The Formation of Galactic Disks

By H. J. Mo, Shude Mao and Simon D. M. White (1998)

Presented by Mike Berry

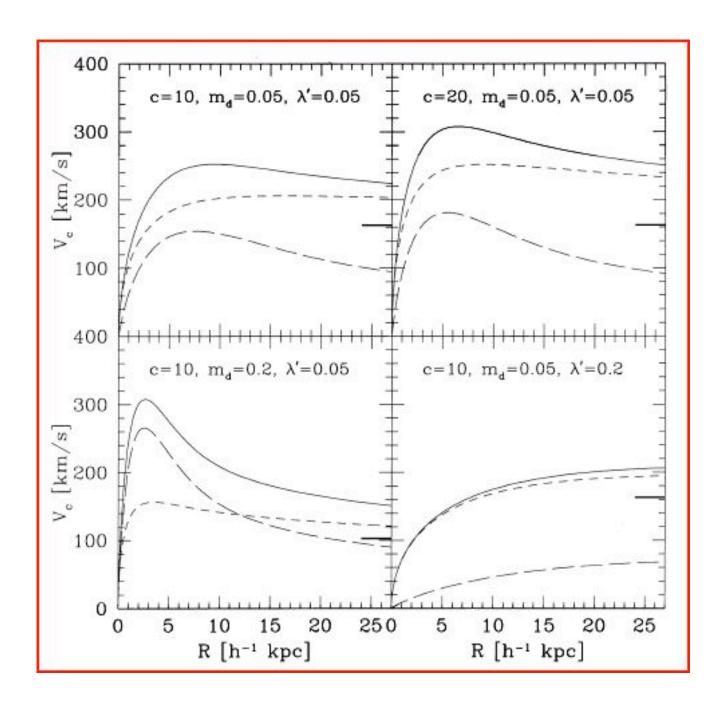
Overview

- Progenitor Formation
- Assumptions
- Models of Disk Formation
- Disk Properties
- Effect of a Central Bulge
- Correlation to Observations

Quick Review of Galaxy Formation

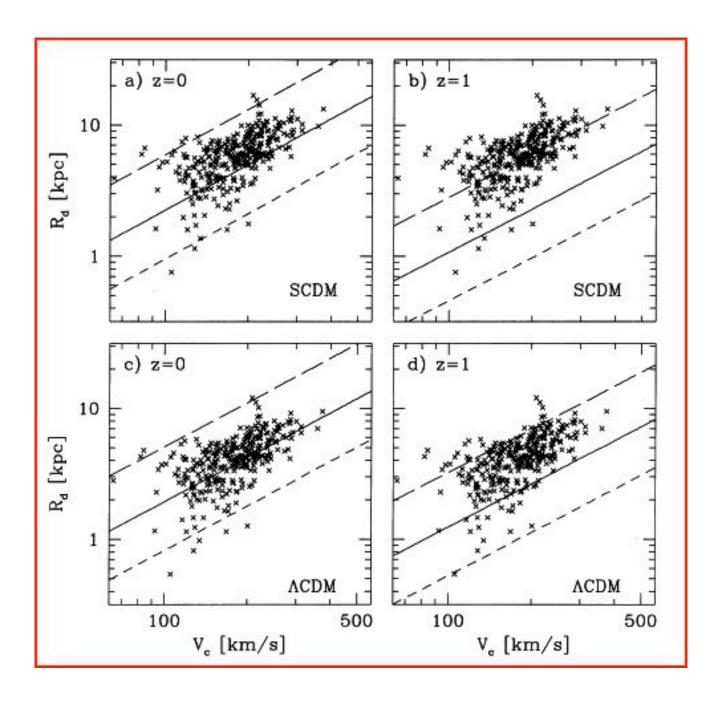
- Perturbations in dark matter grow into dark halos
- Gas cools and condenses into and in those halos
- Tidal torques produce galactic spin
- Star formation/feedback

Assumptions on Disk Formation

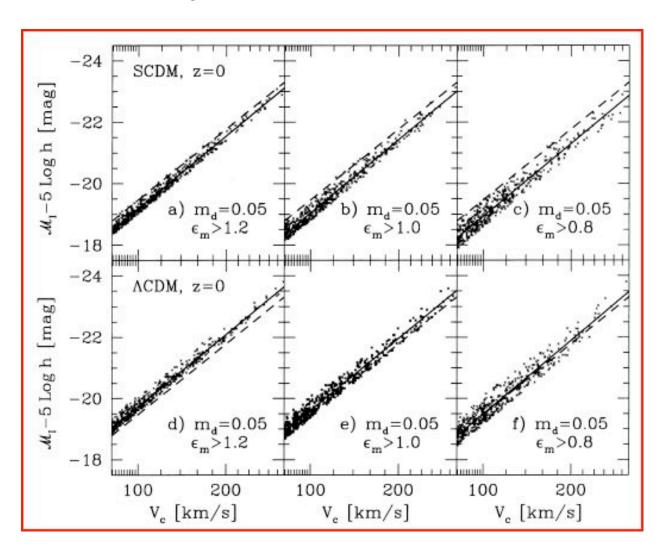

- m_d fixed fraction of the halo's mass
- j_d fixed fraction of its halo's angular momentum
- Centrifugally supported structure
- Dynamically stable systems real disks
- Hierarchical cosmogony
- No bulge component (discuss later)

Model Cosmogonies

- SCDM ($\Omega_{\rm m} = 1.0 \ \Omega_{\Lambda} = 0$)
 - Non-self-gravitating disks in isothermal spheres
- Λ CDM ($\Omega_{\rm m} = 0.3 \ \Omega_{\Lambda} = 0.7$)
 - Self-gravitating disks in halos with realistic profiles
- Both cases: $\Omega_b > m_d \Omega_m$


Rotation Curves

- Concentration of halo
- Fraction of halo mass
- Angular momentum
 - Large L₇ case
 - Small L₇ case
- All rotation curves flatten out



Disk Scalelengths and Formation Times

- R_d proportional to luminosity
- All disks form at the same time
- Most observed disks form recently
 - Too big to form at high-z in Ω_m dominated epoch
 - High-z disks relatively small and compact
- Substantial loss of angular momentum to dark matter j_d<<m_d – small disks at all z
- Models predict enough halos to support observed number of disks

Tully-Fisher Relation

Effect of a Central Bulge

- Bulge assumptions
 - Pointlike
 - Fixed fraction of halo
 - Negligible angular momentum OR (j_d=m_d+m_b)
- Bulge effects
 - $-m_b$ little effect on R_d and v_c (j_b =0)
 - For $m_d=2j_d$, $m_b=0$, $R_d=>2R_d$ and v_c drops significantly

Observations

- Compare to Damped Lyα absorption Systems
- Predict high-z disks to be smaller comparatively
- ACDM model can easily explain observations
- 1/3 observed systems have v_c>200km/s
- 2/3 observed systems have v_c>100km/s
- Constrain m_d, j_d
 - $-m_d < 0.05$
 - $-j_d \sim m_d$

Conclusions

- Milky Way type disks formed recently
- Disks at high z-values are smaller and more compact comparatively
- Loss of angular momentum problem (may be due to strong feedback)
- In hierarchical model, there must be strong feedback to suppress early star formation
- Disk/halo mass fraction much less than observed baryon mass fraction (process must be inefficient)