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Glorious History Of 
4d Field Theory & Four-Manifold Topology

Instantons (BPST)  (1975)

Donaldson invariants (1982)  

TQFT (1988)

Seiberg-Witten Invariants (1994) 

Revolution of 1995



Physical Mathematics And The Future  
 http://www.physics.rutgers.edu/~gmoore/

A paradigmatic example of the modern interplay 
between the physics and mathematics 

Today: Continue the line of development 
from 1988-1998 



But not all questions are answered…
𝑋:  d = 4, Smooth, compact, oriented, 𝜕𝑋 = ∅. 

𝑏2
+ 𝑋  𝑖𝑠 odd  

We assume 

(essential in Donaldson & Seiberg-Witten theory) 

that 𝑋 admits an almost complex structure 

For simplicity: Connected &  𝜋1 𝑋 = 0 

Misses ``half’’ the world of four-manifolds!



We do not know anything even close 
to a complete topological invariant. 



What About Other N=2 Theories? 

Topological twisting should make sense 
for any 𝒩 = 2 theory 𝒯. 

Given the successful application 
of 𝒩 = 2 SYM for 𝐺 = 𝑆𝑈(2) to the theory of 

4-manifold invariants, are there interesting 
applications of OTHER 𝒩 = 2 field theories? 

There are infinitely many other four-dimensional 
N=2 supersymmetric quantum field theories. 

(but 𝒯-dependent details remain to be worked out) 



Yes

Marino-Moore:  SU(N) Donaldson invariants: 
Applications to  3d Floer homology 

(MM 1998;  Daemi & Xie 2020) 

Marino-Moore-Peradze (1998):
Argyres-Plesser-Seiberg-Witten 

description of AD1 theory ⇒  
Superconformal simple type. 

Learn more about existing invariants 



Other 4d theories 

Coupling to background supergravity… 

These might lead to truly new invariants 
that are independent of the 
Donaldson/SW invariants …

5d theories 

6d theories 

Generalizations



Today’s talk: Some of these 
generalizations are already leading to 

some interesting issues in QFT… 

…. or not … 
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4d N=2 SU(2) SYM On X 
𝑃 → 𝑋 ∶ Principal 𝑆𝑂(3) bundle 

𝑤2 𝑃 ∈ 𝐻2 𝑋, ℤ2 : ``’t Hooft flux’’ 

``background 1-form symmetry gauge field’’ 

Witten (1988): ``Topological twisting’’ 

Spinors → differential forms 

𝑄𝛼
𝐴 , ത𝑄 ሶ𝛼

𝐴  →  𝑄, 𝐾, … 

{ 𝐾, 𝑄 }  = 𝑑 𝑄2 = 0 



𝐴 ∈ 𝒜 𝑃

𝒢 ≔ 𝐴𝑢𝑡 𝑃

𝒢 −equivariant cohomology of 𝒜 𝑃

𝑄 𝐴𝜇 = 𝜓𝜇 𝑄 𝜓𝜇 = −𝐷𝜇𝜙 𝑄 𝜙 = 0 

𝐴𝑛 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑣𝑖𝑒𝑤𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 
𝑡ℎ𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑛 𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠 𝑏𝑒𝑙𝑜𝑤 

Baulieu & Singer, 1988

𝜙 ∈ Ω0 𝑋, 𝑎𝑑 𝑃 ⊗ ℂ

Group of gauge transformations 



𝑄 −closed observables:  𝒪 𝑝𝑡 = 𝑇𝑟 𝜙2 𝑝𝑡

{ 𝐾, 𝑄 }  = 𝑑 ⇒ 𝒪𝑗 ≔ 𝐾𝑗𝒪

𝒪 Σ𝑗 ≔ න
Σ𝑗

𝒪𝑗  only depends on Σ𝑗 ∈ 𝐻𝑗 𝑋

Function on 𝐻∗ 𝑋 : 𝑍𝑊 Σ = ⟨𝑒𝒪 Σ ⟩

Witten (1988):   For a suitable  
background 𝑆𝑈 2 𝑅 connection   

𝑍𝑊 Σ  independent of metric 𝑔𝜇𝜈 on 𝑋 



Witten (1988) & Atiyah& Jeffrey(1990) 

ℳ ≔ 𝐴 ∈ 𝒜 𝑃 : 𝐹 𝐴 + = 0 /𝒢

𝐹+ ≔
1

2
𝐹 +∗ 𝐹 

𝑍𝑊 Σ  path integral localizes to 
an integral over 

ℳ ⊂ 𝒜(𝑃)/𝒢



Donaldson: 𝜇: 𝐻∗ 𝑋 → 𝐻∗ ℳ

Donaldson Invariants

𝑆 ⊂ 𝑋 :  smooth surface. 

