Lecture 14. Phases of Pure Substances (Ch.5)

P\l Solid

Up to now we have dealt almost
X exclusively with systems consisting of a
single phase. In this lecture, we will
learn how more complicated, multi-
phase systems can be treated by the
methods of thermodynamics. The
guiding principle will be the minimization
of the Gibbs free energy in equilibrium
for all systems, including the multi-
phase ones.
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nsation

sublimafion triple point

The generic phase diagram of a substance in the P-T coordinates is shown above.
Every point of this diagram is an equilibrium state; different states of the system in
equilibrium are called phases. The lines dividing different phases are called the
coexistence curves. Along these curves, the phases coexist in equilibrium, and the
system is macroscopically inhomogeneous. All three coexistence curves can meet
at the triple point —in this case, all three phases coexist at (T, , Py,).



Pressure

The Coexistence Curves

Along the coexistence curves, two different phases 1
critical and 2 coexist in equilibrium (e.g., ice and water
point coexist at T = 0°C and P = 1bar). The system
undergoes phase separation each time we cross the
equilibrium curve (the system is spatially
iInhomogeneous along the equilibrium curves).

gas

-

OK Temperature

Any system in contact with the thermal bath is governed by the minimum free energy
principle. The shape of coexistence curves on the P-T phase diagram is determined by
the condition;

Gl(P,T)zGZ(P,T) and, since G=Nuy —» ,ul(P,T):,uz(P,T)

- otherwise, the system would be able to decrease its Gibbs free energy by
transforming the phase with a higher p into the phase with lower u. Two phases are in
a state of diffusive equilibrium: there are as many molecules migrating from 1 to 2 as
the molecules migrating from 2 to 1.

Also for equilibrium T,=T, -asforany two sub-systems in equilibrium

between the phases: P,=P, -the phase boundary does not move

Though G is continuous across the transition, H demonstrates a step-like behavior:

G=Nu=U+PV-TS=H-TS —» AH =TAS (different phases have different
values of the entropy)



Example: the Gas-Liquid Transformation

(), (), (), ),

Gas: 0U/oN term is small and positive (kin. energy of a single molecule), T(0S/0N) term
Is large and positive = puis negative, and rapidly decreases with increasing T.

Liquid: dU/ON term is negative (attraction between molecules), T(6S/0N) term is smaller
than that in gas and positive = u is also negative, and slowly increases with
decreasing T .

Table on page 404 (a very useful source of u‘

information) provides the values of H and G for 0 L_liquig
different phases of many substances. The data
are provided per mole, at T=298 K and P=1 bar.

|
|
For example, let's check that at the boiling point, | 9as
the values of G for liquid water and water vapor i
are equal to each other: ' >
phase T
oG transformation
(G—Tj ==S =P (G)P,N,T z(G)P,N,To _(T _To) S

Sqwater) = 70 JK (Gig)_ ©—237x10°3 /mol-75K x 703 /(K -mol) ~ 242x10*3 /mol
S(vapor) = 189 JK (G ~—2286x10°J /mol—75K x18 /(K - mol) ~ 242x10° J / mol

vap) T=373K



Phases of Carbon

The phase equilibrium on the P,T-plane is determined by
G(PT)=G,(P.T) or  s(P.T)=s,(P.T)

At normal conditions, graphite is more stable than diamond:
G(graphite) = 0, G(diamond) = 2.9 kJ (diamonds are not
forever...). What happens at higher pressures?

oG

P =V =P (G)T,N z(G)T,N,Po "'(P_Po)v
aP T , N 0 10m 2000 200m 4000 S0m

- since the molar volume of graphite is greater than the

molar volume of diamond, G(graphite) will grow with GT

pressure faster than G(diamond) [we neglected V = V(P)]

Pressure / GPa

Temperature /K

D. becomes more stable than G. only at P > 1.5 MPa 29 k‘]i T = 300K

With increasing T, the pressure range of graphite '1 '2 >
stability becomes wider: ot P (MPa)
0G Jiamong

a7 . =-S =P (G)P,N,T z(G)P,N,TO _(T _TO)S 2.9 kJi —~

S(graphite) = 5.74 J/K, S(diamond) = 2.38 J/K, P =1 bar

|
300 800 1300 T (K)
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critical
point

The “evaporation” L is generally
greater than the “melting” L (the
disorder introduced by
evaporation is greater than that
introduced by melting).

