Lecture 13. Thermodynamic Potentials (Ch. 5)

So far, we have been using the total internal energy U and, sometimes, the
enthalpy H to characterize various macroscopic systems. These functions are called
the thermodynamic potentials: all the thermodynamic properties of the system can
be found by taking partial derivatives of the TP.

For each TP, a set of so-called “natural variables” exists:
dU=TdS-PdV +udN dH=TdS+VdP+udN

Today we’ll introduce the other two thermodynamic potentials: the Helmhotz free
energy F and Gibbs free energy G. Depending on the type of a process, one of
these four thermodynamic potentials provides the most convenient description (and
is tabulated). All four functions have units of energy.

When considering different types of

Potential Variables : : : )
processes, we will be interested in two main

U (S,V,N) S,V,N issues:

H (S,P,N) S, P, N @ what determines the stability of a system
and how the system evolves towards an

F(T,V.N) V,T,N equilibrium;

G (T,P,N) P, T,N @ how much work can be extracted from a

system.



Diffusive Equilibrium and Chemical Potential

For completeness, let’s recall what we’ve learned about the chemical potential.

dU=TdS—PdV +udN dS:_l%dU+_Fr)dV
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Chemical Potential of an Ideal gas e (ﬁj :(@)
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u has units of energy: it's an amount of energy we need to (usually) remove
from the system after adding one particle in order to keep its total energy fixed.
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At normal T and P, n for an ideal gas is negative (e.g., for He, p ~ - 5-102°J ~ - 0.3 eV).

Sign “-": by adding particles to this system, we increase its entropy. To keep

dS = 0, we need to subtract some energy, thus AU is negative. [
The chemical potential increases with with its pressure. Thus, the [0 D
molecules will flow from regions of high density to regions of lower I _When P
density or from regions of high pressure to those of low pressure . p INCreases

Note that p in this case is negative because S increases with n. This is not always the
case. For example, for a system of fermions at T—0, the entropy is zero (all the lowest
states are occupied), but adding one fermion to the system costs some energy (the Fermi

. Thus,
energy). Thus 2T —0)=E, >0




The Quantum Concentration
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where n=N/V is the concentration of particles

When n << ng (In the limit of low densities), the gas is in the classical regime, and p<0.
Whenn — ng, p— 0

Zﬂm 32 | _ the so-called quantum concentration (one particle per
Q= ——KgT cube of side equal to the thermal de Broglie wavelength).
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Agg = ¢ = No=""73% 2
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At T=300K, P=10° Pa , n << no. When n — n,, the quantum statistics comes into play.



Isolated Systems, independent variables S and V

Advantages of U : it is conserved for an isolated system (it also has a simple physical
meaning — the sum of all the kin. and pot. energies of all the particles).

In particular, for an isolated system 6Q=0, and dU = 8W.

Earlier, by considering the total differential of S as a function of variables U, V, and
N, we arrived at the thermodynamic identity for quasistatic processes :

dU(S,V,N)=TdS —PdV + udN

The combination of parameters on the right side is equal to the exact differential of
U . This implies that the natural variables of U are S, V, N,

Considering S, V, and N ouU ouU ouU

: : . dU(S,V,N):[—j dS +[—] dVv J{—j dN
d dent bles:

as independent variables 0S ), | oV ). ON )

the same result for any dS and dV, the s £V N

Since these two equations for dU must yield (auj (auj [aU]
=T =-P
corresponding coefficients must be the same:

V,N S,N SV

= u

Again, this shows that among several macroscopic variables that characterize the
system (P, V, T, u, N, etc.), only three are independent, the other variables can be
found by taking partial derivatives of the TP with respect to its natural variables.




Isolated Systems, independent variables S and V (cont.)

Work is the transfer of energy to a system by a change in the external parameters
such as volume, magnetic and electric fields, gravitational potential, etc. We can
represent 8W as the sum of two terms, a mechanical work on changing the volume of
a system (an “expansion” work) - PdV and all other kinds of work, W e
electrical work, work on creating the surface area, etc.):
( J S SW =—PdV +5W,,
If the system comprises only solids and liquids, we can usually assume dV = 0, and
the difference between W and 8W,,,,., vanishes. For gases, the difference may be
very significant. _ o o
initially, the system is not necessarily in equilibrium
The energy balance for v
an isolated system : dU =T dS—-PdV +5W

other

SW_._ = PdV —TdS

If we consider a quasi-static process (the system evolves from one equilibrium state to
the other), than, since for an isolated system 6Q=TdS=0,
§Wother — PdV

=0 (forfixed N)



Equilibrium in Isolated Systems
For a thermally isolated system 8Q = 0. If the

R S EIes volume is fixed, then no work gets done (W = 0)
U =const

i, and the internal energy is conserved:

While this constraint is always in place, the system might be out of equilibrium (e.g.,
we move a piston that separates two sub-systems, see Figure). If the system is
initially out of equilibrium, then some spontaneous processes will drive the
system towards equilibrium. In a state of stable equilibrium no further spontaneous
processes (other than ever-present random fluctuations) can take place. The
equilibrium state corresponds to the maximum multiplicity and maximum entropy. All
microstates in equilibrium are equally accessible (the system is in one of these
microstates with equal probability).

