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Glorious History Of
4d Field Theory & Four-Manifold Topology

Instantons (BPST) (1975) mmp
Donaldson invariants (1982) mmmp

TQFT (1988) mmp
Seiberg-Witten Invariants (1994)

mm) Revolution of 1995




A paradigmatic example of the modern interplay
between the physics and mathematics

Physical Mathematics And The Future
http://www.physics.rutgers.edu/~gmoore/

Today: Continue the line of development
from 1988-1998



But not all questions are answered...
X: d =4, Smooth, compact, oriented, 0X = 0.

For simplicity: Connected & (X)) =0

We assume
(essential in Donaldson & Seiberg-Witten theory)
that X admits an almost complex structure

@& ) (X) is odd

Misses half’’ the world of four-manifolds!



We do not know anything even close
to a complete topological invariant.

THE WILD WORLD OF
4—-MANIFOLDS

ALEXANDRU SCORPAN




What About Other N=2 Theories?

There are infinitely many other four-dimensional
N=2 supersymmetric quantum field theories.

Topological twisting should make sense
forany N = 2 theory J'.

(but T'-dependent details remain to be worked out)

Given the successful application
of N =2SYMfor G = SU(2) to the theory of
4-manifold invariants, are there interesting
applications of OTHER V' = 2 field theories?



Yes

Learn more about existing invariants

Marino-Moore-Peradze (1998):
Argyres-Plesser-Seiberg-Witten
description of AD1 theory =
Superconformal simple type.

Marino-Moore: SU(N) Donaldson invariants:
Applications to 3d Floer homology
(MM 1998; Daemi & Xie 2020)



Generalizations
Other 4d theories

5d theories
6d theories

Coupling to background supergravity...

These might lead to truly new invariants
that are independent of the
Donaldson/SW invariants ...




... Or not ...

Today’s talk: Some of these
generalizations are already leading to
some interesting issues in QFT...
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4d N=2 SU(2) SYM On X
P — X : Principal SO(3) bundle

w,(P) € H*(X,Z,): 't Hooft flux”
“background 1-form symmetry gauge field”

Witten (1988): " Topological twisting”’

Spinors = differential forms

Q4,04 - 0,K,..

Q=0 {K,Q} =d



QA,uzl/)u Ql/)uz_Duqb Qp=0

A€ AMP) ¢e'(X,ad P ® C)

An important viewpoint in
the section on families below

Baulieu & Singer, 1988

G = Aut(P) Group of gauge transformations

G —equivariant cohomology of A (P)



Q —closed observables: O(pt) = Tr(qbz('pt))
{K,.Q} =d= 0;,=K0

O(ZJ‘) = f _Oj only depends on [Zj] € H;(X)

2

Functionon H,(X): Z,,(X) = <80(Z)>

Witten (1988): For a suitable
background SU(2)r connection

Zy (Z) independent of metric g, on X



Witten (1988) & Atiyah& Jeffrey(1990)

Zyw (Z) path integral localizes to
an integral over

M < AP)/G
M ={A € AP):F(A)* =0}/G

FTt :=1(F+*F)
2



Donaldson Invariants
Donaldson: u: H,(X) » H*(M)
S c X : smooth surface.

M (S): subspace where the Dirac equation on
S coupled to Vp has a solution

Poincare dual to M (S) defines u(S) € H*(M; Q)

75 (%) _f ey EfM (Z.)T

M dependson g,, ,but Zp(Z) does not




Main Statement

ZW(Z) = Zp (2)

=: Zpy (X)



Evaluation Of Zp, (2)

Zpw (2) independent of g,,, on X

Consider metric L*g,, inthe limit L — oo

= Use Seiberg-Witten LEET
ZDW(Z) — Zg'oul (Z) + Z:S']W (Z) \I\//IVic;cf)erre]-\g/\Z/litten 97

Period point | e H%(X,R): [ =x]




Integral over the Coulomb branch of
(Z) vacua on R*, parametrized by
Coul u = (Tr¢?), and computed using
SW LEET for U(1) VM

V90




Singularities at u = +A? spoil
topological invariance.