The First-Order Transitions

Because molecules aggregate differently in different
phases, we have to provide (or remove) energy when
crossing the coexistence curves. The energy difference

Is called the latent

heat ; crossing the coexistence

curve, the system releases (absorbs) a latent heat L.
The entropy of the system changes abruptly:

mixed
phase

The transitions which displays a
jump in entropy and a latent heat
associated with this jump are
called the first-order phase
transitions.

critical

S point

A gas
|

beyond critical
point, gas is
indistinguishable
from liquid

|

\

¥ Siiquid

>

|
|
]
T temperature

Q: Can the critical point exist along the
melting coexistence curve?
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G N P,N = const
solid

>
(Pr. 5.9). T
On the graph G(T) at P,N = const,
the slope dG/dT is
negative:

- (3
T Jen

always

the first-order
transitions, the G(T) curves
have a real meaning even
beyond the intersection point,
this results in metastability
and hysteresis.

There is wusually an energy
barrier that prevents a
transition occurring from the
higher u to the lower p phase
(e.g., gas, being cooled below
T, does not immediately
condense, since surface
energy makes the formation of
very small droplets
energetically unfavorable).

L. water can exist at T far
lower than the freezing
temperature: water in organic
cells can avoid freezing down
to —20°C in insects and down
to —47°C in plants.

The First-Order Transitions (cont.)
Note that in
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T
Problem ]

Critical paink
225 atm >

Tatm |- - - - -

The entropy of water at atmospheric pressure e e ek (e

and 100°C is 1.3 J/g-K, and the entropy of water | |
vapor at the same T and P is 7.4 J/g K. PEC e —— tooec e
(@) What is the heat of vaporization at this temperature?

(b) The enthalpy of vapor under these conditions is

2680 J/g. Calculate the enthalpy of water under these conditions.

(c) Compute the Gibbs free energies of water and steam under these conditions.
(@) The heat of vaporization: L = TAS = 373Kx6.1 J/g-K=2275 J/g
(b) The differential of enthalpy dH = TdS+VdP. Hence,

Hyater = Hyapor — TdS = Hyapo, — L = (2680-2275)J/g = 405 J/g

(c) Since G = H-TS,

Guater = Huater =T Suater = 405J/g - 373K x 1.3J/g-K = -80J/g
Guapor = Hvapor =T Svapor = 2680J/g - 373K x 7.4J/g-K = -80J/g



Pressure

The  vaporization coexistence
curve ends at a point called the
critical point (T., Pc). As one

-~ Mmoves along the coexistence

OK Temperature curve toward the critical point,

the distinction between the liquid
phase on one side and the gas phase on the other gradually
decreases and finally disappears at (T, Pc). The T-driven
phase transition that occurs exactly at the critical point is
called a second-order phase transition. Unlike the 1S-
order transitions, the 2"9-order transition does not require
any latent heat (L=0). In the higher-order transitions
(order-disorder transitions or critical phenomena) the
entropy is continuous across the transition. The specific heat
Cp =T(8S/0T), diverges at the transition (a cusp-like “A”
singularity).
Whereas in the 1st-order transitions the G(T) curves have a
real meaning even beyond the intersection point, nothing of
the sort can occur for a 2"d-order transition — the Gibbs free
energy is a continuous function around the critical
temperature.

The Second Order Transitions

Second-order transition
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The Clausius-Clapeyron Relation [EYSAGABEIAGCRY

Along the phase boundary: phase
Gl(P’T):Gz(P’T) — /Ul(P’T):/uz(P’T) 4P boundary
Consider two distinct displacements along the coexistence
curve, one immediately above the curve (in phase 1), the _I_>

other immediately below the curve, in phase 2. Because the
chemical potentials remain equal along the curve, dp; = du,~g

For the slope of the boundary we have: = S5,dT +VidP = -5,dT +V,dP

- the slope is determined by the entropies and volumes of the

dp — Sl(P’T)_SZ(P’T) two phases. The larger the difference in entropy between the
dT Vl(P,T)—VZ(P,T) phases — the steeper the coexistence curve, the larger the
difference in molar volumes — the shallower the curve.
(compare the slopes of melting and vaporization curves)

Since S, - S,= L/T (L is the latent heat), we  |dP _ L(T) (applies to all
arrive at the Clausius-Clapeyron Relation: |dT T AV (T) coexistence curves)

Example: - since Vg, > Vi , and L > 0 for the “liquid—gas

transformation, the boiling temperature increases with

dT TI_\/gasT IIq(T)J pressure. The “freezing” temperature with increasing

4P L(T) pressure either increases or decreases, depending on the
sign Vi, — Vsoiig (€XCeption — 3He).




