Numerical Simulations in Cosmology

Anatoly Klypin May, 200

Presented by: Amruta Deshpande October 8, 2009

In The Beginning

- N-body simulations (~100s particles) to study Cluster formation
 - Cold collapse produces too steep a density profile (Peebles 1970)
 - Distributing mass unequally to galaxies => unobserved mass segregation. EVIDENCE for DM, & its location. (White 1976)
 - Could not get substructure to survive (due to POOR resolution)
- Today's codes existed, but were impractical to implement due to poor computing power

How To Simulate?

- \bigcirc Pick size of universe to model (L ~ Mpc)
- Reprint Pick number of particles you CAN calculate for

 \propto Mesh cell size = $2\pi/L$

Techniques

 \sim PM \sim P³M

CR PP

Particle-Particle

Particle-Mesh

Particle-Particle/Particle-Mesh

(not an acronym)

R ART

R TREE

Adaptive Refinement Tree

Techniques ...

- - R Fastest method
 - Applies to large number of particles
 - R Has some sophisticated versions
- P³M Adds small PP calculation for small scales
 Limited by PP part (# calculations & small range forces)

Refinement

REAL SPACE

PHASE SPACE

Refined Real Space

A Refined Technique

- TREE Resolve local particles, but not distant ones. Flexible, Expensive, but variants are powerful
- ART Adaptive Refinement Tree
 Chooses whether to refine a cell, based on cell- overdensity

Resolution & Performance

Knebe et al 1999

For better resolution, expect higher contribution to $\xi(r)$ at small scales

> $N_{steps}/dyn.range at least \ge 1$ $N_{steps}/dyn.range \sim 2$ for good performance

simulation	softening	dyn. range	steps	$N_{\rm steps}/{ m dyn.range}$
	$(h^{-1}\mathrm{kpc})$		$(\min{-max})$	
AP^3M_1	3.5	4267	8000	1.87
$AP^{3}M_{2}$	2.3	6400	6000	0.94
$AP^{3}M_{3}$	1.8	8544	6000	0.70
$AP^{3}M_{4}$	3.5	4267	2000	0.47
$AP^{3}M_{5}$	7.0	2133	8000	3.75
ART_1	3.7	4096	660-21120	2.58
ART_2	3.7	4096	330-10560	5.16

Identifying Halos, Issues

Large galaxy, small satellite
 These halos essentially overlap
 Look at density profiles and rotational velocity (?)

R Tidal Stripping

Regers can strip a halo of 90% of mass

Real How to classify the remnant?

Identifying Halos, Techniques

- ন্থ Friends of Friends (FOF) নথ bd/2
- R DENMAX
 - R Find a maximum in density, and look around at particles
- Real Based on overdensity
 - ☞ Find radius where overdensity is 200

Summary

- Today's best techniques are modifications of 3 codes (PP, PM, TREE). They are possible because of better computers.
- Best resolution doesn't always yield best results. Need to have sufficient time steps to cover the full dynamic range.
- Real Identifying halos numerically is also not trivial