ℳ 𝑆 : subspace where the Dirac equation on 
𝑆 coupled to 𝛻𝑃 has a solution

Poincare dual to ℳ 𝑆  defines  𝜇 𝑆 ∈ 𝐻2 ℳ; ℚ

𝑍𝐷 Σ = න
ℳ

𝑒𝜇 Σ = ෍

𝑘,𝑟

න
ℳ𝑘

𝜇 Σ 𝑟

𝑟!

ℳ depends on 𝑔𝜇𝜈 , but  𝑍𝐷 Σ  does not 



𝑍𝑊 Σ = 𝑍𝐷 Σ

Main Statement 

=:  𝑍𝐷𝑊 Σ



Evaluation Of 𝑍𝐷𝑊 Σ

𝑍𝐷𝑊 Σ  independent of 𝑔𝜇𝜈 on X 

Consider metric   𝐿2𝑔𝜇𝜈 in the limit  𝐿 → ∞

⇒ Use Seiberg-Witten LEET 

𝑍𝐷𝑊 Σ  = 𝑍𝐶𝑜𝑢𝑙
𝐽

Σ + 𝑍𝑆𝑊
𝐽

Σ

𝐽 ∈ 𝐻2 𝑋, ℝ :  𝐽 =∗ 𝐽 

Witten 94
Moore-Witten 97

Period point



𝑍𝐶𝑜𝑢𝑙
𝐽

Σ
Integral over the Coulomb branch of 

vacua on ℝ4 , parametrized by
 𝑢 = 𝑇𝑟𝜙2 , and computed using 

SW LEET for U(1) VM 

𝑢

𝐸𝑢

Λ2

−Λ2

𝜆𝑆𝑊



Singularities at 𝑢 =  ±Λ2 spoil 
topological invariance. 

Restore it with integral over ``Higgs branch vacua’’ 

𝑍𝑆𝑊
𝐽

Σ = ෍

𝑐∈𝑆𝑝𝑖𝑛𝑐 𝑋

𝑆𝑊𝐽 𝑐  𝑓𝑐 Σ  

𝑓𝑐 Σ ∶ Trigonometric function of Σ computed 
using classical intersection theory and LEET. 

𝑆𝑊𝐽 𝑐 ∈ ℤ Seiberg-Witten invariants 



𝑆𝑊𝐽 𝑐  Counts the number of solutions to 
SW equations: 

𝐹 𝐴𝑎𝑏
+ = ഥ𝑀𝑀 𝛾 ⋅ 𝐷 𝑀 = 0 

𝑆𝑝𝑖𝑛𝑐 𝑋 ↔  w2 X lift + 2 H^2 X, ℤ

𝐴𝑎𝑏 ``𝑈 1  connection’’ 𝑀 ∈ Γ 𝑊+

Theorem (Witten 94): When 𝑏2
+ 𝑋 > 1 ,

 𝑆𝑊𝐽 𝑐  is independent of 𝐽 and is only 
nonzero for finitely many spin-c structures. 



𝑍𝐶𝑜𝑢𝑙
𝐽

Σ ׬ = 𝑑𝑉𝑀 𝑒−𝑆𝐿𝐸𝐸𝑇 + 𝒪 Σ  

𝑈 1  𝑉𝑀 = 𝐴𝜇, 𝜓𝜇, 𝜒𝜇𝜈 , 𝜂, 𝑎

𝜏 𝑎 ∶ Complicated function determined by SW LEET 



Claim (Moore-Witten 97): 

𝑏2
+ 𝑋 > 1 ⇒ 𝑍𝐶𝑜𝑢𝑙

𝐽
Σ = 0 

𝑏2
+ 𝑋 = 1 ⇒ 𝑍𝐶𝑜𝑢𝑙

𝐽
Σ : Tree level exact 

𝑏2
+ 𝑋 = 0 ⇒ 𝑍𝐶𝑜𝑢𝑙

𝐽
Σ : One loop exact 

N.B.  Not a localization evaluation of 𝑍𝐶𝑜𝑢𝑙
𝐽

Σ  !!

1997 derivation overlooked some subtleties,
 now being revisited with V. Saxena 



u-Plane Integral 

𝑢 𝜏 =
𝜗2

4 + 𝜗4
4

2 𝜗2
2𝜗4

2  =
1

8
𝑞−

1
4 +

5

2
𝑞

1
4 + ⋯

𝑞 = 𝑒2𝜋𝑖𝜏

SW94:  Coulomb branch has a 
modular parametrization: 

Coulomb branch ≅ 𝑈𝐻𝑃/Γ0 4



Γ0 4 = {
∗ 0
∗ ∗

𝑚𝑜𝑑4}  ⊂ 𝑆𝐿 2, ℤ



𝑍𝐶𝑜𝑢𝑙
𝐽

Σ =  න
ℱ Γ0 4

𝑑𝜏𝑑 ҧ𝜏 ℋ 𝜏
𝜕

𝜕 ҧ𝜏
 𝐺𝐽 𝜏, ҧ𝜏, Σ

𝐺𝐽 𝜏, ҧ𝜏, Σ
Comes from the 
photon path integral  

Not holomorphic in 𝜏 𝑜𝑟 𝑢  

Continuously metric dependent. 