1 kg of water at 20°C is converted into ice at -10°C (all this happens at P = 1 bar). The
latent heat of ice melting L,.; = 334 kJ/kg, the heat capacity of water at constant
pressure is 4.2 kJ/(kg-K) and that of ice 2.1 kJ/(kg-K).

(a) What is the total change in entropy of the water-ice system?

(b) If the density of water at 0°C is taken as 10% greater than that of ice, what is the
slope of the melting curve of ice at this temperature? Give both sign and size.

(a) 273K
1. From 20°C to 0°C:  dS _R oQ=mcdT AS= J. MCyaer 1T =—quater|n(293Kj
T wx T 273K
2. Melting ofice  AS = —mﬂ
melt
263K
mc..dT 273K
3. From 0°C to -10°C: AS = J. — _——-mc,, |n(_j
273K 263K
AS =1kg | —4.2kJ /(kg - K)|n[293}- 33HITKG 5 143 4(kg - K)In[ﬁ}
273 273K 263
= —297i —1231i — 78i = —1606i
K K K K
(b) dP _ (Swater B Sice) _ 1231J /(K ) kg) _ —1.23)(107 Pa/K

water Ice

AT (Vyue —Vie) —0.1x107°m?



The Vapor Pressure Equation

The differential Clausius-Clapeyron dP S gas — Siig L(T )
equation can be solved to find the shape of - = B =
the entire coexistence curve (Pr. 5.35). ol vap Vgas an T AV (T)

For the liquid-gas phase transition, we can make the following reasonable
assumptions:

« the molar volume of the liquid is much smaller than that of the gas (neglect V;yi4)
 the molar volume of gas is given by the ideal gas law V = RT/P

 the latent heat is almost T-independent, L # L(T)

dP L LP dP L dT
T ~ - 2 = — I:)vap CexXp| ———
dT )., TV, RT P RT RT
B 1 / 44 = —
-g 7 : -cé a HZO —
o / o ,/

-

T (K) T (°C)



Problem (The pressure cooker)

The boiling point of water at atmospheric pressure (1 bar) is 373 K, and the latent heat of
vaporization at this T is 2.25 MJ/kg. Assuming the latent heat to be constant over the
relevant temperature range, that water vapor is an ideal gas, and that the volume of the
liquid is negligible relative to that of the vapor, find the temperature inside a pressure
cooker operating at an absolute pressure of 2 bar.

dP  LdT P, L{l 1}

P RT? P, RIT, T,

1 1
T=| =S| | 1 o7 __83J/mal = 394K
373 2.25-10° /kgx18-10 kg /mol



For Hydrogen (H,) near its triple point (T,,=14K), the latent heat of vaporization L, ,,=1.01
kJ/mol. The liquid density is 71 kg-m=3, the solid density is 81 kg-m=3, and the melting
temperature is given by T, =13.99+P/3.3, where T, and P measured in K and MPa
respectively. Compute the latent heat of sublimation

Near the triple point:
I—\/ap :Ttr (SG _SL) I—melt :Ttr (SL _SS) I—sub :Ttr (SG _SS)

Loy =Ty (S = Ss )= Luay + Lye = (1010+162) J/mol =1172 J/mol
14x 2107 kg/mol 2-107° kg/mol \
T, (V, -V;) < 71kg/m’ 81kg/m’
et = = - ~162J
dT /dP / 1/3.3-10
v {me/mol)= molar mass (kg/mol)

density(kg/m* )



Problem (cont.)

