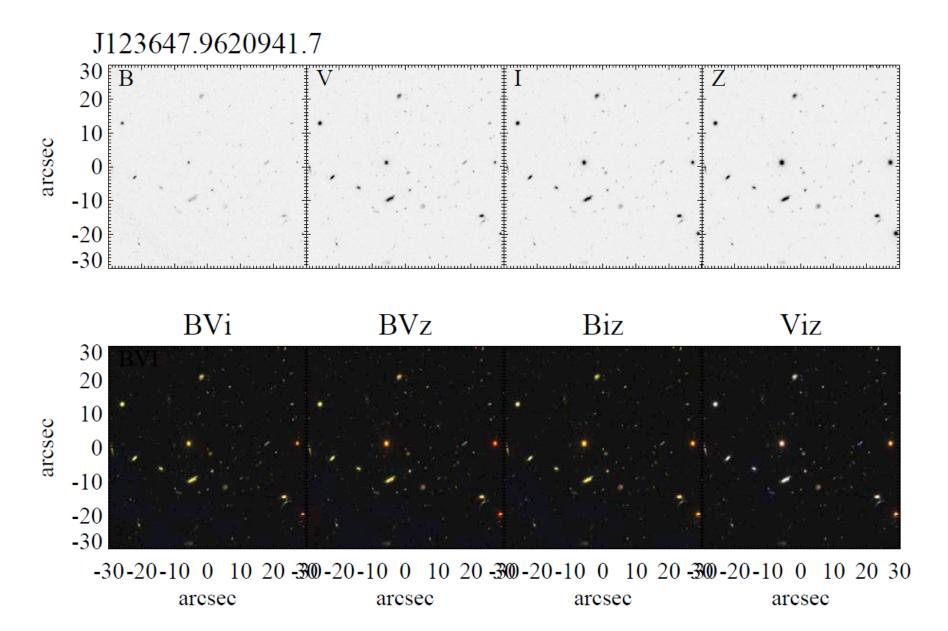
Luminosity Density of Star-Forming Galaxies

Giavalisco et al. 2004

Presented by Brandon Patel

Outline


- Review of Lyman Break Galaxies
- HST data used for the survey
 - Data spans redshift: z~3 to z~6
- The methods used for selecting LBGs
- Calculation of the Specific Luminosity Density
- Conclusions of this paper

LBGs

- Galaxies at very high red shift
- They are normal galaxies, not quasars
 - They are not extremely luminous
- Characterized by non-detection in certain bands, depending on red shift
- Good indicators for star formation

The Data

- Deep, multiband HST observations
 - Using the Advanced Camera for Surveys (ACS)
 - B,V,i,z filters were used
- Can detect galaxies up to z ~ 6.5
 - Up to $z(850 \text{ nm}) \sim 26$.
 - Up to $(0.2)L^*_3$
- Large area of coverage
 - -316 arcmin²

Selecting LBGs from Data

At z ~4 (B band drops) color for LBGs is:

$$(B_{450} - V_{606}) \ge 1.2 + 1.4 \times (V_{606} - z_{850}) \land (B_{450} - V_{606}) \ge 1.2 \land (V_{606} - z_{850}) \le 1.2,$$

At z~5 (V band drops) color for LBGs is:

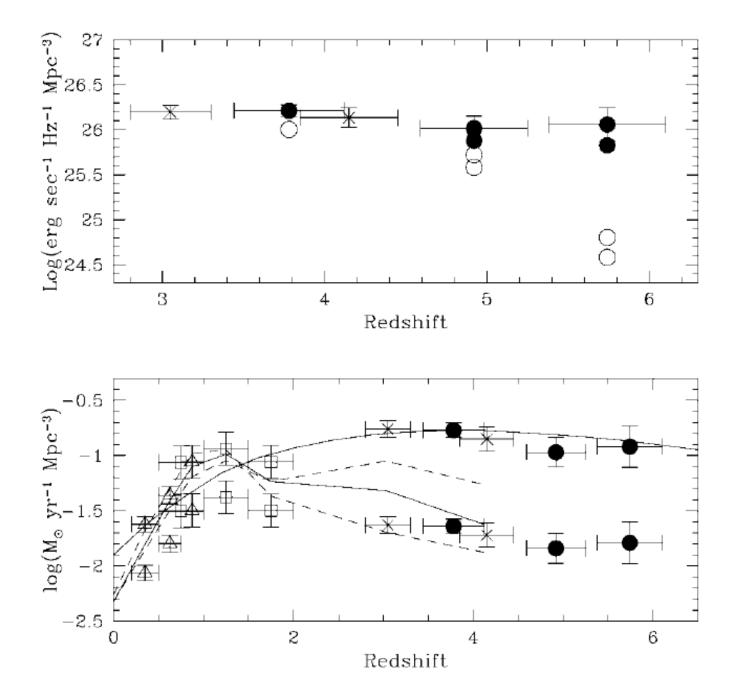
$$\begin{split} &[(V_{606}-i_{775})>1.5+0.9\,\times\,(i_{775}-z_{850})]\,\,\vee\\ &[(V_{606}-i_{775})>2.0]\,\,\wedge\,\,(V_{606}-i_{775})\geq1.2\,\,\wedge\\ &(i_{775}-z_{850})\leq1.3, \end{split}$$

• At $z\sim6$ (i band drops out): (i-z) ≥ 1.3

Selecting LBGs from Data Cont.

- They also require non-detections for shorter bands in z~5 and z~6
- They visually inspected data, removing artifacts
- Required that all galaxies have S/N >5 in z

Specific Luminosity Density


 Used Monte Carlo sim. to find redshift distribution function for the first two samples

$$d\mathcal{L}(m) = n(m)L(m, \ \overline{z})V_{\text{eff}}^{-1}(m) \ dm,$$

$$V_{\text{eff}}(m) = \int \int p(M, \ z, \ m) \ dM \frac{dV(z)}{dz} \ dz.$$

- P is prob. that LBG with M at z has m
- zbar is average redshift of simulated Gal
- n(m) # of LBGs observed with m
- L(m,zbar) is specific luminosity density of a LBG

Specific Luminosity Density for z~6

- Veff method underestimates for i dropout
 - m corresponds to a wide range of M
- For z~6: $\mathcal{L} = \int L\phi(M) dM$
 - $_{\phi(M)}$ is the intrinsic luminosity function of the simulated galaxies
- They found:
 - $-z_{B} = 3.78$ (stdev = 0.34) so z ~4
 - $-z_v = 4.92$ (stdev = 0.33) so z~5
 - $-z_i = 5.74$ (stdev = 0.36) so z~6

Conclusions from Paper

They summed it up best:

"If the dust obscuration properties of LBGs are similar to local starburst galaxies ... and do not significantly change 3<z<6.5, then star formation activity decreases very mildly with increasing redshift..."

Major cosmic star formation started before z=6