𝐺𝐽 𝜏, ҧ𝜏, Σ  : Is a mock Jacobi form 

G. Korpas, J. Manschot, G. Moore, I. Nidaiev (2019) 
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Topological Twisting 

For an astutely chosen background 
𝑆𝑈 2 𝑅-symmetry connection: 

𝐴𝑅−𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 ∼  𝜔+,𝐿𝐶  

𝑆𝑁=2 𝑆𝑌𝑀 =  𝑄, 𝑉 + ׬ 𝜏𝑢𝑣 𝑇𝑟 𝐹 ∧ 𝐹 

It is useful to rephrase topological twisting 
in terms of ``reduction of structure group’’ 



Reduction Of Structure Group 

𝜑: 𝐺1 → 𝐺2 Homomorphism of groups 

Given a principal 𝐺1 bundle 𝑃1 → 𝑀 we can 
form an associated principal 𝐺2 bundle 

𝑃1 ×𝜑 𝐺2 =  (𝑝1, 𝑔2)  𝑝1𝑔1, 𝑔2 ∼ 𝑝1, 𝜑 𝑔1 𝑔2

Transition functions 𝑔𝛼𝛽: 𝑈𝛼𝛽 → 𝐺1 map to new 

transition functions 𝜑 𝑔𝛼𝛽 : 𝑈𝛼𝛽 → 𝐺2



Reduction Of Structure Group (RSG)  

We say a principal 𝑮𝟐 bundle 𝑷𝟐 → 𝑴 
``admits a Reduction of Structure Group to 𝑮𝟏 via 𝝋 ‘’   

if it is in the image of this map (functor) 
(up to isomorphism) 

𝑃2 has transition functions ෤𝑔𝛼𝛽: 𝑈𝛼𝛽 → 𝐺2

We can find functions 𝑔𝛼𝛽: 𝑈𝛼𝛽 → 𝐺1 such that 

෤𝑔𝛼𝛽 = 𝜑 𝑔𝛼𝛽  AND 𝑔𝛼𝛽𝑔𝛽𝛾𝑔𝛾𝛼 𝑥 = 1𝐺1



Examples Of RSG 

1. A Riemannian metric on an 𝑛-manifold 𝑀𝑛 IS 
 an RSG of the frame bundle 𝐹𝑟 𝑀𝑛  via 

𝜑: 𝑂 𝑛 → 𝐺𝐿 𝑛, ℝ

2. An orientation IS  an RSG of the  frame bundle 𝐹𝑟 𝑀𝑛  via 

𝜑: 𝐺𝐿+ 𝑛, ℝ → 𝐺𝐿 𝑛, ℝ



Examples Of RSG 

3. An almost complex structure 
(compatible with a metric + orientation) 

 IS  an RSG of the bundle of  oriented ON frames via  

𝜑: 𝑈
𝑛

2
→ 𝑆𝑂 𝑛

4. A  𝑆𝑝𝑖𝑛𝑐-structure IS  an RSG of the bundle of  
oriented ON frames via  

𝜑: 𝑆𝑝𝑖𝑛𝑐 𝑛 ≔
𝑆𝑝𝑖𝑛 𝑛 × 𝑈 1

ℤ2
 →  𝑆𝑂 𝑛



Reduction Of Structure Group (RSG)  

RGS extends to category of 
bundles with connection: 

∇1 on  𝑃1 

⇒  ∇2= 𝜑∗ ∇1  𝑜𝑛 𝑃1 ×𝜑 𝐺2



Topological Twisting As RSG 

Background fields for 𝒩 = 2 𝑆𝑈 𝑁  SYM: 

A connection for 𝐺𝑝ℎ𝑦𝑠 =
𝑆𝑝𝑖𝑛 4 ×𝑆𝑈 2 𝑅

⟨ −1,−1,−1 ⟩

𝜑:  𝑆𝑂 4 =
𝑆𝑈 2 + × 𝑆𝑈 2 −

−1, −1
→  𝐺𝑝ℎ𝑦𝑠

𝜑 𝑢1, 𝑢2 ≔ 𝑢1, 𝑢2, 𝑢1

𝜑∗ ∇𝐿𝐶 = background fields (for ``0-form symmetry’’) 
of the physical theory 

[Manschot-Moore; Cushing,Moore,Rocek,Saxena; D. Freed, unpublished] 



Example:  𝑆𝑈 2 , 𝑁 = 2∗ Symmetry group is 

𝐺𝑝ℎ𝑦𝑠 =  ( 𝑆𝑈 2 + × 𝑆𝑈 2 − × 𝑆𝑈 2 𝑅 × 𝑈 1  )/ 𝒵

There is NO homomorphism from 
 𝑆𝑂(4) to 𝐺𝑝ℎ𝑦𝑠

(compatible with constraints on the morphism of Lie algebras) 

There IS a homomorphism 𝑆𝑝𝑖𝑛𝑐 4 → 𝐺𝑝ℎ𝑦𝑠 

The twisted theory depends nontrivially on the 𝑆𝑝𝑖𝑛𝑐 
structure on the 4-fold [Manschot & Moore 2021]  

𝒵 = −1, −1, −1, −1 ≅ ℤ2



WIP with Vivek Saxena and Ranveer 
Singh aims to generalize the picture 

to arbitrary Lagrangian N=2 theories. 

