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Introduction

PhysicalMathematics/
String Theory

CMT

Main interaction is AdS/CMT: c.f. S. Sachdev talk



Three Transverse Intersections

1. Twisted K-theory and topological phases of electronic
matter.

2. Generalizations of the Chern-Simons edge state
phenomenon...

& 3 Corollaries concerning 3D and 4D abelian gauge theories.

3. The relation of higher category theory to classification of
defects and locality in topological field theory.
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Part I: Topological Band Theory
& Twisted K-Theory

(Inspired by discussions with D. Freed, A. Kitaev, and N. Read;
Possible paper by DF and GM. )

There has been recent progress in classifying topological
phases of (free) fermions using ideas from K-theory such as
Bott periodicity.

This development goes back to the TKNN invariant and
Haldane’s work on the quantum spin Hall effect in graphene.

The recent developments began with the Z, invariant
associated to the 2D TR invariant quantum spin Hall system.

The CMT community is way ahead of most string theorists,
who refuse to have any interest in torsion invariants. )



What really peaked my interest was the work of Kitaev and of
Schnyder, Ryu, Furusaki, and Ludwig using K-theory to classify
states of electronic matter.

The reason is that there is also a role for K-theory in
string theory/M-theory.

| will now sketch that role, because it leads to a generalization
of K-theory which might be of some interest in CMT.

(Prescient work of P. Horava in 2000 used the
D-brane/K-theory connection to study " classification and
stability of Fermi surfaces.” ) -



RR Fields

Type Il supergravity in 10 dimensions has a collection
of differential form fields:

IA: Fy, Fo,FyFe FoFo
IB: Fy, Fs, Fe, Fy, Fy

These are generalizations of Maxwell’s F, in four
dimensions: dF.=0.

Fj — dOj—l Cj_l ~ Cj_l + dAj_Q
d * Fj =0



Dirac Charge Quantization

Theory of the F; ‘s is an abelian gauge theory, and,
just like Dirac quantization in Maxwell theory, there
should be a quantization condition on the
electric/magnetic charges for these fields.

Perhaps surprisingly, the charge quantization
condition turns out to involve the K-theory of the 10-
dimensional spacetime: K(X) (forllA) and KO9(X)
(for 1IB). [Minasian & Moore, 1997]



Orientifolds

Witten (1998) pointed out several
important generalizations. Among them,
in the theory of orientifolds” one
should use a version of K-theory invented
by M. Atiyah, known as KR theory.




KR-Theory

X: A space (e.g. Brillouin torus)

K(X) is an abelian group made from equivalence
classes of complex vector bundles over X

Now suppose X is a space with involution.

For example, the Brillouin torus, with k - -k

KR(X) is made from equivalence classes of a pair (T,V)
where T is a C-antilinear map: T:V, -V,



But as people studied different kinds of
spacetimes and orientifolds there was
an unfortunate proliferation of
variations of K-theories....



Older Classification

Op~ | K-group

00~ | KR (S =Z & Zs
Ol | KRS =Z & Zs
02~ | K E’{é‘ N=ZDZ
03~ | KH7! (hs'J- ) =7,
O4~ | KHy (5" =7Z

O5~ | KH YS*) =Z
06~ | KH(S*)Y =Za3Z
O7~ | KRTY(S*") =7Z

08 | KR.(S'Y") =17Z

Op™ | K-group

00t | K Hy(S%Y) =

o1+ ]{H—l(SW):Z
02" | KH(S™) =Z& 7
03T | KRy l(sG ):Z
04" | KRy (S = Z & Zs
Obt | KR~ 1{54( ) = 2, & Lo
067 | KR(S*"Y =Z a3 Z
O7t | KH{'(S*%) =7Z
08t | KH (S") =7Z

Table 2: Orientifold K-theory groups for RR fields.

(Bergman, Gimon, Sugimoto, 2001)




An Organizing Principle

Now, in ongoing work with Jacques Distler and
Dan Freed, we have realized that a very nice
organizing principle in the theory of orientifolds
is that of " twisted K-theory.”

| am going to suggest here that it is also a
useful concept in organizing phases of
electronic matter.
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So,
what is twisted K-theory” ?

First, let’s recall why K-theory is
relevant at all...