(S ),y = max

This implies that in any of these spontaneous processes, the entropy tends to
increase, and the change of entropy satisfies the condition

dS >0 S

Suppose that the system is characterized by a parameter
x which is free to vary (e.g., the system might consist of
ice and water, and x is the relative concentration of ice).
By spontaneous processes, the system will approach the
stable equilibrium (x = x.,) where S attains its absolute
maximum.

A




Enthalpy, A

Enthalpy (independent variables S and P)

Internal
energy, U7

The volume V is not the most convenient independent variable. In
the lab, it is usually much easier to control P than it is to control V.
To change the natural variables, we can use the following trick:

U(S,V)— U(S,V)+PV

Enthalpy and internal energy

Temperature, 7

dH =d(U + PV )=dU + PdV +VdP

dH =TdS +VdP |dH(S,P,N)=T dS +VdP + zdN
dU =T dS - PdV

H (the enthalpy) is also a thermodynamic potential, with its natural variables S, P, and N.

- the internal energy of a system plus the work needed to make room for it at
P=const.

The total differential of H in terms dH(S,p,N)Z(@) ds +(ﬁj dp{ﬁ) dN
P,N 8P S,N S,P

of its independent variables : 0S oN
: : . H H H
Comparison yields the relations: (a—j =T (8_) =V (a—j = U
0S P.N oP SN ON S,P

In general, if we consider processes with “other” work: ~ dH =TdS +VdP + W,



Processes at P =const, oW 4., =0

For what kind of processes is H the most convenient thermodynamic potential?

At this point, we have to consider a system which is not isolated: it is in a thermal
contact with a thermal reservoir.
dH =TdS +VdP + oW

other

~5Q+VdP +6W

other

Let’s consider the P = const processes with purely “expansion” work (8W,,e; = 0),

(dH )P,éWother 0=00Q

For such processes, the change of enthalpy is equal to the thermal energy (“heat”)
received by a system.

T enthalpy plays the same part as the internal energy for

(5Qj LGH j For the processes with P = const and 8§ W, = 0, the
b=l — | =
aT Jp P the processes with V = const and 6W ., = 0.

Example: the evaporation of liquid from an open vessel is such a process, because
no effective work is done. The heat of vaporization is the enthalpy difference
between the vapor phase and the liquid phase.



Systems in Contact with a Thermal Reservoir

When we consider systems in contact with a large thermal reservoir (a “thermal bath,
there are two complications: (a) the energy in the system is no longer fixed (it may
flow between the system and reservoir), and (b) in order to investigate the stability of
an equilibrium, we need to consider the entropy of the combined system (= the
system of interest+the reservoir) — according to the 2" Law, this total entropy should
be maximized.

What should be the system’s behavior in order to maximize the total entropy?

For the systems in contact with a eat bath, we need to invent a better, more useful
approach. The entropy, along with V and N, determines the system’s energy U =U
(S,V,N). Among the three variable, the entropy is the most difficult to control (the
entropy-meters do not exist!). For an isolated system, we have to work with the
entropy — it cannot be replaced with some other function. And we did not want to do
this so far — after all, our approach to thermodynamics was based on this concept.
However, for systems in thermal contact with a reservoir, we can replace the entropy
with another, more-convenient-to-work-with function. This, of course, does not mean
that we can get rid of entropy. We will be able to work with a different “energy-like”
thermodynamic potential for which entropy is not one of the natural variables.



Helmholtz Free Energy (independ. variables T and V)

Let’s do the trick (Legendre transformation) again, now to exclude S :

U (S,V)_> U (S,V)—T S F=U-TS| Helmholtzfree energy

d(U -TS)=TdS — PdV —SdT —TdS = -SdT —Pdv  |dF(T,V,N)=-SdT — PdV + N

The natural variables for F are T, V, N:  dF(T,V, N):(G—Fj dT +[8—Fj dv +(6—Fj dN
V,N av T,N TV

Comparison yields the relations: o =-S o+ =-P k) 7
oT oV oN

TV

(ij = —P can be rewritten as: P:—(ﬁj :—(ﬁj +T(§j
N Jr N Jr N Jrn N Jrn

The first term — the “energy” pressure — is dominant in most solids, the second term
— the “entropy” pressure — is dominant in gases. (For an ideal gas, U does not
depend on V, and only the second term survives).

