THE DEMOGRAPHY OF MASSIVE DARK OBJECTS IN GALAXY CENTERS

By Magorrian et al. (1998)

As presented by Mike Berry
<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose of Paper</td>
</tr>
<tr>
<td>Modeling procedure</td>
</tr>
<tr>
<td>Results for individual galaxies</td>
</tr>
<tr>
<td>MDO distribution</td>
</tr>
<tr>
<td>Conclusions</td>
</tr>
</tbody>
</table>
What are Massive Dark Objects? (MDOs)

- Most likely supermassive black holes
- Star clusters of the required mass and size are difficult to construct and maintain
- Fit entire LOS v-dispersion for arbitrary axisymmetric galaxy models
- Crude models predict MDO mass fairly accurately (M87)
Data from 36 bulges from HST photometry and decent ground based long-slit spectroscopy

Fit two-integral axisymmetric dynamical models (not most general but computationally inexpensive)

Find a statistical distribution of MDOs as a function of galaxy luminosity

Not meant to unambiguously show that an MDO is present in any individual galaxy
Two-integral approach (cylindrical and axisymmetric about z-axis)

Assume constant mass to L ratio (Y)

Makes them flattened spherical isotropic models

No physics behind why galaxies must be like this
Procedure

- Use maximum likelihood to find smooth L-density that fits observed surface brightness
 - Large range in density but uncertainty is less than observed error
- Calculate Φ using Y and MDO mass M_\odot, then find v_r and v_z using the inclination angle (i)
- Project luminosity weighted moments to LOS velocities and convolve with observations
- Least squares fit to obtain M_\odot and Y based on the likelihood that we see the observed data
Individual Galaxy Results

- 4 of 36 galaxies – not well fit by models
 - Known to have kinematically distinct cores
- By comparison 2 of the other 32 others are known to have kinematically distinct cores
- 3 of 32 are consistent to 1 sigma with $M_{\odot}=0$
- 4 of 32 are consistent to 2 sigma with $M_{\odot}=0$
- MDO – required to produce 2nd moment in galaxies
A few interesting galaxies

- HST data for M32, n3115, n3379, n4594
 - All are reasonably well fit
- 5 galaxies with nuclear activity or heavy dust (2 models to correct)
 - Assume all light comes from stars
 - Only use photometry > Rmin
- Galaxies with Rmin > 0 are subject to skepticism
Assume MDO depends on \(x (x = M_o / M_b) \) and other parameters \((w)\)

Seek most likely set of parameters given data (5 models)

TABLE 4

<table>
<thead>
<tr>
<th>(P)</th>
<th>(f)</th>
<th>(\log x_0)</th>
<th>(x) or (\log \Delta)</th>
<th>(\log \langle x \rangle)</th>
<th>(\langle \log x \rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{PL1})</td>
<td>1.000(^{+0.000}_{-0.057})</td>
<td>(-0.633^{+0.125}_{-0.100})</td>
<td>(-0.784^{+0.056}_{-0.037})</td>
<td>(-1.347^{+0.115}_{-0.111})</td>
<td>(-3.178^{+0.893}_{-0.893})</td>
</tr>
<tr>
<td>(P_{PL2})</td>
<td>0.950(^{+0.032}_{-0.062})</td>
<td>(-2.790^{+0.031}_{-0.063})</td>
<td>(-1.725^{+0.131}_{-0.173})</td>
<td>(-2.268^{+0.097}_{-0.087})</td>
<td>(-2.338^{+0.153}_{-0.188})</td>
</tr>
<tr>
<td>(P_S)</td>
<td>1.000(^{+0.000}_{-0.067})</td>
<td>(-1.705^{+0.204}_{-0.109})</td>
<td>(-0.456^{+0.178}_{-0.122})</td>
<td>(-1.880^{+0.117}_{-0.108})</td>
<td>(-2.338^{+0.153}_{-0.188})</td>
</tr>
<tr>
<td>(P_G)</td>
<td>0.940(^{+0.042}_{-0.067})</td>
<td>(-2.930^{+0.325}_{-0.000})</td>
<td>(-1.717^{+0.098}_{-0.082})</td>
<td>(-1.808^{+0.105}_{-0.096})</td>
<td>(-1.992^{+0.106}_{-0.091})</td>
</tr>
<tr>
<td>(P_{LG})</td>
<td>0.970(^{+0.030}_{-0.055})</td>
<td>(-2.281^{+0.100}_{-0.100})</td>
<td>(-0.289^{+0.060}_{-0.065})</td>
<td>(-1.965^{+0.143}_{-0.119})</td>
<td>(-2.282^{+0.103}_{-0.109})</td>
</tr>
</tbody>
</table>

NOTES.—The best-fitting parameters \(\omega \) and their 68% confidence limits for each assumed distribution \(P(x \mid \omega, P) \). By definition, \(0 \leq f \leq 1 \). The last two columns give the logarithm of the expectation value of \(x \equiv M_*/M_{\text{bulge}} \) and the expectation value of \(\log x \) for those galaxies with \(M_* \neq 0 \) [both calculated from \(P(x \mid \omega, P) \)]. The mean \(\langle x \rangle \) does not exist for \(P_{PL2} \).
Fig. 11.—(a) Probability distributions $Pr(x | \omega, P)$ for the best-fitting parameters ω. The heavy solid and dashed curves show results for P_{PLa} and P_{LO}, the two best-fitting cases. The light solid, dashed, and dotted curves are for P_5, P_{PL1}, and P_6, respectively. (b) “Nonparametric” probability distribution $Pr(x)$ (heavy solid curve) and its 68% confidence limits (heavy dashed curves) obtained using the Metropolis algorithm with $\lambda = 5$. The best-fitting parameterized distributions P_{PL2} and P_{LO} are overlaid as the light solid and dashed curves, respectively.
Conclusions

- 32/36 galaxies are well described by 2-integral axisymmetric models
- 28/32 require a substantial MDO
 - 97% of galaxies have $M_o/M_b \sim 0.05$
- Probably a different formation history for galaxies without a MDO
- 2-integral models are not the most generic but fits agree reasonably well with previous data