K-theory as homotopy groups

Thanks to the work of Ludwig et. al. and of Kitaev CMT
people know that

KJ(X) — [Xij}

BERT U(ntm)
Fo = lim T RO — BU

These are 2 of the 10 Cartan symmetric spaces which
appear in the Dyson-Altland-Zirnbauer classification of free
fermion Hamiltonians in d=0 dimensions. 1



K-theory and band structure

The Grassmannian can be identified with a space of
projection operators, so if X = Brillouin torus, the
groundstate of filled bands defines a map

k — P(k)

P(k) is the projector onto the filled
electronic levels.

People claim that the homotopy class of the map P
can distinguish between different topological
phases” of electronic systems. 15



Generalization to KR

7-]- has an action of complex conjugation.

So, if X has an action of Z,, we can define
KR(X)=[X,Z x Fy|*

Example: TP(K)T ! = P(—k)

T = antilinear and unitary, e.g. from time reversal symmetry
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AZ || space of projectors in momentum space Ni™ fermionic replica  |topological or
class NLoM target space | WZW term
A [[{Qk) € Grnmen(C) 1 [| U2N)/U(N)x U(N) | Pruisken

AT ||{Q(k) € Grumn(C) | Q(k) =Q(=k) } 2 |[Sp(2N)/Sp(N) x Sp(N)] ~ N/A

ALLJ{ Q(K) € Gam,aimn) (C) | lioy)Q(K)" (—ioy) = ! (2"")/0( ) x O(NV) Lo
ATI[{q(k) € Ulm) ] Tor 2] UN)xU ‘f)fU{‘f) WZW
BDI{{{q(k) € Ulm)|g(k)" = g(=k) ] 2 U(2N)/Sp(N) N/A
ClI[{q(k) € U2m) | (ioy)q(k)" (-ioy) = q(-k 2 U(2N)/O(2N) Ly
D |{Q(k) € Gmom(C) | m=Q(k) 7= = —Q(—k 1 O(2N)/U(N) Pruisken
C [{Q(k) € Gpom(C) | myQk) my = -Q(-k)} 2 Sp(N ’U( ) Pruisken
DI { 4(k) € U(2m) [q(k)! = —a(~F) ] Tor2]| ON) x O(N)/JOIN) | WZw
CI |{{q(k) € U(m)|q(k)" = q(-k)} 2 or 4| Sp(N) x Sp(N)/Sp(N) | WIZIW

Q(k) = 2P(k)-1

Schnyder, Ryu, Furusaki, Ludwig 2008
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Generalization to Twisted K-Theory

Now suppose we have a twisted bundle” of classifying spaces:

fj%B%X

Sectionsof 728 — X generalize maps X —¥;

Homotopy classes of sections defines twisted K-theory groups of X:
Ktwisted(X) := T'(B)/homotopy

Roughly speaking: We have bundles of the Cartan symmetric
spaces’’ over the BZ and then the projector to the filled band
would define a twisted K-theory element. .



Twist Happens

It turns out that CM theorists indeed use
the twisted form of KR theory for 3D Z,
topological insulators:

T = -1

(In the untwisted original Atiyah KR theory
we would have T? = +1 .)

Balents & Joel. E. Moore ; R. Roy ; Kane, Fu, Mele (2006)
1
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Twistings of K-Theory

The possible "twisted bundles of classifying spaces
over X"’ is a set, denoted Ttoist, (X)

For 7 € T1oist (X) we denote K7(X)

Similarly, if X has a Z, action (like k - -k )
there is a set of twistings of KR theory:
Tiist :(X) and we denote the twisted KR
groups as KR7(X). .



Isomorphism Classes of Twistings

There is a notion of isomorphism of twistings.

As an abelian group, KR™ (X) only depends on
isomorphism class:

[T] - [EmistKR(X)]

Moreover, [Ttoist (X)] is itself an
abelian group. 8



Relation to the Brauer Group

Already for O-dimensional systems, i.e. K-theory of a point,
there is a nontrivial set of twistings:

[(zmiﬁf]( (pt)] = /o [SmlﬁtKR(pt)] = /.8

Model for twistings: Bundles of central simple superalgebras.

Isomorphism classes: Z,-graded Brauer groups.

Theorem[ C.T.C. Wall]: They are cyclic, and generated by the
one-dimensional Clifford algebras.
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Brauer = Dyson-Altland-Zirnbauer

A recent paper of Fidkowski & Kitaev [1008.4138]
explains the connection between the 10 DAZ
symmetry classes of free fermion Hamiltonians and
Wall’s classification of central simple superalgebras.