Goal: Further generalization to 
arbitrary class S theories. 

Conjecture:  Topological theory depends on 

a  
𝑆𝑝𝑖𝑛 4 ×𝑈 1

𝑁𝑓

ℤ2
 structure + 

restrictions on background gauge fields 
for ``1-form symmetries’’ 



What Do The Other (Lagrangian) 
Theories Compute? 

(instanton moduli space is a special case) 

The path integral for topologically 
twisted Lagrangian theories localizes to 

intersection theory on 
moduli space of the 

Nonabelian Seiberg-Witten equations   



How Twisted Lagrangian Theories 
Generalize Donaldson Invariants 

𝑍 Σ = 𝑒𝒪 Σ
𝒯 = න

ℳ

𝑒𝜇 \Sigma ℰ 𝒱

But now ℳ:  is the moduli space of:  

𝐹+ = 𝒟(𝑀, ഥ𝑀) 𝛾 ⋅ 𝐷 𝑀 = 0 

``Nonabelian Seiberg-Witten equations’’
[Labastida-Marino 1997; Losev-Shatashvili-Nekrasov1997 ] 

𝑀 ∈ Γ  𝑊+ ⊗ 𝑉

𝑊+: Rank 2 ``spin’’ bundle; 𝑉depends on matter rep  



Defining the integral over ℳ 
requires a choice of orientation

View the determinant bundle of the 
deformation complex as the (real) 

state space of a 5d invertible theory 

Orientability should be determined by the 
mod-two index of the deformation operator

𝑑𝐴
+ ⊕ 𝑑𝐴

∗ ⊕ 𝛾 ⋅ 𝐷 ∶ Ω1 𝑋, 𝑎𝑑𝑃 ⊕ Γ 𝑊+ ⊗ 𝑉
→  Ω2,+ 𝑋, 𝑎𝑑 𝑃 ⊕ Ω0 𝑋, 𝑎𝑑𝑃 ⊕ Γ 𝑊− ⊗ 𝑉 



An orientation is a trivialization 
of this invertible theory. 

Question (WIP with D. Freed): 
 Is there a useful description of the 5d invertible 
theory for the moduli space of the nonabelian 
Seiberg-Witten equations for general compact 

group and quaternionic representation? 

We hope the theory is trivializable… 



41

Family Donaldson invariants

1

2

3

4

Other d=4 N=2 Theories

d=5: ``K-theoretic Donaldson invariants’’ 

5

Motivation

The Paradigm: SU(2) N=2 SYM & Donaldson invariants

5



``K-Theoretic Donaldson Invariants’’ 



𝒩 = 1 5D SYM

Vectormultiplet:  𝑉 = 𝐴𝑚, 𝜎, 𝜆𝛼
𝐴, 𝐷𝐴𝐵

𝐽𝑇𝑂𝑃 = 𝑡𝑟 𝐹2  ⇒  𝑉 𝐼 = 𝐴𝑚
𝐼

, 𝜎 𝐼 , …

𝑆 𝑉; 𝑉 𝐼 = 𝑋5׬
𝐴 𝐼 ∧ 𝑡𝑟 𝐹2  + ׬   𝜎 𝐼  𝑡𝑟 𝐹 ∗ 𝐹 + ⋯ 

𝜎 𝐼 ∼ 𝑔5𝑑,𝑆𝑌𝑀
−2  

𝑆 𝑉 =  𝑔5𝑑,𝑆𝑌𝑀
−2 𝑋5׬ 

𝑡𝑟 𝐹 ∗ 𝐹 + 𝑡𝑟 𝐷𝜎 ∗ 𝐷 𝜎 + ⋯ 

Seiberg  1995



Now take 𝑋5 = 𝑋 × 𝑆1 

𝜃 ∼ 𝑆1ׯ  𝐴 𝐼  const. on X 

𝐹 𝐼  pulled back from 𝑋 

We have a partial topological twist based on 
reduction of structure group 

𝜑: ℤ2  × 𝑆𝑂 4 → 𝑆𝑝𝑖𝑛 5 × 𝑆𝑈 2 𝑅 /ℤ2

𝒬2 = 𝜕𝑡

Topological on 𝑋 but a nontopological, spin, theory on 𝑆1

Background fields:  𝜑∗ ∇𝐿𝐶  



SQM With Target ℳ

Topological on X ⇒ Can shrink 𝑋 ⇒ 
 Describe the twisted theory in terms of 

SQM on 𝑆1 with target space 
the moduli space of instantons 

[Nekrasov, 1996] 