V,N T,N

F is the total energy needed to create the system, minus the heat we can get “for
free” from the environment at temperature T. If we annihilate the system, we
can’'t recover all its U as work, because we have to dispose its entropy at a non-
zero T by dumping some heat into the environment.



The Minimum Free Energy Principle (V,T = const)

The total energy of the combined system (= the system of interest+the reservoir) is
U = Ug+Uq, this energy is to be shared between the reservoir and the system (we
assume that V and N for all the systems are fixed). Sharing is controlled by the

maximum entropy principle: S (UR,U ): SR (U —U )+5 (U )_) max

system’s parameters only

Since U ~ Ui >> U
0S U F
SR+S (U ’US): SR (U )+(5—Jj(_us)+ss (Us): SR (U)_J;TSSSJE (U)_?s

R+s

A
Skis | reservoir loss in Sﬁue to  gainin S, due to
| Fsystem transferring U, to  transferring U, to
i the system the system
. | U
F | ) u., 1 dF
s dSg,. (U,U,)=dS, - - :—?[dUS—TdSS]:— -
| system
> Thus, we can enforce the maximum entropy principle by simply
stable U minimizing the Helmholtz free energy of the system without
equilibrium having to know anything about the reservoir except that it

maintains a fixed T! Under these conditions (fixed T, V, and N),
the maximum entropy principle of an isolated system is transformed into a minimum
Helmholtz free energy principle for a system in thermal contact with the thermal bath.



Processes at T = const

In general, if we consider processes with “other” work:

(

For the processes at T = const
(in thermal equilibrium with a large reservoir):

dF =—SdT —PdV + oW

other

dF)T = (_ PdV + 5Wother )T

The total work performed on a system at T = const

const processes the Helmholtz free energy gives all

to the change in the Helmholtz free energy of the system. In other words, for the T =

in a reversible process is equal

the reversible work.

Problem: Consider a cylinder separated into two parts by an adiabatic piston.
Compartments a and b each contains one mole of a monatomic ideal gas, and their

initial volumes are V_=10l and V,;=1l, respectively.
heat transfer only, is immersed in a large bath at

The cylinder, whose walls allow
0°C. The piston is now moving

reversibly so that the final volumes are V=6l and V;=5|. How much work is delivered

by (or to) the system?

The process is isothermal :

The work delivered
by the system:

3

F=U-TS=—RT -
For one mole of 2
monatomic ideal gas:

:

oW =RT In

(dF ), =(=PdV ),

SW =5W, +6W, = [dF, +
\Y,

ai

\

deb

)

3

RTInl—RTIni+Tf(N,m)
0 VO
af be 3
+RTIn—=2.6-10"J

bi

al



Gibbs Free Energy (independent variables T and P)

Let’s do the trick of Legendre transformation again, now to exclude both Sand V :

U(S,V)— U(T,P)-TS+PV

G=U-TS+PV]| - the thermodynamic potential G is called the Gibbs free energy.

Let’s rewrite dU in terms of independent variables T and P :
dU =TdS —PdV =d(TS)-SdT -d(PV)+VdP  d(U -TS + PV )=-SdT +VdP
dG(T,P,N)=-SdT +VdP + udN

Considering T, P, and Nas (G (T, P N ): (@) dT +(@j dP +[@j dN
independent variables: oT oy oP J); § ON J; 5

Compal’lson yie ds the relations: oT - P N oN s M




Gibbs Free Energy and Chemical Potential

Combining U =TS-PV+uN with G=U-TS+Pv = [G=Nu

- this gives us a new interpretation of the chemical potential: at least for the systems
with only one type of particles, the chemical potential is just the Gibbs free energy
per particle.

The chemical potential L= (@j
aN T,P

If we add one particle to a system, holding T and P fixed, the Gibbs free energy of
the system will increase by p. By adding more particles, we do not change the value
of u since we do not change the density: pu # p(N).

Note that U, H, and F, whose differentials also have the term udN, depend on N
non-linearly, because in the processes with the independent variables (S,V,N),

(S,P,N), and (V,T,N), n = u(N) might vary with N.



Pr.5.9. Sketch a qualitatively accurate graph of G vs. T for a pure substance as it
changes from solid to liquid to gas at fixed pressure.

