On the Formation of Elliptical Galaxies

George Locke 12/8/09

Two Opposing Theories

- Monolithic collapse
 - □ Global star formation event creates ellipsoidal galaxies
 - Most accrete gas and form disks
- Hierarchical clustering
 - □ First galaxies are generally disks
 - Disks merge to form ellipsoids

Outline

- Toomre and Toomre (1972) suggest that Elliptical galaxies (Es) may form by mergers
- Numerical simulations show what kinds of mergers produce what kind of galaxies
- Mergers explain internal structure of Es
- Observations continue to present challenges for existing models

Origin of the Merger Hypothesis

- Toomre & Toomre (1972) study tidal interactions between neighboring galaxies
- Their hypothesis: gravity is responsible for galactic bridges and tails
- Simulated "massless" particles pulled by 1/r² forces from two colliding mass-points

Image: David W. Hogg, Michael R. Blanton, and the SDSS Collaboration

"...as in medicine, pathology seems instructive"

- Tidal interactions are adequate to violently disturb galaxies – can they totally disrupt a disk?
- Tails carry away a significant fraction of the rotational energy of merging galaxies
 - And hence would not their remnants drop into orbits of progressively shorter periods, until at last they lose altogether their separate identities and simply blend or tumble into a single three-dimensional pile of stars?"
- But does it work?
 - Simulations seek to demonstrate that mergers can account for observed Es

Classes of Elliptical Galaxies

- Brightest elliptical galaxies absolute magnitude < -21</p>
 - □ Boxy
 - □ "Pressure supported" (i.e. low net angular momentum)
 - Triaxial
 - Low eccentricity
 - Excavated core
- Intermediate and dwarf elliptical galaxies
 - Disky
 - Rotationally supported
 - Oblate-spheroidal
 - Rather flat
- Dwarf spheroidal galaxies
 - □ Apparently unrelated to the above
 - Probably not formed by mergers
 - Possibly disturbed late-type galaxies

* This classification follows Kormendy et al. (2009) ApJS

Kormendy, J. & Bender, R. 1996, ApJ, 464, L119

Binary Disk-Disk Mergers

- Naab and Burkert (2003) simulate binary mergers
- N-Body: 250k-400k particles
- Stars and dark matter only (no gas)
- Collisionless
- Mass ratios of 1:1-4:1

- Collision geometry
 Near parabolic trajectory with fixed pericenter
 - Khochfar, S. 2003, Ph.D. thesis, Univ. Heidelberg
 - Rotational orientation varied isotropically
 - 4x4 model orientations
- 112 simulations total

Results

Disky galaxies reproduced better than boxy ones

Naab & Burkert Conclusions

- 3:1 and 4:1 mergers produce rotating, disky ellipticals
 - □ Good candidate for E(d) formation
- Properties of 1:1 mergers depend on geometric parameters
 - Only certain geometries produce E(b)
 - □ 28% don't resemble any observation!
 - Disky, elongated, might be mistaken for S0?
- E(b) galaxies most likely did not form this way

Multiple mergers

- Bournaud, Jog, and Combes (2007) simulated multiple minor mergers
 - Gas and star-formation included
- Conclusions: Structural properties depend on total mass accreted, not the number of mergers
- Multiple major mergers increase boxiness, good candidate for E(b)

Core and Extra-Light Es

Kormendy et al. (2009) suggest the following dichotomy

Core Es

- Center of galaxy shows light loss
- Associated with large, boxy Es
 - E(b)
- Extra-Light Es
 - □ Just the opposite: extra light in galactic center
 - □ Associated with smaller, disky Es

E(d)

- Analyzed observations of the Virgo cluster from WFPC1&2, ACS and other sources
 - Lauer, T. R. et al. 2005, AJ
 - Côté, P. et al. 2004 ApJS

All "core" Es are brighter than absolute magnitude -21.6 $\rm M_{\rm VT}$

No "extra light" E is brighter than absolute magnitude -21.6 $M_{\rm VT}$

All coreless Es have extra light!

How the light was won (and lost)

- Mergers of galaxies creates binary black holes that "scour" the center of stars
 - Coalescing black holes may sling-shot nearby stars with gravity waves (Meritt et al. 2004, ApJ)
- So why don't these processes happen to smaller galaxies?
 - □ Disky galaxies are typical of "wet" mergers
 - □ Gas aggregates at galactic center, cools and creates a starburst
 - Problem 1: Above scenario requires gas to coalesce slower than black holes or else it gets scoured too
 - □ Problem 2: why gas not heated/expelled by AGN feedback?
 - Nevertheless, simulations show wet mergers creating central starbursts (Cox et al. 2006, Hopkins et al. 2008 & 2009)

Simulations verify extra light from wet mergers

Simulations: Hopkins, P. F., Cox, T. J., Dutta, S. N., Hernquist, L., Kormendy, J., & Lauer, T. R. 2009a, ApJS, 181, 135

Challenges to merger hypothesis

- Hard to account for great age of stars in Es
 - Stars in most Es are formed 8-10 Gyr's ago, compared with mean stellar age ~5Gyr in Milky Way
 - □ If stars in disk galaxies are younger than stars in Es, then where did E stars come from?
 - The large, old S ancestors are absent.
- Es have high metallicity
 - □ They evolve passively, so we expect constant metallicity
 - □ We expect that Es formed before z≈1, but disks at these redshifts have much lower metallicity than required
- Both issues more problematic for larger Es
- Possible solution is some mixture of hierarchical clustering and monolithic collapse to create the progenitors of giant Es
 - □ Es are preferentially found in overdense regions (clusters)
 - Naab & Ostriker 2007 ApJ

Summary

- Simulations show that mergers can create elliptical galaxies
- Observations of two classes of Es (core and extra-light) are consistent with the merger hypothesis
- Unsolved problems remain

References

- Toomre, A. & Toomre, J. 1972, ApJ, 178, 623
- Naab, T. & Burkert, A. 2003, ApJ, 597, 893
- Bournaud, F., Jog, C. J., & Combes, F. 2007, A&A, 476, 1179
- Kormendy, J et al. 2009, ApJS,182, 216
- Naab, T. & Ostriker, J. P. 2009, ApJ, 690, 1452
- Further reading: Renzini, A. 2006, ARA&A, 44, 141