But  ℳ is not spin in general, 
so the theory will be anomalous 



Potential Global Anomalies 

𝑤2 ℳ ≠ 0 

𝑃𝑓𝑎𝑓𝑓 𝛾 ⋅ 𝐷𝑆1  not well-defined on 𝐿ℳ 

𝑃𝑓𝑎𝑓𝑓 𝛾 ⋅ 𝐷𝑋×𝑆1  not well-defined on 𝒜/𝒢 

All controlled by ``the same’’ 6d mod-two index. 

Discussions are in progress with D.Freed and
 E. Witten to give a useful formula for it. 

1D: 

5D: 



Anomaly Cancellation

𝑆 𝑉; 𝑉 𝐼 = 𝑋×𝑆1׬ 𝐹 𝐴 𝐼 ∧ 𝐶𝑆 𝐴𝑑𝑦𝑛 + ⋯ 

𝑛 ≔
𝐹 𝐼

2𝜋
∈ 𝐻2 𝑋, ℤ

⇒ SQM(ℳ) couples to a
 ``line bundle’’ LCS 𝑛 → ℳ 

Working hypothesis: For suitable 𝑛 𝑆ℳ
+  ⊗ 𝐿 𝑛  exists 

Evidence:  One can show
 𝑋 admits an  ACS  ⇒ ℳ𝑘 is spin-c 



ℛ = 𝑅 Λ

Λ dimensional scale in the physical theory 

ℛ4 = exp  −8 𝜋2
𝑅

𝑔5𝑑,𝑌𝑀
2  + 𝑖 𝜃 

𝑚𝑖𝑛𝑠𝑡.𝑝𝑎𝑟𝑡. =
1

𝑅
 log ℛ2 

𝑆𝑡𝑤𝑖𝑠𝑡𝑒𝑑 =  𝑄, 𝑉 +  log ℛ4  න
𝑋

𝑡𝑟
𝐹2

8𝜋2
 



𝑔5𝑑,𝑠𝑦𝑚
2 = ∞ corresponds to the 𝐸1 5d 

superconformal theory [Seiberg 1995] 

And our formulae below indeed have 
special properties at ℛ4 = 1. 



At least formally the path integral 
should  compute 

𝑍 ℛ, 𝑛 = σ𝑘=0
∞ ℛ

𝑑𝑘
2  𝑇𝑟ℋ𝑘

{ −1 𝐹 exp( − ℛ 𝐷𝐿 𝑛
2  )}

𝑑𝑘 = dimℝ ℳ𝑘  = 4ℎ∨𝑘 − dim 𝐺
𝜒+𝜎

2
 



All this should generalize to (anomaly-free) 
6d SYM theories on 𝑋 × 𝔼 

𝐼𝑛𝑑𝑒𝑥 𝐷𝐿 𝑛 → 𝐸𝑙𝑙 𝜎(ℳ𝑘)

In good cases, this is the index of the 
Dirac operator 𝐷𝐿 𝑛

𝑇𝑟ℋ𝑘
{ −1 𝐹 exp( − ℛ 𝐷𝐿 𝑛

2  )}

⇒ ``K-theoretic Donaldson invariants’’ 



Five Dimensions 

We study 𝑍 ℛ, 𝑛  using both 
the Coulomb branch integral 

and, independently,  toric localization,
 for 𝑋 a toric Kahler manifold 

𝑍 ℛ, 𝑛 `` = ′′ ෍

𝑘=0

∞

ℛ𝑑𝑘/2  න
ℳ𝑘

 𝑐ℎ 𝐿 𝑛  መ𝐴 ℳ𝑘  

[Nekrasov, 1996; Losev, Nekrasov, Shatashvili, 1997] 



2006:

2019:



Using the physical techniques we 
derived  results 

Agree  with GNY!  

This raises a puzzle…

Differ  from GNY! 

(Suitably  interpreted.) 



