A Mid-Infrared Spectroscopic Study of Submillimeter Galaxies: Luminous Starbursts at High Redshift

Chelsea Sharon
Ph 689: 10/22/2009
Outline

• History

• Characterization of SMGs
 • Specifically, this paper

• The Big Picture
 • Local Analogues

SMGs = Submillimeter Galaxies
Submillimeter Galaxies: History

- FIR/submm background first resolved with SCUBA (JCMT) and MAMBO (IRAM 30m)

- Small instrument bandwidth required accurate redshifts for follow-up observations

- Expensive to obtain redshifts
 - Radio Counterpart
 - Optical Spectroscopy
 - CO line detection
Submillimeter Galaxies: History

- FIR/submm background first resolved with SCUBA (JCMT) and MAMBO (IRAM 30m)
- Small instrument bandwidth required accurate redshifts for follow-up observations
- Expensive to obtain redshifts
 - Radio Counterpart
 - Optical Spectroscopy
 - CO line detection

Hughes et al. 1998
Submillimeter Galaxies: History

- FIR/submm background first resolved with SCUBA (JCMT) and MAMBO (IRAM 30m)
- Small instrument bandwidth required accurate redshifts for follow-up observations
- Expensive to obtain redshifts
 - Radio Counterpart
 - Optical Spectroscopy
 - CO line detection

Frayer et al. 2000
Characteristics of SMGs: Morphology and Distribution

- Morphology: disturbed and compact
- Redshift distribution
 - Ranges from 2-3
 - Chapman et al. (optical) peaks at $z=2.3$
 - Valiante et al. (7.7 μm) peaks at $z=2.8$
- Spatial distribution?

SMM J14011+0252
$z=2.565$
NICMOS 1.6μm

6.6" = 54 kpc rest frame

Baker et al. (in prep)
Characteristics of SMGs: Morphology and Distribution

- Morphology: disturbed and compact
- Redshift distribution
 - Ranges from 2-3
 - Chapman et al. (optical) peaks at $z=2.3$
 - Valiante et al. (7.7 μm) peaks at $z=2.8$
- Spatial distribution?
Characteristics of SMGs: Emission

<table>
<thead>
<tr>
<th></th>
<th>X-ray</th>
<th>Optical</th>
<th>mid-IR</th>
<th>Submm</th>
<th>Radio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest-frame</td>
<td>Harder X-ray</td>
<td>UV</td>
<td>near-IR</td>
<td>far-IR</td>
<td>High-frequency radio</td>
</tr>
<tr>
<td>Source</td>
<td>AGN</td>
<td>Young, massive stars</td>
<td>PAH signatures</td>
<td>Thermal dust emission</td>
<td>Synchrotron from SNR</td>
</tr>
<tr>
<td>Amount</td>
<td>~10% of sources</td>
<td>~80% of radio sources</td>
<td>~70% of sources (Valiante et al.)</td>
<td>$10^4 L_{MW}$</td>
<td>~2/3 of sources</td>
</tr>
<tr>
<td>Tells us...</td>
<td>Few or highly-obscured AGN</td>
<td>Recent star formation</td>
<td>Warm dust, starburst dominated (not AGN)</td>
<td>Dusty, gas ~40% M_b, high SFR</td>
<td>???</td>
</tr>
</tbody>
</table>
Characteristics of SMGs: Emission

<table>
<thead>
<tr>
<th>Rest-frame Source</th>
<th>Amount</th>
<th>Tells us...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harder X-ray</td>
<td></td>
<td>UV</td>
</tr>
<tr>
<td>Near-IR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAH signatures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>~70% of sources</td>
<td></td>
<td>(Valiante et al.)</td>
</tr>
<tr>
<td>~80% of radio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>~70% of sources</td>
<td></td>
<td>(Valiante et al.)</td>
</tr>
<tr>
<td>MW ~2/3 of sources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Few or highly-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>obscured AGN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recent star</td>
<td></td>
<td>formation</td>
</tr>
<tr>
<td>Warm dust, star-</td>
<td></td>
<td>burst dominated</td>
</tr>
<tr>
<td>burst dominated</td>
<td></td>
<td>(not AGN)</td>
</tr>
<tr>
<td>Dusty, gas ~40%</td>
<td></td>
<td>Mb, high SFR</td>
</tr>
<tr>
<td>PAH = Polycyclic</td>
<td></td>
<td>Aromatic Hydrocarbon</td>
</tr>
</tbody>
</table>

PAH = Polycyclic Aromatic Hydrocarbon
Characteristics of SMGs: Emission

- **mid-IR**
- **near-IR**
- PAH signatures
- ~70% of sources (Valiante et al.)
- Warm dust, starburst dominated (not AGN)

Rest-frame Source

<table>
<thead>
<tr>
<th>Amount</th>
<th>Tells us...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harder X-ray</td>
<td>UV</td>
</tr>
<tr>
<td>UV</td>
<td>near-IR</td>
</tr>
<tr>
<td>near-IR</td>
<td>far-IR</td>
</tr>
<tr>
<td>far-IR</td>
<td>High-frequency radio</td>
</tr>
</tbody>
</table>

- AGN
- Young, massive stars
- PAH signatures
- Thermal dust emission
- Synchrotron from SNR

~10% of sources
~80% of radio sources
~70% of sources (Valiante et al.)

10^4 L_{MW} ~2/3 of sources

- Few or highly-obscured AGN
- Recent star formation
- Warm dust, starburst dominated (not AGN)
- Dusty, gas ~40% M_b, high SFR

Thursday, October 22, 2009
Characteristics of SMGs: Emission

CO Lines!

- CO is the best tracer for molecular gas
- $M_b = 10^{11} \, M_{\odot}$
- Molecular gas fuels star formation
- Line profiles probe dynamical state of gas
- $M_{\text{dyn}} = 6 \times M_{\text{gas}}$

Caution!

Extreme Model Dependence

<table>
<thead>
<tr>
<th>Radio</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-frequency radio</td>
</tr>
<tr>
<td>Synchrotron from SNR</td>
</tr>
<tr>
<td>~2/3 of sources</td>
</tr>
<tr>
<td>???</td>
</tr>
</tbody>
</table>
The Big Picture

- Local Analogues = ULIRGs
- SMGs are major mergers caught in star-burst phase
- Progenitors of modern massive elliptical galaxies

ARP 220 (VIXENS Survey)

(U)LIRGs = (Ultra-) Luminous Infrared Galaxies
In Summary, SMGs are...

- Massive, infrared-luminous galaxies at $z\sim2$-3
- Dusty and gaseous
- Starburst dominated; may have AGN components
- Likely formed during major mergers
- Likely the progenitors of the most massive elliptical galaxies
- Similar to scaled-up versions of ULIRGs