Restore it with integral over "Higgs branch vacua”
Zy®= ) SW© £
CESPIinc(X)

f-(Z) : Trigonometric function of £ computed
using classical intersection theory and LEET.

SW/(c) € Z Seiberg-Witten invariants



Spin(X) & w,(X)M + 2 HA2(X, Z)

] Counts the number of solutions to
SW (C) SW equations:

Ay “U(1) connection” M € T(W™)
F(Aab)-l_:MM )/D M =

Theorem (Witten 94): When b (X) > 1,
SW/(c) isindependent of ] and is onIy
nonzero for finitely many spin-c structures.



Coul (Z) f[dVM] e_SLEET + O0(2)

U(1) VM = (Aw ww Xuvr 1 Cl)

LR = 1(; (FF AF, +7F_ ANF.)+ %(Im’r)da/\ xdd — %(ImT)D A D
~ Ton : 167r?n N d* 1) — é’rw AN dyx — %?x A di)
;;{;5; (Fy D) G G A A (P D)
+ 3 ;Hﬂ z;w NONY N — 32.\; Q ( X x‘“"’xpa> Vodie .

7(a) : Complicated function determined by SW LEET



Claim (Moore-Witten 97):

by(X)>1 =2, (2)=0

b;(X)=1 = Zéoul(Z): Tree level exact

b;(X)=0 = 7! (%): One loop exact

Coul

L . )i
N.B. Not a localization evaluation of Z; . ,(Z) !!

1997 derivation overlooked some subtleties,
now being revisited with V. Saxena



u-Plane Integral

SW94: Coulomb branch has a
modular parametrization:

95 +94 1 1 51

- 29292 8 2
— L 2TIT

q=2¢€

Coulomb branch = UHP /T°(4)

:—q 4-|——q4_|_



Im(7)
Foo TFoo T2 Foo T3 Foe
S];-‘OO T?SFoo
— 2 0 z 1 3 2 s 3 z

o) =

» Re(7)

( g) mod4} c SL(2,7)



0
Zéoul(z) = J dtdt }[(T)é‘_f G/ (1,7,%)

F(T0(4))

Comes from the

G] ) _) Z .
(T.7.2) photon path integral

Not holomorphicin T (or u)
Continuously metric dependent.

G’/ (t,T,2) : Is a mock Jacobi form

G. Korpas, J. Manschot, G. Moore, I. Nidaiev (2019)
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Topological Twisting

For an astutely chosen background
SU(2)p-symmetry connection:

AR—Symmetry . w+,LC

Sy=2sym = {Q,V}+ [ty TrFAF

It is useful to rephrase topological twisting
in terms of "reduction of structure group”



Reduction Of Structure Group

@:G; > G,  Homomorphism of groups

Given a principal G; bunc
form an associated princi

le Py > M we can

nal G, bundle

P; X(p G, = { [ (pl, gz)] } (191, 92) ~ (P1, 9(g1)g2)

Transition functions g,z: Uy = G; map to new

transition functions @

(9ap): Uag = G



Reduction Of Structure Group (RSG)

We say a principal G, bundle P, - M
“"admits a Reduction of Structure Group to G4 via @ “
if it is in the image of this map (functor)

(up to isomorphism)

P, has transition functions g,z: Uyp = G

We can find functions g,g: Uyg = G1 such that

Gap = P(9ap) AND Gapdsygya(®) = 1g,



Examples Of RSG

1. A Riemannian metric on an n-manifold M,, IS
an RSG of the frame bundle Fr(M,,) via

@:0(n) » GL(n,R)

2. An orientation IS an RSG of the frame bundle Fr(M,,) via

@:GL™(n,R) » GL(n, R)



Examples Of RSG

3. An almost complex structure
(compatible with a metric + orientation)
IS an RSG of the bundle of oriented ON frames via

p:U(3) - So(n)