𝑍𝐽 ℛ, 𝑛 = ZCoul
𝐽

ℛ, 𝑛 + 𝑍𝑆𝑊
𝐽

ℛ, 𝑛

ZCoul
𝐽

ℛ, 𝑛 : 4d Coulomb branch integral 

One can deduce 𝑍𝑆𝑊
𝐽

 from ZCoul
𝐽

 

Total partition function is a sum of two terms 



SW special Kahler geometry is subtle 

𝑎: cylinder valued 

For 5d SYM gauge group of rank 1: 
  Coulomb branch = ℂ 

𝑈 = 〈 𝑃𝑒𝑥𝑝 ර
𝑆1

𝜎 + 𝑖 𝐴5𝑑,𝑦𝑚  〉parametrized by : 

ℱ 𝑎  is known [Nekrasov 1996, 2000,…] 

= 𝑒𝑅𝑎 + 𝑒−𝑅𝑎 + 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑜𝑛 𝑐𝑜𝑟𝑟′𝑠 



Modular Parametrization Of 𝑈 −plane 

𝑈

𝑅

2

+ 𝑢 𝜏 = 8 + 4 ℛ2 + ℛ−2

𝑢 𝜏 =
𝜗2 𝜏 2

𝜗3 𝜏 2
+

𝜗3 𝜏 2

𝜗2 𝜏 2 Hauptmodul for Γ0 4

The Coulomb branch is a branched double cover 
of the modular curve for Γ0 4



ZCoul
𝐽

ℛ, 𝑛 = න
ℱ

𝑑𝜏𝑑 ҧ𝜏 𝜈 𝐶𝑛2
 Ψ𝐽 𝜏,

𝑛

2
 𝜁

𝜈 𝜏, ℛ =
𝜗4

13−𝑏2

𝜂9
 

1

1 − 2 ℛ2𝑢(𝜏) + ℛ4

𝐶 𝜏, ℛ  
Suitably modular invariant and 
holomorphic ``contact term’’ 

𝜁 𝜏, ℛ ∼
𝜕2ℱ

𝜕𝑎 𝜕𝑚𝑖𝑛𝑠𝑡



Ψ𝐽 𝜏, 𝑧 = ෍

𝑘∈𝐻2 𝑋,ℤ

𝜕

𝜕 ҧ𝜏
 𝐸𝑘

𝐽
 𝑞−

𝑘2

2 𝑒−2𝜋𝑖 𝑘⋅𝑧 −1 𝑘⋅𝐾

𝐸𝑘
𝐽

= 𝐸𝑟𝑓 𝐼𝑚𝜏  𝑘 +
𝐼𝑚 𝑧

𝐼𝑚 𝜏
 ⋅ 𝐽 

𝑧 →
𝑛

2
 𝜁 𝜏, ℛ  

Not holomorphic. 

Metric dependent . 



Measure As A Total Derivative

∃ suitably modular invariant 
and nonsingular ෠𝐺 𝜏, ҧ𝜏  

(It can be hard to find explicit formulae
 for  ෠𝐺 ∶ one needs the theory of mock 

modular forms, and their generalizations.) 

𝜕

𝜕 ҧ𝜏
෠𝐺 = ΨJ

ZCoul
𝐽

ℛ, 𝑛 = න
ℱ

𝑑𝜏𝑑 ҧ𝜏 ℋ 𝜏  Ψ𝐽 𝜏,
𝑛

2
 𝜁



ZCoul
𝐽

(𝑛, ℛ) = lim
𝑌→∞

 න𝑑𝜏1 ℋ ෠𝐺 ቚ
𝜏=𝜏1+𝑖 𝑌

𝐼𝑚𝜏 = 𝑌 



Examples Of Explicit Results

𝑋 = ℂℙ2

𝑍𝐶𝑜𝑢𝑙 𝑛, ℛ =  𝜈 𝜏, ℛ  𝐶 𝜏, ℛ 𝑛2
 𝐺 𝜏, ℛ

𝑞0

𝐺 𝜏, ℛ = −
𝑒𝑖 𝜋𝑛

𝜁(𝜏,ℛ)
2

𝜗4 𝜏
 ෍

ℓ∈ℤ

−1 ℓ  
𝑞

ℓ2

2 −
1
8

1 − 𝑒𝑖 𝜋𝑛 𝜁 𝜏,ℛ 𝑞ℓ−
1
2



Examples Of Explicit Results

ZCoul
𝐽

 − ZCoul
𝐽′

=  𝜈 𝐶𝑛2
Θ𝐽,𝐽′

𝜏, ℛ
𝑞0

Wall Crossing Formula: 

Θ𝐽,𝐽′
=  ෍

𝑘∈𝐻2 𝑋,ℤ

𝑠𝑘
𝐽

− 𝑠𝑘
𝐽′

𝑞−
𝑘2

2 𝑒−2𝜋𝑖 𝑘⋅𝑛 𝜁(𝜏,ℛ) −1 𝑘⋅𝐾

𝑠𝑘
𝐽

≔ 𝑠𝑖𝑔𝑛 𝐼𝑚𝜏 𝑘 +
𝐼𝑚 𝜁 𝜏, ℛ

𝐼𝑚 𝜏
 ⋅ 𝐽 



If we take these formulae literally, we get 
results that are very different from GNY 

We get finite Laurent polynomials in ℛ 
with terms involving negative powers of ℛ 

𝑍 ℛ, 𝑛 = ෍

𝑘=0

∞

ℛ𝑑𝑘/2 𝐼𝑛𝑑𝑒𝑥 𝐷𝐿 𝑛 , ℳ𝑘

It looks nothing like: 



