related things next week in Okinawa. 


HOWEVER!



Need For U(1)-valued QRIF

e "< is a 6d generalization of the
famous Witten phase: (—1)%z*)4

So the Z,-phase generalizes
to a U(1)-valued phase.

Important implications for the generalization
of CB integral to class S theories: We do not
want a Z, —valued QRIF.



N =27 SU(2)
SL(2) Hitchin systemon E,, = C/(Z
Regular singularity at z = 0

m O)

Monodromy ~ (O -1

A: Liouville form pulled back to
> c T*E,,

TUU Z)



	N=2* SYM, �Four Manifold Invariants, �And Mock Modularity�
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Preliminary: 𝑆𝑝𝑖 𝑛 𝑐 -structure
	Preliminary: 𝑆𝑝𝑖 𝑛 𝑐  & ACS
	Slide Number 9
	Intro & Main Claims – 1/6
	Intro & Main Claims – 2/6 
	Intro & Main Claims – 3/6
	Physical Mass Limits
	Intro & Main Claims – 4/6 
	Intro & Main Claims – 5/6 
	Intro & Main Claims – 6/6 
	Slide Number 17
	``Equations Of Motion’’ 
	Index Computations 
	Operators In The TQFT
	𝑈  1  𝑏  Symmetry 
	Generating Function Of Correlators
	Slide Number 23
	S-Duality
	Three Distinct Theories 
	Partition Functions For The 𝑆𝑂  3  ±  Theories 
	S-Duality Transformations 
	Orbit Of Partition Functions -1/2
	Slide Number 29
	Full Modular Transformation Law
	Slide Number 31
	Coulomb Branch Integral
	Slide Number 33
	Seiberg-Witten Review – 1/6
	Slide Number 35
	Special Geometry
	Slide Number 37
	Weak Coupling Prepotential
	Modular Parametrization 
	Slide Number 40
	Slide Number 41
	Coulomb Branch Measure 
	The ``Period Point’’ 𝐽
	Maxwell Partition Function 
	Maxwell Partition Function 
	Maxwell Coupling To  𝔰 𝑢𝑣 
	Holomorphic Part Of Measure
	Local Topological Interactions
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Relation To Mock Modular Forms -1.1    
	Relation To Mock Modular Forms – 1.2
	Doing The Integral 
	Evaluation Of CB Integral ? 
	Evaluation Of CB Integral ?
	Evaluating Difference Of CB Integrals  
	Metric Dependence
	The Coulomb Branch Integral As Harmonic Maass Form 
	The Special Period Point
	Measure As A Total Derivative
	Harmonic Jacobi-Maass Forms
	The Integral Is a Mock Modular Form
	… but other 𝔰 generalize … 
	Including Observables
	Slide Number 66
	Contributions Of The Cusps   𝑢 𝑗 
	Slide Number 68
	Slide Number 69
	General Form Of Effective Action Near  𝑢 𝑗 
	Possible Topological Couplings  Δ 𝑛 
	Determination Of Effective Action
	Comparison: Witten Conjecture
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Relation To Previous Results
	Slide Number 79
	Slide Number 80
	𝑈  1  𝑏   Localization
	Slide Number 82
	Concluding Remarks
	Slide Number 84
	Class S: General Remarks
	Class S: General Remarks 
	Slide Number 87
	Slide Number 88
	Need For U(1)-valued QRIF
	𝒩= 2 ∗   𝑆𝑈(2)