4. A Spin®-structure IS an RSG of the bundle of
oriented ON frames via

@:Spin‘(n) = Spin(n%zx U > SO(n)




Reduction Of Structure Group (RSG)

RGS extends to category of
bundles with connection:

Vl on Pl

= V2= QD*(Vl) on Pl ch Gz



Topological Twisting As RSG

[Manschot-Moore; Cushing,Moore,Rocek,Saxena; D. Freed, unpublished]

Background fields for N' = 2 SU(N) SYM:

A connection for GPhs = SPIAXSU(2R
((-1,-1,-1))
0: SO(4) = (SU2), x SU(2).) ks

(,0( [(ulruZ)]) = [(u11u2'u1)]

@, (VE¢) = background fields (for “0-form symmetry”’)
of the physical theory



Example: SU(2),N = 2* Symmetry group is
GPWS = (SUR),. xSUR)_xSUR)pxU1))/ 2

Z=(-1,-1,-1,-1))=17Z,

There is NO homomorphism from
SO(4) to GPWs

(compatible with constraints on the morphism of Lie algebras)

There IS a homomorphism Spin€(4) » GPWs

The twisted theory depends nontrivially on the Spin®
structure on the 4-fold [Manschot & Moore 2021]




WIP with Vivek Saxena and Ranveer =
Singh aims to generalize the picture
“% to arbitrary Lagrangian N=2 theories. §

Conjecture: Topological theory depends on

. N
Spin(4)xU(1)"f
a pin( )ZX () structure +
2
restrictions on background gauge fields

for “1-form symmetries”

Goal: Further generalization to
arbitrary class S theories.



What Do The Other (Lagrangian)
Theories Compute?

The path integral for topologically
twisted Lagrangian theories localizes to
intersection theory on
moduli space of the
Nonabelian Seiberg-Witten equations

(instanton moduli space is a special case)



How Twisted Lagrangian Theories
Generalize Donaldson Invariants

2(5) = (@), = | erOSiEmag (v)
M

But now M. Is the moduli space of:

Ft=DM,M) y-DM=0
MeT(WrRV)
W™*: Rank 2 “spin” bundle; Vdepends on matter rep

“"Nonabelian Seiberg-Witten equations”
[Labastida-Marino 1997; Losev-Shatashvili-Nekrasov1997 ]



Defining the integral over M
requires a choice of orientation

Orientability should be determined by the
mod-two index of the deformation operator

dF Dd:Py-D:0YX,adP) HT(W* Q V)
> 02Y(X,ad P) @ Q°(X,adP) PT(W- Q V)

View the determinant bundle of the
deformation complex as the (real)
state space of a 5d invertible theory



We hope the theory is trivializable...

An orientation is a trivialization
of this invertible theory.

Question (WIP with D. Freed):
Is there a useful description of the 5d invertible
theory for the moduli space of the nonabelian
Seiberg-Witten equations for general compact
group and quaternionic representation?
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“K-Theoretic Donaldson Invariants’

4
/

-

" L
Jan Manschot .| Gregory Moore

Runkai Tao




N = 15D SYM

Vectormultiplet: V = (4,,,0,14, Dag)
SV] = gS_c%,SYM fxs trF«F +trDo*xD o+ -
TOP — tr F2 = V(I) o (A%),O'(I)’ ) Seiberg 1995

S;v@O] = [, ADAtrF2 + [ oW r FxF + -

(1) o ;=2
o 9sd sym



Now take Xz = X x S?
6 ~ ., AY) const. on X

FD pulled back from X

We have a partial topological twist based on
reduction of structure group

@: Z, X S0(4) - (Spin(5) x SU(2)g)/Z,
Background fields: ¢, (V*¢)

Topological on X but a nontopological, spin, theory on S*!