- the slope of the graph G(T ) at fixed P should be -S.
Thus, the slope is always negative, and becomes
steeper as T and S increases. When a substance
undergoes a phase transformation, its entropy increases
abruptly, so the slope of G(T ) is discontinuous at the
transition.

0G

(—j =-S AG = -SAT
oT Jp

- these equations allow computing Gibbs
free energies at “non-standard” T (if G is
tabulated at a “standard” T)




The Minimum Free Energy Principle (P,T = const)

The total energy of the combined system (=the system of interest+the reservoir) is
U = Ug+Uq, this energy is to be shared between the reservoir and the system (we
assume that P and N for all the systems are fixed). Sharing is controlled by the

maximum entropy principle: S, (UR’US): S, (U _Us)+ S, (Us)_) max

dS¢.. (U.U,)=dS, - . Pav, LU, —Tds, + Pst]:—dGS
T V T T
4 reservoir Thus, we can enforce the maximum entropy principle by
R+s

simply minimizing the Gibbs free energy of the system
without having to know anything about the reservoir
except that it maintains a fixed T! Under these conditions

|

i
G | s (fixed P, V, and N), the maximum entropy principle of
S v an isolated system is transformed into a minimum
system Gibbs free energy principle for a system in the

>
U thermal contact + mechanical equilibrium with the
stable s

equilibrium FESErvolr. (dG), »\ <0

+system

Thus, if a system, whose parameters T,P, and N are fixed, is in thermal contact

with a heat reservoir, the stable equilibrium is characterized by the condition: G =min

G/T is the net entropy cost that the reservoir pays for allowing the system to have volume
V and energy U, which is why minimizing it maximizes the total entropy of the whole
combined system.



Processes at P = const and T = const

Let’'s consider the processes at P = const and T = const in general, including the

processes with “other” work:
oW =—-PdV +56W

other

dG=d(U -TS+PV), , =(R-PdV + Wy, ); , —~TdS + PdV
= (5Q)TP + (5Wother )T,P _Tds = (5Wother )T,P

Then

The “other” work performed on a system at T = const and P = const in a reversible
process is equal to the change in the Gibbs free energy of the system.

In other words, the Gibbs free energy gives all the reversible work except the PV work.
If the mechanical work is the only kind of work performed by a system, the Gibbs free
energy is conserved: dG = 0.

Gibbs Free Energy and the Spontaneity of Chemical Reactions

The Gibbs free energy is particularly useful when we consider the chemical
reactions at constant P and T, but the volume changes as the reaction proceeds.
AG associated with a chemical reaction is a useful indicator of weather the reaction
will proceed spontaneously. Since the change in G is equal to the maximum
“useful” work which can be accomplished by the reaction, then a negative AG
indicates that the reaction can happen spontaneously. On the other hand, if 4G
is positive, we need to supply the minimum “other” work 8 W ,,,,= 4G to make the
reaction go.




Electrolysis of Water | 'l‘%

By providing energy from a battery, water can be H,
dissociated into the diatomic molecules of hydrogen and
oxygen. Electrolysis is a (slow) process that is both
isothermal and isobaric (P,T = const).

The tank is filled with an electrolyte, e.g. dilute sulfuric acid
(we need some ions to provide a current path), platinum

electrodes do not react with the acid. N -
Dissociation: H,S0O, < 2H" +S0O,

When | is passed through the cell, H* move to the “-” electrode: 2H" +2e” — H,

The sulfate ions move to the “+” electrode: SO,” +H,0 - H,SO, +£02 +2e”
2

The sum of the above steps: H,0 — H, +§O2

The electrical work required 1
to decompose 1 mole of water: AW giper = AG = G(Hz )"‘ EG(Oz)_ G(Hzo)

(neglect the Joule heating of electrolyte)

In the Table (p. 404), the Gibbs free energy AG represents the change in G upon
forming 1 mole of the material starting with elements in their most stable pure

states: AGH,)=0  AG(0,)=0  AG(H,0)=-237kJ/mole
AW . =AG =237 kJ/mole

other



Electrolysis of Water (cont.) H,0 —» H2+%02

Convenience of G: let’s consider the same reaction, but treat it in terms of AU, AV,

and AS:
AW . =AG =AU + PAV —-TAS

other

PAV: we will neglect the initial volume of water in comparison with the final volume
of gas. By dissociating 1 mole of water, we'll get 1.5 moles of gas. The work by gas:

AW =PV =nRT =(1.5mol)8.3 J/mol-K)(300 K )~ 3.7 k]

-TAS: the entropy of a mole of substance (from the same Table, p.404) —
S(H,)=130.7 J/K, S(0,)=205.1 J/K, S(H,0)=69.9 J/K,