Therefore, we can identify the DAZ symmetry
classes of Hamiltonians with the twistings of K
and KR theory associated to a point....
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A Speculation

This suggests (to me) that there should be a larger set
of 'symmetry classes” of free fermion systems, when
we take into account further discrete symmetries
and/or go to higher dimensions.

Proposal:

A. The symmetries” of (free) fermion systems should be
identified with isomorphism classes of twistings of KR theory
on some appropriate space X.

B. The phases of electronic matter in class [7] are classified by
KR7(x) "



What do we gain from this?

1. Generalization to I'-equivariant K-theory is
straightforward. In topological band theory it would be
quite natural to let I be one of the two or three-
dimensional magnetic space groups, and to take X
to be a quotient of RY by I’

2. So the mathematical machinery suggests new phases

3. There is an Abelian group structure on symmetry classes.
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Isomorphism Classes of Twistings

The set of isomorphism classes of twistings can be
written in terms of cohomology:

[‘ZmistKR(X)] =
HY(X:Zy) x HY(X;Zy) x H3(X;Z)
X=X/,



l'Warnings!!
The above formula is deceptively simple:

The abelian group structure on the set is NOT the
obvious direct product. Factors get mixed up.

2> X//7, is a mathematical quotient
known as a groupoid ...

and X might also be a groupoid ...

So the cohomology groups are really generalizations
of equivariant cohomology.
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Example

Let I be a discrete group with a homomorphism to Z,:

0>y —IT3Zs —0

w Will tell us if the symmetries are C —linear or C -antilinear

I'=1 LI
C-linear — —

C - antilinear

For example I' might be a magnetic point group.
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Example-cont’d

Now one forms a double cover”

pt//To— pt//T

The cohomology factors have physical interpretations:

HO — Z2 Is there a commuting fermion number symmetry?

H' = Hom(I',Zs) A grading on the symmetry group.

~ Classifies twisted U(1) central extensions
H?S (pt// I Z) of I', which become ordinary central
extensions of I, , asis quite natural in
guantum mechanics. »



Recovering the standard 10 classes

Finally, taking I, to be trivialsol =2,

our isomorphism classes of twistings becomes:

H x H' x H3 = 7o X Zo X Zs

(d,a,h) + (d’,a’,h’) = (d+d’, a+a’ + dd’, h+h’ + aa’ + d d’ (a+a’))

Tistgr(pt)] = [Toisto(pt)] = Zs
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“

Algebra . (d,a,h) | KO_; | Cartan Label of KO_; | DAZ | (T,C,S)
Ch=R +,+.R) | (0,0,0) | BOxL BDI Al (1,0,0)
Cl_,=2C R) | (L,1,0) 0 D Cl | (1,-1.1)
Cl,=2H 0,1,1) | OJ/U DIII C | (0,-1,0)
Cls2HaH (1,0,0) | U/Sp All Cil | (-1,-1,1)
Cl_y 2 H(2) (0,0,1) | BSpx Z CII AIl | (-1.0,0)
Cl_5 = C(4) . (1,1,1) Sp C DI | (-1,1,1)
Cl_g 2 R(8) +,—R) | (0,1,0) | Sp/U CI D (0,1,0)
Cl_~2RE)aR(E®) | (-,+.R) | (1,0,1) | U/O Al BDI | (1,1,1)
Cl_g =~ R(16) +,+R) | (0,0,0) | BOxLZ BDI Al (1,0,0)
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A Question/Challenge to CMT

Thus, in topological band theory, a natural generalization of

the 10 DAZ symmetry classes would

0[S

7] € [Twistgr(R?// Tp)

And a natural generalization of the cl
phases for a given symmetry type”

assification of topological
[T] would be

KR™(R°//To)

Can such symmetry types’” and topological phases

actually be realized by physical fermionic systems?




Part Il: Generalizations of Chern-
Simons edge states

The edge state phenomenon” is an old and important
aspect of the quantum Hall effect, and its relation to
Chern-Simons theory will be familiar to everyone here.

We will describe certain generalizations of this mathematical structure,
for the case of abelian gauge theories involving differential forms

of higher degrees, defined in higher dimensions, and indeed valued
In (differential) generalized cohomology theories.

These kinds of theories arise naturally in supergravity and
superstring theories.