Q% = 0,



SQM With Target M’

Topological on X = Can shrink X =
Describe the twisted theory in terms of
SQM on S! with target space
the moduli space of instantons
[INekrasov, 1996}

But M is not spin in general,
so the theory will be anomalous



Potential Global Anomalies
1D:  Pfaff(y - Dg1) not well-defined on LM

5D: Pfaff(y - Dyys1) notwell-defined on A/G

All controlled by "'the same” 6d mod-two index.

Discussions are in progress with D.Freed and
E. Witten to give a useful formula for it.



Anomaly Cancellation
S[V; V(I)] — fXxsl F(A(I)) A CS(Adyn) 4.

= SQM(M’) couples to a
“line bundle” Les(n) - M

)

n:=|—1\€ H*(X,7)
2T

Working hypothesis: For suitable n Sy, ® L(n) exists

Evidence: One can show
X admits an ACS = M, is spin-c



FZ
Stwistea =1 Q,V } + lOgR4 J tr 5—

v 8m?
4 2 R :
R*=exp| —8m"— +1i6
Isaym
1 2
Minstpart. = E log R
R=RA

A dimensional scale in the physical theory



géd,sym = oo corresponds to the E; 5d
superconformal theory [Seiberg 1995]

And our formulae below indeed have
special properties at R* = 1.



At least formally the path integral
should compute

Z(R,n) =X OSR > Trae {(=1)F exp(— R Dfy )}

di = dimg My = 4h'k — dim G£Z



Trc, {(=1)F exp(— R Dy )}

In good cases, this is the index of the
Dirac operator Dy

= K-theoretic Donaldson invariants’’

All this should generalize to (anomaly-free)
6d SYM theories on X X [

Index(Dymy) = Ell(a(My))




Five Dimensions
Z(R,n)" =") RA/? ch(L(n)) A(M)
Z ij (L) A,

[Nekrasov, 1996; Losev, Nekrasov, Shatashvili, 1997]

We study Z(R,n) using both

the Coulomb branch integral
and, independently, toric localization,

for X a toric Kahler manifold



K-THEORETIC DONALDSON INVARIANTS VIA INSTANTON
COUNTING

LOTHAR GOTTSCHE, HIRAKU NAKAJIMA. AND KOTA YOSHIOKA

To Friedrich Hirzebruch on the occaston of his eightieth birthday

ABSTRACT. In this paper we study the holomorphic Euler characteristics of determinant

2 OO 6 * line bundles on moduli spaces of rank 2 semistable sheaves on an algebraic surface X,
¢ which can he viewed as K -theoretic versions of the Donaldson invariants. In particular

if X is a smooth projective toric surface, we determine these invariants and their wall-

crossing in terms of the K-theoretic version of the Nekrasov partition function (called

5-dimensional supersymmetric Yang-Mills theory compactified on a circle in the physics

literature). Using the results of [43] we give an explicit generating function for the wall-

crossing of these invariants in terms of elliptic functions and modular forms.

VERLINDE FORMULAE ON COMPLEX SURFACES I:
K-THEORETIC INVARIANTS

L. GOTTSCHE, M. KOOL, AND R. A. WILLIAMS

ABSTRACT. We conjecture a Verlinde type formula for the moduli space of

Higgs sheaves on a surface with a holomorphic 2-form. The conjecture spe-

2 O 1 9 ° cializes to a Verlinde formula for the moduli space of sheaves. Our formula
* interpolates between A -theoretic Donaldson invariants studied by the first

named author and Nakajima-Yoshioka and K -theoretic Vafa-Witten invari-

ants introduced by Thomas and also studied by the first and second named

authors. We verify our conjectures in many examples (e.g. on K3 surfaces).



Using the physical techniques we
derived results

Differ from GNY!

Agree with GNY!
(Suitably interpreted.)

This raises a puzzle...



Total partition function is a sum of two terms

Z)(R,n) = 7). ,(R,n) + ZL, (R, n)

Zéoul(fR, n): 4d Coulomb branch integral

J
One can deduce Zg,,, from ZCoul



SW special Kahler geometry is subtle

For 5d SYM gauge group of rank 1:
Coulomb branch = C

parametrized by : U = ( Pexp f (a + iASd,ym) )
Sl

— eRa 4 o~RA 4 instanton corr's

a: cylinder valued

F(a) is known [Nekrasov 1996, 2000,...]