𝜈, 𝐶, 𝐺, Θ𝐽,𝐽′
 are functions of 𝜏 and of ℛ

Subtle order of limits:  ℛ → 0 vs.  I𝑚 𝜏 → ∞

Example:   𝑢 𝜏 ∼
1

8
𝑞−

1

4 +
5

2
𝑞

1

4 −
31

4
𝑞

3

4 + 𝒪 𝑞
5

4

𝜈 𝜏, ℛ =
𝜗4

13−𝑏2

𝜂9
 

1

1 − 2 ℛ2𝑢(𝜏) + ℛ4



Similarly for 𝜁 𝜏, ℛ ∼
𝜕2ℱ

𝜕𝑎 𝜕𝑚𝑖𝑛𝑠𝑡



If we first expand the expressions in … . 
 in ℛ around ℛ = 0 then take the constant 𝑞0 

term at each order in ℛ we find remarkable 
and nontrivial agreement with similarly 

complicated results in GNY.

ZCoul 𝑛, ℛ =  𝜈 𝜏, ℛ  𝐶 𝜏, ℛ 𝑛2
 𝐺 𝜏, ℛ

𝑞0

ZCoul
𝐽

 − ZCoul
𝐽′

=  𝜈 𝐶𝑛2
Θ𝐽,𝐽′

𝑞0



Using toric localization and the 5d instanton 
partition function we derived exactly the same 

formula for wall-crossing @ ∞ 

This would be another entire seminar…. 



The Puzzle: The naïve physical 
interpretation suggests we should take 
the constant term in the 𝑞-expansion

ZCoul 𝑛, ℛ =  𝜈 𝜏, ℛ  𝐶 𝜏, ℛ 𝑛2
 𝐺 𝜏, ℛ

𝑞0

ZCoul
𝐽

 − ZCoul
𝐽′

=  𝜈 𝐶𝑛2
Θ𝐽,𝐽′

𝑞0

But to get answers that agree with mathematical 
results we first expand in ℛ 

and then take the constant term in 𝑞. 



𝐺(ℛ, 𝑛) = 
22𝜒+3 𝜎−𝜒ℎ

1−ℛ2
1
2

𝑛2+𝜒ℎ
 σ𝑐 𝑆𝑊 𝑐

1+ℛ

1−ℛ

𝑐⋅
𝑛

2

𝑍 ℛ, 𝑛  = Terms in the power 

series with ℛ𝑑 with 𝑑 =
𝜒+𝜎

4
 𝑚𝑜𝑑 4 

Agrees with, and generalizes, GKW Conjecture 1.1

Using the wall-crossing behavior of  ZCoul
𝐽

ℛ, 𝑛  

at the strong coupling cusps allows 

one to derive 𝑍𝑆𝑊
𝐽

  ⇒ partition function for 𝑏2
+ > 1



𝐸1 Theory 

lim
ℛ→1

 𝑍𝐶𝑜𝑢𝑙
𝐽

≠  න
ℱ

𝑑𝜏𝑑 ҧ𝜏  lim
ℛ→1

𝜈𝑅𝐶𝑛2
Ψ𝐽  

Strong coupling walls are SHIFTED from the 
walls defined by spin-c structures! 

But this is nicely explained by the 

coupling to the background  𝑉 𝐼  

⇒ perturbed SW equations !

𝐹+ 𝐴 + 𝐼𝑚 𝜁 𝐹+ 𝐴 𝐼 = ഥ𝑀𝑀 



Integrals in elliptic cohomology of 
distinguished classes defined by 

the susy sigma model with target 
space ℳ𝑘 define smooth 

invariants of four-manifolds 

Conjecture: 

So far, we did not use any K-theory in describing
the ``K-theoretic Donaldson invariants’’ 

It would be very desirable to do so, because the 6d version, 
analogously formulated, could be quite interesting:
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Family Donaldson invariants

1

2

3

4

Other d=4 N=2 Theories

d=5: ``K-theoretic Donaldson invariants’’ 

5

Motivation

The Paradigm: SU(2) N=2 SYM & Donaldson invariants

5



Family Donaldson Invariants 

There is an interesting generalization to 

invariants for families of four-manifolds. 

Mentioned by Donaldson long ago. 
A modest amount of work has been done

in the math literature . 



Families Of Metrics 

Couple twisted theory to a 
family of metrics: 𝑔𝜇𝜈 𝑥; 𝑠  

𝑠 ∈ 𝒫 ∶ Parameters of the family. 

𝑍𝐷𝑊(𝑔𝜇𝜈 𝑥; 𝑠 )  is independent of 𝑠. 

A suitable coupling to background supergravity 
gives a partition function which is a closed 

differential form Zi1…𝑖𝑝
ds𝑖1 ∧ ⋯ 𝑑𝑠𝑖𝑝  . 