The general theory of self-dual fields (edge states) leads to
three corollaries, which are of potential interest in CMT



A Simple Example
U(1) 3D Chern-Simons Theory

exp [ZWiN fY AdA} N € Z
Normalization!
FeQ5(Y)

A A+w weQ,(Y)



""Holographic” Dual

Chern-Simons Theory on 'Y

10

2D RCFT on

M = 0Y

Holographic dual = “chiral half” of the Gaussian model

WszMd¢>l<d¢ o~o+1
Conformal blocks for R = p/q

— CS wavetunctions for N = pq

The Chern-Simons wave-functions ¥(A|,,) are the conformal
blocks of the chiral scalar current coupled to A:

¥(4) = Z(4) = (exp

M

Ado)




Holography & Edge States

Quantization on Y = D x R Is equivalent to

guantization of the chiral scalaron 0Y = S' x R

Gaussian model for R? = p/q has level 2N = 2pqg current algebra.

Quantization on S! x R gives

A

H(S') = representations of LU (1),

What about the odd levels? In particular what about k=1 ?

We will return to this question.



Two Points We Want to Make

1.There are significant generalizations in
string theory and Physical Mathematics.

2. Even for three-dimensional and four-
dimensional abelian gauge theories there
are some interesting subtleties and recent
results.
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Generalizations

The EOM for a chiral boson in 1+1 dimensions can be written
as F=*F where F=d ¢ is a one-form fieldstrength.”

This is consistent with the wave equation d*F =0.

t is also consistent with having a real fieldstrength
pecause *(*F)=F.

n general, for an oriented Riemannian manifold of
dimension n, acting on j-forms QJ(M):

2 = sign(detg,,, )(—1)7 (")
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Generalizations - Il

So we can impose a self-duality constraint F=* F on
a real fieldstrength F, with dF =0, when **=

Example 1: A 3-form
fieldstrength in six F e QS(M(;)

dimensions

as occurs in the 5-brane and six-dimensional (2,0) theory:

Example 2: Total RR odd
fieldstrength in 10- F e ) (MG)

dimensional 1B sugra: 59



Generalizations-lI|

We can also have several independent fields valued in
a real vector space V:

FeQ*(M;V)
FP=T0xFi T?=+4]

For example the low energy Seiberg-Witten solution
of N=2 , d=4 susy theories is best thought of as a self-
dual theory.
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Holographic Duals

These abelian gauge theories all have holographic duals
involving some Chern-Simons theory in one higher
dimension. They appear in various ways:

1. AdS/CFT: There is a term in the |IB Lagrangian:

[\, B2dCs

which is dual to free U(1) Maxwell theory on the boundary.
There are several other examples of such ‘singleton modes.”

2. The 7D theories are useful for studying the M5-brane and

(2,0) theories. The 11D theory is useful for studying the RR
fields.
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General Self-Dual Abelian Gauge Theory

To formulate the general theory of self-dual fields,
valid in arbitrary topology turns out to require
some sophisticated mathematics,

“differential generalized cohomology theory.”



Just to get a sense of the subtleties involved let us
return to the quantization of U(1) Chern-Simons

theory at level N. Recall this leads to level 2N
current algebra:

/\
LU(1)yx
What about the odd levels? In particular k=17

Why not just put N=77?

exp [2772 fY AdA} Not well-

defined.
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Spin-Chern-Simons

But if Y has a spin structure «, then we can give an
unambiguous definition :

e2™a(A) = exp lir [, AdA] = exp [2mi [, $F?]
Z = Spin bordism of Y.

Price to pay: The theory depends on spin structure:

1

dorve(4) = 4o (4) + 3 /Y NF  ce HVY;Z/22)



The Quadratic Property
The spin Chern-Simons action satisfies the property:
Ga(A + a1+ a2) — go(A +a1) — ga(A + a2) + qa(A)

:/ ai1da, mod Z
Y

(Which would follow trivially from the heuristic
formula q, =% J AdA, butis rigorously true.)



Quadratic Refinements

Let A, B be abelian groups, together with a bilinear map

b:Ax A— B
A quadratic refinementisamap ¢ : A — B

q(r1 + x2) — q(21) — q(z2) + q(0) = b(1, T2)

Q(Qj) — 1 b(:lj, $) does not make sense when B has 2-torsion

2
As is the case for B=R/Z

So it is nontrivial to define ¢, (A)



General Principle

An essential feature in the formulation of
self-dual theory always involves a choice

of certain quadratic refinements.