Modular Parametrization Of U —plane

The Coulomb branch is a branched double cover

N \ /
\\ ;.-"
\ ."‘f
\l"

U

R
U, (T)Z U3 (T)z
93(7)%  9,(7)*

— ___""'-\__ —_ ___"“*x___ - —
P ’
\

Y v/ Y

\/ \ !
\f \ \
\ \ 1

|

4 5 6 7 8

of the modular curve for ['°(4)

) +u(r) = 8 + 4(R? + R™%)

Hauptmodul for T'°(4)




J _
o @m) = |

n
dtdtv C"™’ ‘P](T,— ()
; 2

9,777 1
v(T,R) = 5 = = ;
n J1—2R%2u(1) + R

C( fR) Suitably modular invariant and
L holomorphic "contact term”

0%F
da 0m;,

(T, R) ~



0

k? _
‘P](T, Z) — 2 (a_f Eé ) q—je—an k-z (_1)k-K

keEH?(X,Z)

E,{=E7"f<\/lm’[ <k+ ImZ)-])

Imrt

7 - g (1, R)

Not holomorphic.

Metric dependent .



Measure As A Total Derivative

Zl (Ryn) = f drd7 H (1) W (T,E z)

. 2
3 suitably modular invariant J £ =yl
and nonsingular G (7, T) ot

(It can be hard to find explicit formulae

AN

for G : one needs the theory of mock
modular forms, and their generalizations.)



Y

Y

Y

Y

Zéoul(n' R) — Yh_)rrgo dT]_ ‘7—[ 6




Examples Of Explicit Results
X = CIP4

Zeouw(mR) = | v(T,R) Cr, R G(1, ge)]qo

z(r R) 2?2 1

o) = -2 s 2, OV :

q 2 8
7€l 1 —elmn “T»R)q{)_z




Examples Of Explicit Results

Wall Crossing Formula:

Coul Coul

7] 7l = [v C”z('D”’(T,lR)]qO

2

/ k
@],]' _ Z (Slg . S}{ )q—Te—Znik-n {(T,R) (_1)k-K

S,{ = sign(VImT (k + fm ¢(z, R) ) -])

Imrt



If we take these formulae literally, we get
results that are very different from GNY

We get finite Laurent polynomials in R
with terms involving negative powers of R

It looks nothing like:

Z(R,n) = Z RUu/2 Index (D), M)
k=0



v.C.G,07J" are functions of 7 and of R

Subtle order of limits: R > 0 vs. Imt > o

1 1 3 5
Example: u(t) ~ %q_l + qu — %qz + 0O (qz)

9,772 1
v(T,R) = 5 = > ;
n J1—2R2%u(r) + R




Similarly for ¢@ ®») ~ 0°F
' oa 0m, .

T 1 , ..
2_.31/“_ — —E 1 (log(—’??,zj 4+ Q(Rg s R—Q) qlff—l L 3(R4 o R_4) gljz

W

H(AR~2 — AR2 4+ 20/3 RS — 20/3R~6) 43/ 4+ . )

> —1/2\ [n (—2u)F RAn—2k+1
I f}g (T) 1)3(":") ey n k dn — 2k +1 -



Zeou(m®) = [ v@nR) CER™ C@R)]

Coul

Zeou — Zbow = |V an@f'f’]qo

If we first expand the expressions in |[.... |
in R around R = 0 then take the constant g°
term at each order in R we find remarkable
and nontrivial agreement with similarly
complicated results in GNY.



Using toric localization and the 5d instanton
partition function we derived exactly the same
formula for wall-crossing @ oo

This would be another entire seminar....