The vapor pressure equation for H,: P =P, exp(— I"apj
where P, = 90 MPa . RT

Compute the slope of the vapor pressure curve (dP/dT) for
the solid H, near the triple point, assuming that the H,
vapor can be treated as an ideal gas.

dP I—sub ~ I—sub

dT ) Ttr (VG _VS) ) TtrVG

At the solid-gas phase boundary:

Assuming that the H, vapor can be treated as an ideal gas P,V =RT,

v _RT, _ RT, ~ 8.3J/K -molx14 K
° P, Pexpl-Ly,,/RT,) 9-10” Paxexp|[-1010 /(8.3 J/K-molx14 K)]
=7.69-10° m*/mol
P L 1172 J/mol

sub

- - =1.09-10*Pa/K
dT T,V, 14Kx7.69-10° m®/mol




Phase Diagram of H,O

For most “normal” substances, the slope of the
melting curve is positive (S, >Sg, V| >Vy). The
phase diagram for water shows the

/Ice H characteristic negative slope of the solid-liquid
Ice III equilibrium curve. The ice is less dense than

zif, II?" water (V <Vg): the hydrogen bonds determine

20%016:” L the tetrahedral coordination and openness of

the structure of ice. As ice melts into water the
change in entropy (or the latent heat) is
RIPTL positive, while the change in volume is
negative, hence the negative slope.
1 1 | |

400 500 600 700 dT T(an _Vsol)

Tempperature/K
dP L

The negative slope of the solid-liquid
. \ coexistence curve makes ice skating possible:
il ice melts under the pressure exerted by the
______ skate blade. The Clausius-Clapeyron equation

| provides the connection between ice skating
and the observation that ice floats on water.
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Ice skating becomes unpleasant if the weather
Is too cold so that the ice becomes too “hard”.
Estimate the lowest temperature for which ice
skating is still enjoyable for a person of normal
weight. The given data are that the latent heat 0.008 atm
of fusion of water is 333 J/g, that the density of

liquid water is 1 g/cm3, and that ice cubes float Temperature
with ~9/10 of their volume submerged. R
The lowest temperature for enjoyable skating is the temperature at which the pressure
exerted by the skater on ice is equal to the pressure on the coexistence curve at this T.
At P, =1 bar, ice melts at T, = 273.15K (=0°C).

mg _100kgx10m/s®
area 0.1x10*m?

dT TV Va) o Tolig—Vaa) (p_p,)- 213K (0.1x10°m°/ g)
- )=

dP L L 333J/¢g
The lowest temperature: - 8°C, about right.

Let’s verify that from two points on the melting curve, (0.006 bar 273.16K) and
(1 bar 273.15K) we can get a reasonable estimate for L:

TVig —Vey kP, —P,) _ 273K x0.1x10° m*/gx0.994x10° Pa
(T,-T,) 0.01K

=10° kg-s’m™ =10° Pa (=1000atm)

pressure: P =

10°Pa~ -8 K

L(273K)= ~ 271J/g



Why Is Ice Slippery? (R. Rosenberg, Physics today, Dec. 2005)

Pressure melting does not explain why skating is possible in climates as cold as —30°C.
This popular explanation of the thermodynamics of ice skating is not the whole story
(the experiments by Robert Wood and other researchers). The mechanism(s) is much
more complicated.

The physicists interested in the problem: Faraday, Gibbs, etc.

Two other important factors:

Frictional heating. S. Colbeck in his experiments (1988-1997) attached a thermocouple
to a skate blade (and to the bottom of skis) and showed that the increase in temperature

with velocity was consistent with frictional heating.

Liquid layer on ice surface below zero. There is a disordered (liquid-like) layer on the
surface of ice (its thickness - ~ 10 nm) down to ~ -30°C.



Phase Diagrams of “He

5 He is the only element that remains a liquid at T=0

aH and P =1 bar because (a) the zero-point oscillations
€ of light atoms are large, and (b) the binding forces
between the atoms are very weak. The zero-point
energy of He is larger than the latent heat of
evaporation of liquid helium; the zero-point vibration
amplitude is ~1/3 of the mean separation of atoms
in the liquid state. As a result, the molar volume of

Normal Liquid

Pressure (MPa)
(]

0 /) C88 “He (®He) is more than a factor of two (three) larger

o vy 2 3 4 5 6 than one would calculate for a corresponding
Temperature (K) . .. .

classical liquid. Also, the latent heat of evaporation

the “\” transition is unusually small - ~1/4 of its value for the

corresponding classical liquid.