The Free Fermion

Recall the Gaussian model for R? = p/q is dual to the U(1)
CST for N=pq, with current algebra of level 2N=2pqg

Indeed, for R? =2 there are four reps of the chiral
algebra: 4 :
’ 1,eT2? ¢

It is possible to take a " 'squareroot” of this

theory to produce the theory of a single self- w _— e’iqb
dual scalar field. It is equivalent to the theory of

a free fermion:

The chiral free fermion is the holographic dual of level }2, and from this
point of view the dependence on spin structure is obvious.



General 3D Abelian Spin Chern Simons

General theory with gauge group U(1)"
Gauge fields: A“ 1 — 1 , T

explim | ki; A; dA i

ki define an integral lattice A

If A is even then the theory does not depend on spin
structure.

If A is not even then the theory in general will depend
on spin structure.
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This is the effective theory used to describe the
Haldane-Halperin hierarchy of abelian FQHE
states. (Block & Wen; Read; Frohlich & Zee)

The classification of classical CSW theories is the
classification of integral symmetric matrices.

But, there can be nontrivial quantum equivalences...
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A Canonically Trivial Theory

Witten (2003): The U(1) x U(1) theory
with action

exp[27i | A1dAs)]

| (0 1
e ()

is canonically trivial.



Classification of quantum spin abelian
Chern-Simons theories

Theorem: (Belov and Moore) For G=U(1)" let A be the integral lattice
corresponding to the classical theory. Then the guantum theory only depends
on

a.) D=A*/A, the “discriminant group”’
b.) The quadratic function g: D » R/Z
c.) o(A) mod 24

These data satisfy the Gauss-Milgram identity:
‘D‘_l/Q ZWED 627rfiq(fy) _ 627r'130/8

Moreover: quantum theories exist for all such
(0, D ,q) satisfying Gauss-Milgram.



Example:

Thus, there are other interesting quantum equivalences:

For example, if A is one of the 24 even unimodular lattices of
rank 24 then the 3D CSW topological field theory is trivial:

One dimensional space of conformal blocks on
every Riemann surface.

Trivial representation of the modular group on
this one-dimensional space.
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Relation to Finite Group Gauge Theory

Recently, further quantum equivalences were discovered:

if D=AN/A=Lx1L"*
where L is a maximal isotropic subgroup,

then 3D CSGT is equivalent to a 3D CSGT with finite gauge group, L

Freed, Hopkins, Lurie, Teleman; Kapustin & Saulina; Banks & Seiberg

(Conjecture (Freed & Moore): This theorem generalizes nicely to all
dimensions 3 mod 4 )
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Maxwell Theory in 3+1 Dimensions

Finally, another interesting corollary of the general theory of
a self-dual field applies to ordinary Maxwell theory in 3+1

dimensions:

Theorem [Freed, Moore, Segal]: The groundstates of Maxwell
theory on a 3-manifold Y form an irreducible representation

of a Heisenberg group extension:

0 —U(l) > Heis—T xT — 0
T = Tors(H*(Y ;7))
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Example: Maxwell theory on a
Lens space

Y = SS/Zk H?(YZ) = 7y,
1%Zk%HeiS<ZkXZk)%ZkXZk%1

This has unique irrep P = clock operator, Q = shift operator
PQ _ 627T’i/kQP
Groundstates have definite electric or magnetic flux

e) = Yo _ e2riem/k )

This example already appeared in string theory in Gukov, Rangamani, and Witten,
hep-th/9811048. They studied AdS5xS5/Z3 and in order to match nonperturbative

states concluded that in the presence of a D3 brane one cannot simultaneously
measure D1 and F1 number.



An Experimental Test

Since our remark applies to Maxwell theory: Can we test it experimentally?

Discouraging fact: No region in R3 has torsion in its cohomology

With A. Kitaev and K. Walker we noted that using arrays of Josephson
Junctions, in particular a device called a superconducting mirror,”
we can " trick” the Maxwell field into behaving as if
It were in a 3-fold with torsion in its cohomology.

To exponentially good accuracy the groundstates of the electromagnetic
field are an irreducible representation of Heis(Z,, x Z.,)

See arXiv:0706.3410 for more detalls.



Part Ill: Defects and Locality in TFT

Defects play a crucial role in both CMT and in Physical
Mathematics

Recently experts in TFT have been making progress
in extended TFT” (ETFT) which turns out to involve
defects and is related to a deeper notion of locality.