The Puzzle: The naive physical
interpretation suggests we should take
the constant term in the g-expansion

Zcoun(M,R) = [ v(t,R) C(r, iR)"Z G(T, R)]qo
] ] 27
Leoul ~ Lcoul = [V cv e’/ ]qo

But to get answers that agree with mathematical
results we first expand in R
and then take the constant termin g.



Using the wall-crossing behavior of ZCOul(R, n)
at the strong coupling cusps allows

one to derive ZSI,W = partition function for by > 1

1+R
e = (1—332)%"2+Xh 2 SW(e) (1 73)

Tl
2

Z(R,n) = Terms in the power

series with R with d = )%:G mod 4

Agrees with, and generalizes, GKW Conjecture 1.1



E; Theory

. ] — - n? ]
:]131211 Lol Ldrdr :zlelgi (VRC LIJ)

Strong coupling walls are SHIFTED from the
walls defined by spin-c structures!

But this is nicely explained by the
coupling to the background 40,

= perturbed SW equations !

FY(A) + Im(QF*(AD) = MM



So far, we did not use any K-theory in describing
the K-theoretic Donaldson invariants”

It would be very desirable to do so, because the 6d version,
analogously formulated, could be quite interesting:

Conjecture:

Integrals in elliptic cohomology of
distinguished classes defined by
the susy sigma model with target
space M, define smooth
invariants of four-manifolds
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Family Donaldson Invariants

There Is an Interesting generalization to
Invariants for families of four-manifolds.

Mentioned by Donaldson long ago.
A modest amount of work has been done
in the math literature .




Families Of Metrics

Couple twisted theory to a
family of metrics: g,,,,(x; s)

s € P : Parameters of the family.

Zpw (G (x;s)) isindependent of s.

A suitable coupling to background supergravity
gives a partition function which is a closed

differential form Zil___l-pdsi1 A--dstp

Periods of these forms are the family Donaldson invariants.



Universal Family

P = Met(X)/Dif f+(X)

Met(X) oy
Met(X) oy

T, (Diff+(X)): 4d mapping class group



Donaldson-Witten a la Baulieu-Singer
P-X G = Aut(P)
G —equivariant cohomology of A (P)
g
( Q*(AP)) ® S*(Lieg))
QAM:l/)M Ql/),uz_Duqb Q¢p=0

Atiyah & Jeffrey + Baulieu & Singer

Zpyw : Pushforward in G —equivariant cohomology.



Ga = Dif f7(X)

G4 —equivariant cohomology of MET (X)

Qg =%y Q¥,, =70, +7d, Qd*=0

Action e is a closed equivariant class
inthe G X G,; — equivariant
cohomology of MET (X) X A(P)

Push-forward in G —equivariant cohomology
is a G; —equivariant class on MET (X)



Thanks to heroic computations by
JC and VS we have explicit actions
e > obtained by coupling to
truncated & twisted
N = 2 conformal supergravity



Coupling To Twisted Truncated
Background Supergravity

S[g, ¥, @] = Spw + [ Vg (PHA,, + PHZ, + PHIPY Y, )

Ay _ImTI]( UL Xv])+

Y,LLV = Im TI] X[I,I,p X{?’] + .-



- Met(X)
Y= Dirrt o
nontrivial element of o (Dif f (X))

nontrivial cycle from some

dguv . ..\
ids fxvol(g) - (AHV)

QAw) = Tiy™ + -



This raises several questions:
A"V is NOT Q-closed!!!

Does our period integral localize to integrals on
bundles of moduli spaces of instantons?

Does tree-level exactness (of LEET) persist?

No restriction on b;". No assumption of ACS.

Does it see the other half of the world
of four-manifolds?



Questions & Future Directions

Topological data for twisting the general d=4 N=2 theory?

Invertible theory governing orientation of nonabelian SW moduli
Global anomalies of 5D SYM in topological twisting background
Puzzles regarding physical derivation of K-theoretic Donaldson invariants
Generalization to elliptic invariants from 6d theorieson X X E

Puzzles concerning the family generalization of Donaldson invariants

Other puzzles and directions | did not have time to mention ....
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