~TAS =—(300 K )(130.7 J/K +0.5-205.1J/K -69.9 J/K ) ~ —49 kJ

AU: ???? —not in the Table... Elestical energy e
input AG = 23713 k) f&ﬁg?m
Well, we got AH in the Table - AH(H,) = =
0, AH(Op) = 0, AH(H,0)= - 2858 kJ (AH | . . % R
upon forming 1 mol of the material prosesses for ane
starting with elements in their most stable | ™ *™* + -
pure states). A= 2Bk Battary
AG AH - TAS S
- iﬂrmg( A ‘);?}ﬁ'ﬂﬁ-
286 kJ = 49 kJ ~ 237 k\J Mydnagen U QPN Fleotrolysis of water
busbsiile= Energy from bzl e 1
envitonment HO-=H;+30,
T4% = 48,7 k)




Electrolysis of Water (cont.)

The process must provide the energy for the dissociation plus the energy to expand
the produced gases. Both of those are included in AH. Since the enthalpy H = U+PV,
the change in internal energy AU is then:

AU =AH - PAV = 286 kJ -4 kJ =282 kJ

However, it is not necessary to put in the whole amount in the form of electrical
energy. Since the entropy increases in the process of dissociation, the amount T AS
can be provided from the environment. Since the electrolysis results in an increase in
entropy, the environment “helps” the process by contributing T AS .

The min. voltage required for electrolysis:
1

AW™ =237kl =V x| xAt=V xQ =V x(~2N ,e) H,0 & H,+30,

A

.10° |
AG  2.37-10° J/mole 193V

) 2N,e 1.93-10° C/mole <« Fuel cell
(Pr. 5.4)

Vo

Electrolysis

If V < V,, the reaction will proceed from right to
left provided gaseous hydrogen is available at
the “+” electrode and gaseous oxygen at the “-”
electrode.




Fuel Cells

Hydrogen and oxygen can be combined
in a fuel cell to produce electrical energy.
FC differs from a battery in that the fuel
(H, and O,) is continuously supplied.

By running the process of electrolysis in
reverse (controllable reaction between
H, and O,), one can extract 237 kJ of
electrical work for 1 mole of H,
consumed. The efficiency of an ideal fuel
cell :

(237 kJ / 286 kJ)x100% = 83% !

This efficiency is far greater than the
ideal efficiency of a heat engine that
burns the hydrogen and uses the heat to
power a generator.

ldsal

fuel cell operation

Fusl enesgy input
&H m 285,83 kMol

hydrogen-cxygen

Eleciric energy output
AG m 23713 kVmel

Oxyasn |

2H"+ 22"+ O +H, 0

Heat outpu
TAS = 48.7 kXmol

The entropy of the gases decreases by 49 kJ/mol since the number of water molecules
is less than the number of H, and O, molecules combining. Since the total entropy
cannot decrease in the reaction, the excess entropy must be expelled to the

environment as heat.




Fuel Cell at High T

Fuel cells operate at elevated temperatures (from ~70°C to ~600°C). Our estimate
ignored this fact — the values of AG in the Table are given at room temperature.

Pr. 5.11, which requires an estimate of the maximum electric work done by the cell
operating at 75°C, shows how one can estimate AG at different T by using partial

derivatives of G.

(ﬁj =—S AG~-SAT
oT ),

- these equations allow computing Gibbs
free energies at non-standard T and P:

At 75°C (348K):
G(H,)~0-(130 /K )50 K)= -6.5k]

G(0,)~0-(205J/K )50 K)=-10.25kJ

Substance | AG(1bar, 298K) | S(1bar, 298K)
kJ/mol J/K mol
H, 0 130
O, 0 205
H,O -237 70

G(H,0)~-237kJ—(70 J/K )50 K )= —240.5kJ
AG = G(HZO)—G(HZ)—%G(Oz): —240.5kJ +6.5kJ +5.1kJ = -228.9k]

Thus, the maximum electrical work done by the cell is 229 kJ, about 3.5% less than
the room-temperature value of 237 kJ. Why the difference? The reacting gases
have more entropy at higher temperatures, and we must get rid of it by dumping

waste heat into the environment.




Conclusion:

Potential Variables dU(S,V,N)=TdS - PdV + udN
U (S,V,N) S,V,N

T GPN) S PN dH(S,P,N)=T dS +VdP + 1N
F@VN) V.T.N dF(T,V,N)=-SdT —PdV + xdN
G (T,P,N) P, T,N

dG(T,P,N)=-SdT +VdP + udN
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