58



Topological Field Theory

A key idea of the Atiyah-Segal definition of TFT is to
encode the most basic aspects of locality in QFT.

Axiomatics encodes some aspects of QFT locality:
It is a caricature of QFT locality of n-dimensional QFT:

H(X): Space of
quantum states

X: A closed (n-1)-manifold »

Quantum transition amplitudes

A(Z): H(X,) = H(X,)

(LT 0% = xC_ O

Z: Xo— X;: A cobordism




Can we enrich this story?

Yes!

1. Defects.

2. Extended locality.



Defects in Local QFT

Pseudo-definition: Defects are local disturbances
supported on positive codimension submanifolds

dim =0: Local operators
dim=1: 'line operators”
e etc

e codim =1: Domain walls

N.B. A boundary condition (in space) in a theory T can be viewed as a
domain wall between T and the empty theory. So the theory of defects
subsumes the theory of boundary conditions.



Boundary conditions and categories

Let us begin with 2-dimensional TFT. Here the set of boundary
conditions can be shown to be objects in a category

(Moore & Segal)

3 o N
) Oab t;)_:;
b \,¢””

C

N\\ a
] Oab X Obc — Oac
¢” C
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Why are boundary conditions objects
in a category?

ars..

. So the product on
b\: ‘ open string states is
Al - associative

N

Therefore: ae Obj(C) and O,, = Hom(a,b)

63



Defects Within Defects

Now — In higher dimensions we can have defects within defects....
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n-Categories

Definition: An n-category is a category C whose morphism
spaces are n-1 categories.

Objects = 0-manifolds; 1-Morphisms = 1-manifolds;
2-Morphisms = 2-manifolds (with corners); ...

o2l

Bord. :
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Defects and n-Categories

Conclusion: Spatial boundary conditions in an n-dimensional
TFT are objects in an (n-1)-category:

k-morphism = (n-k-1)-dimensional defect in the (n-1)-
dimensional spatial boundary.

(Kapustin, ICM 2010 talk)

66



A CAUTION

=

SLIPPERY
SLOPE




Locality

The Atiyah-Segal definition of a topological field
theory is slightly unsatisfactory:

In a truly local description we should be able to build up the
theory from a simplicial decomposition.
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What is the axiomatic structure that would describe such a
completely local decomposition?

D. Freed; D. Kazhdan; N. Reshetikhin; V. Turaev; L. Crane; Yetter; M.
Kapranov; Voevodsky; R. Lawrence; J. Baez + J. Dolan ; G. Segal; M.
Hopkins, J. Lurie, C. Teleman,L. Rozansky, K. Walker, A. Kapustin, N.
Saulina,...

Answer: Extended TFT

Definition: An n-extended field theory isa "homomorphism’ from
Bord, to a (symmetric monoidal) n-category.
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Example 1: 2-1-0 TFT:
F(Mz) cC Partition Function

F(Ml) - VECT Hilbert Space
F(M()) c CAT Boundary conditions
Example 2: 3-2-1-0 TFT (e.g. Chern-Simons):

F(Mg) cC Partition Function (Reshetikhin-

Turaev-Witten invariant)

F(My) e VECT Hilbert Space (of conformal blocks)

F(Ml) c CAT Category of integrable reps of LG
F(My) € 2— CAT  Current topic of research



The Cobordism Hypothesis

F(M,)eC Partition Function

F(M,_1) e VECT Hilbert Space
F(M,_o) € CAT Boundary conditions
F(Mn_k) ck—CAT

Cobordism Hypothesis of Baez & Dolan: An n-extended TFT is entirely
determined by the n-category attached to a point.

For TFTs satisfying a certain finiteness condition this was
proved by Jacob Lurie. Expository article. Extensive books.
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Generalization: Theories valued in field
theories

DEFINITION: An m-dimensional theory 7 valued in an
n-dimensional field theory F, where n=m+1, is one such that

B(N; ) e F(N;) j=0,1,.. ,m

The “partition function” of 3 on N is a vector in a vector
space, and not a complex number . The Hilbert space...

1. The chiral half of a RCFT.
2. The abelian tensormultiplet theories
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Conclusions

We discussed three transverse intersections of PM & CMT

A suggested generalization of the K-theory approach to the
classification of topological states of matter

Some potentially relevant theorems about 3 and 4
dimensional abelian gauge theories

Most speculative of all: Applications of higher category theory
to classification of defects.

It would be delightful if any of these mathematical
results had real physical applications!!
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