According to Nernst's theorem, for any processes that bring a

system at T = 0 from one equilibrium state to another, AS = 0. If, dP _ AS
at the same time, AV = 0, then dP/dV = 0, and the slope of the dT AV
coexistence curve “solid-liquid” must approach zeroas T — 0.

The slope of the phase boundary solid helium — superfluid liquid helium is essentially O at
T < 1K: the entropy change must be zero, and the liquid must be as ordered as the
solid! While the phase diagram shows that the solid and liquid Il are equally ordered, x-
rays reveal that only the solid has a long-range order in “real” space. Therefore, we arrive
at a conclusion that liquid Il must be more ordered in the momentum space!



Pressure (MFa)

Phase Diagram of SHe

| Solid K/ . P A
31 Superfluid He Solid

A phase
2 I Superfluid
B phase -
Normal liquid .
(L Liquid
) ] il Gas L Gas .
0.0001  0.001 0.01 0.1 1 10 100 linear scale T

Temperature (K)

Below 0.3K the slope of the 3He solid-liquid phase boundary is negative.
This negative slope tells us that AS and AV have opposite signs. The
denser phase is always the one that is stable at high P — its molar volume
is smaller, and at sufficiently high P, its G is smaller. When we move from
liquid 3He to solid 2He, V decreases - thus, S must increase!!

In other words, the liquid is more “ordered” than the
solid, and therefore it takes heat to change the liquid

to a solid! The Pomeranchuk effect: as the solid-
liquid mixture is compressed, heat is removed from
the liquid phase as crystals form. The latent heat

associated with converting 1 mole of 3He liquid into
solid is 0.42J. Cooling: from ~ 20 mK to 2 mK.




At the atmospheric pressure, 3He remains liquid even at T=0. The minimum pressure of 3He
solidification is P,;,= 28.9 bar. At low temperatures, the entropy of 1 mole of liquid 3He is S, =
RT/T,, where T,=0.22 K, the entropy of solid 3He is temperature-independent: Sg= R In2.
The difference between the molar volumes of liquid and solid 3He AV =V -V¢ = 1.25 cm3/mol

(@) Find the temperature of solidification T, at P =P,

(b) Find the temperature dependence of the latent heat of melting L ,,¢;-

(c) Find the pressure of solidification of 3He at T = 0.

(@) (d_P) — L et The minimum on the solid-liquid coexistence curve (P=P,;,,)
dT J o T(VL —VS) corresponds to dP/dT = 0, and, thus, L (T min) =0.
I—melt (Tmin ) = Tmin [SL(Tmin )_ SS (Tmin )] Tmin = To In 2 ~ 015K
RT?®
0 L. (T)=T[S (T)-S:(T)|= = RTIn2 - aparabola that goes throughOat T=T,,.,.
A 0
L melt The negative sign of L, for 3He is a unique phenomenon
R (the Pomeranchuk effect). Over the range of T where L, . <
T T 0, the slope of the L-S coexistence curve is negative. (Note
P o that, in contrast to dP,.,/dT < 0 on the phase diagram for
i water, here the negative slope is observed for V -V¢ > 0).
! > (c) By integrating the CI.-Cl. eq. dP :i l_|n2 dT
Toin T AV \ T,

R(T? R (T, 5
P=— 2——Tln2 +const constzP(T:O)szm—N ?—Tolnz =31.7-10° Pa

0



! Summary

1. The shape of coexistence curves on the P-T diagram:

critical Gl(P’T):GZ(P’T)

point

Pressure

2. The latent heat in the 15t order phase transitions:

.. as_9Q_L
0K T T

Temperature
G=Nu=U+PV-TS=H-TS —» AH=TAS=L

gas

3. The slope of the coexistence curve is given by the Clausius-Clapeyron Relation:

dP _ L(T) By integrating the CC relation, one can restore the shape of
dT T AV (T) the coexistence curve, P(T)

4. For the gas-liquid transition, we can replace the CC relation with the vapor equation:

dP L LP dP L dT L
T ~ = 2 2 I:)vap o eXp| ———
dT )., TV, RT P RT RT

gas

> The triple pOint: Gliq(Ptr’T ) Ggas(P T ) GsoI(P T )

tr? tr?

Lvap :Ttr (SG _SL) I—melt :Ttr (SL _SS) I—sub :Ttr (SG _SS) — melt( ) Lvap( tr) sub(Ttr)
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