Press-Schechter Formalism: Structure Formation by Self-Similar Condensation

Jean P. Walker

Based on Press & Schechter’s 1974 Paper
Structure Formation in Simulations

Images Courtesy of the Max Planck Institute of Astrophysics & Virgo Consortium (Top, Millennium-II; Right, Aquarius Project).
Basic Definitions of Dark Matter

- **Number Density**

- **Characteristic Particle Mass**

- **Deceleration Parameter**: Describes the ability of the universe to inhibit condensation.

- **Jean’s Number**: Describes the number of particles needed to begin condensation. See Eqn. (3) for an empirical formula.

\[n_\ast \equiv \int_0^\infty n(m)dm \]

\[m_\ast \equiv n_\ast^{-1} \int_0^\infty mn(m)dm = \frac{\rho}{n_\ast} \]

\[q = \frac{4}{3} \pi m_\ast n_\ast G / H^2 \]

\[N_J = n \left(\frac{v}{H} \right)^3 \]
Intuitions for Self-Similarity

- Gravitational Collapse: “Large correlations in the gas must be interpreted as changes in $n(m)$, by treating highly correlated groups of particles as single more massive particles.” (Pg. 427)

- Non-Linearity of Equations: If we expect $n(m)$ to depend only on the statistics of the current scale, then the evolutions of $n(m)$ will depend on the statistical properties of the non-linear differential equations. (Pg. 428)
Preparation for Derivation

- Define Mass Variance inside of Volume V.

\[\Sigma^2(V) = \langle M \rangle^2_V - \langle M^2 \rangle_V \]

- An upper bound on the variance can be found by taking the dark matter particles to be distributed uniformly, so that the variance is linear in volume.

\[\Sigma^2(V) = \sigma^2 V \]
Derivation

- We define the probability of finding a fractional mass deviation between δ and $\delta + d\delta$ in volume V as $P(\delta, V)$.

\[
p(\delta, V) = \frac{1}{\sqrt{2\pi}\delta_*^2} e^{-\frac{\delta^2}{2\delta_*^2}}
\]

\[
\delta = \frac{(M - \langle M \rangle)}{M} = \frac{\sqrt{\Sigma^2(V)}}{M} = \frac{\sigma V^{-\frac{1}{2}}}{\rho}
\]

\[
\delta_* \equiv \frac{\sqrt{\Sigma^2(V)}}{M} = \frac{\sigma V^{-\frac{1}{2}}}{\rho}
\]
Derivation (Cont’d)

\[
P = \int_{\delta = \frac{R_1}{R_2}}^\infty p(\delta, V) d\delta = \frac{erfc\left(\frac{R_1 \rho \sqrt{V}}{\sqrt{2} R_2 \sigma}\right)}{2}
\]
\[R_2 = \frac{R_1}{\delta}\]

- The turn-around scale, \(R_2 \), for \(R_1 \) is found for spherical collapse in the Appendix.

- We can define the probability of having an overdensity \(\delta \) collapse before \(R_2 \) as \(P \).
The number density distribution is found by multiplying the percentage of collapsed mass with the mass density of the second scale and dividing by M.

The factor of 2 was added to take into account the underdensities around the collapsed objects (Improved explanation can be found in Bond et al. 1991).

\[
\frac{dP}{dM} = 2 \frac{3}{2} \pi^{\frac{1}{2}} \frac{R_1}{R_2} \rho_1^{\frac{1}{2}} M^{-\frac{1}{2}} e^{\left(\frac{-1R_1^2 \rho_1 M}{2R_2^2 \sigma_1^2}\right)}
\]

\[
n_2(m) = \frac{2}{M} \rho_1 \left(\frac{R_1}{R_2}\right)^3 \frac{dP}{dM}
\]

\[
\rho_2 = \rho_1 \left(\frac{R_1}{R_2}\right)^3
\]

\[
\sigma_2^2 = \sigma_1^2 \left(\frac{R_1}{R_2}\right)
\]
Summary

- Press-Schechter Formalism allows us to analytically recreate the linear evolution of dark matter perturbations without the need of resource exhaustive computer simulations.

- Press-Schechter Formalism describes a universe where different scales collapse in a similar manner without a dependence on the scale size (Self-similar condensation).

- The Formalism has been extensively used and compared to simulations to confirm its accuracy.

- An improved Sheth-Tormen Formalism, which uses ellipsoidal collapse and excursion set theory, reproduces the main results of Press-Schechter while correcting the discrepancies at the high and low mass extremes of the halo mass function.