A model for the black hole mass and halo mass correlation

Course 689 Final Presentation by Yan Shi Dec 8, 2009

Second part presentation. First part Nov 5, 2009.

Strong M_{SMBH} – M_{tot} Relation

Ferrareses: Circular velocity at flat rotation curve

Bandara: Gravitational lensing

The M_{SMBH} – M_{tot} relation is verified by two independent methods.

How does the entire galaxy know what is

the mass of the SMBH at the center?

An Engineer's view: Servo loop

- If there is no initial relation between M_{SMBH} and M_{tot} , to build the universal $M_{SMBH}-M_{tot}$ relation there needs to be
 - Communications (between SMBH and rest of the system)
 - Feedback (able to add or reduce mass from the SMBH)
- There is no efficient way to remove matter from a BH.
 The servo loop idea does not work.

The M_{SMBH} – M_{tot} relation must be set at the early stage of a galaxy.

Universal DM Halo Density Profile

- Gravitational force is scale invariant
 - → Universal mass density profile (NFW)

$$\rho(r) \propto \frac{1}{\left(\frac{r}{r_s}\right)(1+\frac{r}{r_s})^2}$$

with a scale length r_s determined by the total mass M_{tot} (or $r_s \bowtie M_{tot}^{\Upsilon}$).

Unique property of Universal Profile

• The ratio of the mass inside the **same scaled length** to the total mass is the same for different mass DM halos.

$$\frac{m(<~r_{scaled})}{m_{tot}} = \frac{M(<~r_{scaled})}{M_{tot}}$$

Universal relation for M (r_{scaled}) to M $_{tot}$ ratio.

SMBH at the DM halo Center

If there is a black hole at the center, it can be viewed as a delta density function at r = 0.

$$\rho$$
 (r) \mathbb{X} (r) , for $|\mathbf{r}| << r_s$, or ρ (r) = M_{SMBH} \mathbb{X} (r).

In order to meet the universal profile condition,

$$M_{SMBH}$$
 M_{tot} .

A BH behaves similarly to weakly interacting dark matter particles. It will Virialize with dark matter particles.

How Does a SMBH Develop at the center?

- At the early universe, the primordial gas was first able to cool and collapse into dark matter mini-halos.
- The first stars were very massive (~ 100 M_☉), owing to the limited cooling properties of primordial gas.
- After the main sequence lifetime, the first stars collapsed to BH's.

The mini-halos with BH's (collapased from the first stars) are the initial building blocks of galaxies.

How Does a SMBH Develop at the center?

(continued)

- DM halos form hierarchically. Small halos form first and merge into bigger halos.
- Larger number of identical building blocks merge and form into a galaxy. They provide seed black holes to coalesce into a single, massive black hole in the center of the galaxy.

The mass of the SMBH at the center is always proportional to M_{tot} .

Building Block M_{BH} to M_{Halo} ratio

- In a CDM flat cosmology, primordial gas with M_b ~ $10^6~M_\odot$ would be collapsing from 3– σ fluctuations.¹
- Assuming only one black hole of mass m_•~ 100 M $_{\odot}$ in each mini-halo¹,

$$M_{BH}$$
 / M_{Halo} = M_{OM} / (M_{b} + M_{DM}) ~ 1.5 × 10⁻⁵

Note 1: Johnson et al 2008, Spolyar et al 2009

(M_{b} : M_{DM} = 15% : 85%)

 M_{SMBH} / M_{tot} ~ 5 × 10⁻⁵ (Bandara, Ferrareses)

The building block M_{BH} to M_{Halo} ratio is the same order of magnitude as the observed M_{SMBH} to M_{tot} ratio.

Summary

- The massive first stars collapsed into BH's at the early universe.
- The BH's behave similarly to weakly interacting DM particles.
- They virialize with DM particles and sink to the center of the DM halo to form a massive BH.
- The peak of BH's merging activity leads to the quasar stage of a galaxy ($z = 2 \sim 4$).
- The gas accreted by the SMBH at late stages (z<1) is insignificant (< 5% in mass)*.

Conclusion

The M_{SMBH} and M_{tot} correlation is probably established by the building blocks (mini-halos with first star BH's) at the early universe.

Further Question

How does the M_{SMBH} to M_{tot} ratio evolve with time according to this model?

Increase? decrease? or remain constant?