Supermassive Black Holes

Course 689 Presentation by Yan Shi Nov 5, 2009

A Fundamental Relation Between Supermassive Black Holes and their host Galaxies¹

Laura Ferrarese, David Merritt (Published August 2000)

Beyond the Bulge: A Fundamental Relation Between Supermassive Black Holes and Dark Matter Halos

Laura Ferrarese (Published October 2002)

Outline of the Presentation

- M_{BH} and σ_c relation (Ferrarese & Merritt 2000)
- M_{BH} and M_{DM} relation (Ferrarese 2002)
- M_{BH} and M_{tot} relation using gravitational lensing data (Bandara et al 2009)
- Possible explanations of M_{BH} M_{tot} relation

M_{BH} versus Bulge Central Velocity Dispersion

(Ferrarese & Merritt 2000)

- First study of the relation between M_{BH} and the stellar velocity dispersion of the host galaxy.
- Two group samples of galaxies:
 - Group A: Reliable $M_{\rm BH}$ estimates including MW , NGC 4525, and 10 galaxies from HST observations.
 - Group B: Less accurate M_{BH} data from ground based observations of stellar kinematics.

MW : motion of stars in Sagittarius A

NGC 4525 : water maser

Correlation between M_{BH} and Bulge Central Velocity Dispersion σ_c

Absolute Blue

Luminosity (Left)

Strong M_{BH} - σ_c correlation; weaker M_{BH} - luminosity correlation. Indication of stronger relation with M_{tot} not just baryons.

Strong Correlation between M_{BH} and V_{rms}

 $(V_{\rm rms} \, {\rm measured} \, {\rm at} \, r_{\rm e}/4)$

 M_{BH} versus V_{rms} (open circles, dashed line).

M_{BH} versus Bulge Central Velocity Dispersion (filled circles, solid line)

Since $R(V_{rms})$ \mathbb{W} R_{BH} , the $M_{BH} - V_{rms}$ relation is not caused by the influence of the BH on stellar kinematics.

r_e: effective radius, include half image light

Circular velocity $V_c - \sigma_c$ Relation

(Ferrarese June, 2002)

 $V_{\rm c}$ is measured beyond R₂₅ where the rotation curve is flat.

$$R(V_c) > R(V_{rms}) \times R(\sigma_c)$$

 $V_{\rm c}$ is determined by $M_{\rm DM}$

The V_c - σ_c Relation provides the link between M_{BH} and M_{DM} .

The M_{BH} and M_{DM} Relation

(Ferrarese June, 2002)

The M_{BH} - M_{DM} Relation is obtained by converting V_c into M_{DM} .

The $M_{BH} - M_{tot}$ Relation by Gravitational Lensing

(Bandara et al 2009)

Gravitational lensing provides a more robust method to determine \mathbf{M}_{tot} . No conversion of velocity to mass required.

How does the entire galaxy know what is

the mass of the BH at the center?

Possible Explanation: Building Blocks Idea

- The first objects formed in the universe were not stars.
- Larger number of identical building blocks merged and formed into a galaxy. They provided seed black holes to coalesce into a single, massive black hole in the center of the galaxy.

Richstone et al, 1997, 189th Meeting of the American Astronomical Society.

Can explain the $M_{BH} - M_{tot}$ relation. Need to explain how the identical building blocks were formed.

Possible Explanation: Quasar, AGN Idea

- Radiation from the accretion disk applies pressure to the in-falling particles.
- Silk & Rees 1998 and king 2003 were able to calculate σ_c for a given BH mass.

$$M_{BH} \bowtie \sigma_c^5 \text{ (Silk & Rees)}$$
 $M_{BH} \bowtie \sigma_c^4 \text{ (King)}$

Obtain the $M_{BH} - \sigma_c$ relation, not the $M_{BH} - M_{tot}$ relation.

An Engineer's view: Servo loop

- In order to build the M_{BH} M_{tot} relation need to have
 - Communications (between BH and rest of the system)
 - Feedback (able to add or reduce mass from the BH)

There is no efficient way to remove matter from a BH.

The Servo Loop idea does not work.

Summary

- Ferrarese & Merritt 2000 was the pioneer work to point out the M_{BH} σ_c relation.
- The relation was expanded to link with M_{tot} by Ferrarese in 2002.
- More observations including gravitational lensing confirm the $M_{\rm BH}-M_{\rm tot}$ relation.
- There is no satisfactory explanation of the relation other than observations as of today.

$$M_{BH} - \sigma_c - V_{rms} - V_c - M_{tot}$$

Backup Slides

More Results on M_{BH} and Velocity Dispersion Relation