Periods of these forms are the family Donaldson invariants. 



Universal Family 

𝒫 = 𝑀𝑒𝑡(𝑋)/𝐷𝑖𝑓𝑓+ 𝑋

𝜋𝑗

𝑀𝑒𝑡 𝑋

𝐷𝑖𝑓𝑓+ 𝑋
≅ 𝜋𝑗−1 𝐷𝑖𝑓𝑓+ 𝑋

𝜋1

𝑀𝑒𝑡 𝑋

𝐷𝑖𝑓𝑓+ 𝑋
 ≅ 𝜋0 𝐷𝑖𝑓𝑓+ 𝑋  

𝜋0 𝐷𝑖𝑓𝑓+ 𝑋 : 4d mapping class group 



Donaldson-Witten a la  Baulieu-Singer

𝑃 → 𝕏 𝒢 ≔ 𝐴𝑢𝑡 𝑃

𝒢 −equivariant cohomology of 𝒜 𝑃

 Ω∗ 𝒜 𝑃 ⊗ 𝑆∗ 𝐿𝑖𝑒𝒢
 𝒢

𝑄 𝐴𝜇 = 𝜓𝜇 𝑄 𝜓𝜇 = −𝐷𝜇𝜙 𝑄 𝜙 = 0 

𝑍𝐷𝑊 : Pushforward in 𝒢 −equivariant cohomology. 

Atiyah & Jeffrey  +   Baulieu & Singer



𝒢𝑑 ≔ 𝐷𝑖𝑓𝑓+ 𝕏

𝒢𝑑 −equivariant cohomology of 𝑀𝐸𝑇 𝕏

𝑄 𝑔𝜇𝜈 = Ψ𝜇𝜈 𝑄 Ψ𝜇𝜈 = 𝛻𝜇Φ𝜈 + 𝛻𝜈Φ𝜇 𝑄Φ𝜇 = 0 

Action 𝑒−𝑆 is a closed equivariant class 
in the 𝒢 ⋊ 𝒢𝑑  − equivariant 

cohomology of 𝑀𝐸𝑇 𝕏 × 𝒜 𝑃

Push-forward in  𝒢 −equivariant cohomology 
is a 𝒢𝑑 −equivariant class on 𝑀𝐸𝑇 𝕏



Thanks to heroic computations by 
JC and VS we have explicit actions 

𝑒−𝑆 obtained by coupling to 
truncated & twisted 

𝑁 = 2 conformal supergravity 



Coupling To Twisted Truncated 
Background Supergravity

𝑆 𝑔, Ψ, Φ = 𝑆𝐷𝑊 ׬ + 𝑔 ( Ψ𝜇𝜈Λ𝜇𝜈 + Φ𝜇𝑍𝜇 + Ψ𝜇𝜎Ψ 𝜎 
𝜈  Υ𝜇𝜈  ) 

Λ𝜇𝜈 = 𝐼𝑚 𝜏𝐼𝐽  𝐹𝜌𝜇
−,𝐼 𝜒𝜈

𝜌,𝐽
+ ⋯ 

𝑍𝜇  =  ℱ𝐼𝐽𝐾 𝜓𝜇
𝐼  𝐹𝜌𝜎

+,𝐽
 𝜒𝜌𝜎 𝐾 + ⋯

Υ𝜇𝜈 = 𝐼𝑚 𝜏𝐼𝐽 𝜒𝜇𝜌
𝐼  𝜒𝜈

𝜌,𝐽
+ ⋯



𝛾 ⊂
𝑀𝑒𝑡 𝑋

𝐷𝑖𝑓𝑓+ 𝑋
 nontrivial cycle from some 

nontrivial element of 𝜋0 𝐷𝑖𝑓𝑓+ 𝑋  

ර
𝛾

𝑑𝑠 න
𝑋

vol 𝑔
dg𝜇𝜈

ds
 Λ𝜇𝜈

𝑄 Λ𝜇𝜈 =  𝑇𝜇𝜈
𝑆𝑌𝑀 + ⋯



This raises several questions: 

No restriction on 𝑏2
+. No assumption of ACS.  

Does it see the other half of the world 
of four-manifolds? 

Does our period integral localize to integrals on 
bundles of moduli spaces of instantons? 

Λ𝜇𝜈 is NOT 𝑄-closed!!!

Does tree-level exactness (of LEET)  persist? 



Questions & Future Directions 

Topological data for twisting the general d=4 N=2 theory? 

Invertible theory governing orientation of nonabelian SW moduli

Puzzles regarding physical derivation of K-theoretic Donaldson invariants 

Puzzles concerning the family generalization of Donaldson invariants 

Generalization to elliptic invariants from  6d theories on 𝑋 × 𝐸 

Global anomalies of 5D SYM in topological twisting background 

Other puzzles and directions I did not have time to mention …. 
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