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Aside: a question about the Yang-Mills and Ricci flows

I’m interested in stable 2-spheres for the Ricci flow or the Yang-Mills flow on R4

or S4.

That is, let the flow act on a 2-sphere in the space of metrics mod
diffeomorphisms or in the space of connections mod gauge transformations. Is the
2-sphere driven to a stable 2-sphere, that is fixed under the flow, mod Diff(S2)?

Each of these spaces has non-trivial π2 = Z2, so a stable 2-sphere seems possible.
Let the flow act on a homotopically non-trivial 2-sphere of metrics or connections.
What is its ultimate fate?

I’ve been looking at the nontrivial SU(3) bundle G2 → G2/SU(3) = S6. Pulled
back along a map S2 × S4 → S6, this gives a homotopically nontrivial 2-sphere of
SU(3) connections on S4. I’ve learned a little bit about its fate under the
Yang-Mills flow.
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0+1 dim quantum field theory (quantum mechanics)

Quantum mechanics in general:

a Hilbert space H
a self-adjoint hamiltonian operator H ≥ 0 acting on H
an algebra of self-adjoint operators O (the observables)

H generates time translation:

t 7→ e itH O(t) = e itHO e−itH

Geometric examples:

data: a manifold M with riemannian metric g

H = L2(M)

H = ∆g , the laplacian

The data (M, g) does not uniquely define this quantum mechanics. There are
many other natural self-adjoint operators.
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1+1 dim quantum field theories: the nonlinear models

1+n dim quantum field theory = a quantum system in an n-dimensional space.

Here, n = 1. Take space to be, e.g., a circle S1 of length L.

The nonlinear model is parametrized by the same data (M, g).

Formally:

H = L2(Ω(M))

Ω(M) = the space of maps φ : S1 → M (an infinite-dimensional space)

H = ∆φ + V (φ) V (φ) =
∫ L

0
dx g(dφ(x), dφ(x))
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A cutoff theory

Replace S1 with a discrete approximation (ZN)

0 x→ L
′

1

x ∈ {0, 1ε, 2ε, 3ε, . . . ,Nε = L} N � 1 x = 0 ∼ x = L

Now we can write a well-defined quantum mechanics:

Ω(M) =
∏
x

M = MN

H =
⊗
x

L2(M) = L2(MN)

H =
∑
x
ε
[
ε−2∆φ(x) + ε−2dist2 (φ(x), φ(x + ε))

]
This generalizes the Heisenberg model, which has (M, g) = (S2, a round metric).

5 / 20



Formally, in the limit ε→ 0,

H =

∫
dx
[
g−1(π(x), π(x)) + g(dφ(x), dφ(x))

]
where

π(x) = ε−1∇(x) [π(x), φ(x ′)] = ε−1δx,x′ → δ(x − x ′)

No inconvenient powers of ε−1 appear when we take the formal limit.
We say that g is naively dimensionless.

This formal limit is valid only for M asymptotically large, g →∞.

Write 1
α′ g in place of g .

The quantum field theory is constructed as a formal power series in α′.

To make the qft independent of ε, we need 1
α′ g to depend on ε according to

ε
∂

∂ε

(
1

α′
g

)
= β

(
1

α′
g

)
= −Ricci(g) + α′R2(g) + · · ·

This is the renormalization group flow.
The continuum limit ε→ 0 requires stability in the far past (e.g., round Sn).
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Path integral

Quantum mechanics in M as integral over paths φ : [0,T ]→ M

e−T (∆+V (φ)) =

∫
paths φ(τ)

Dφ e−S(φ) S(φ) =

∫ T

0

dτ [g(∂τφ, ∂τφ) + V (φ(τ))]

Nonlinear model as integral over paths φ : [0,T ]→ Ω(M) = MN

e−TH =

∫
paths φ:[0,T ]→MN

Dφ e−S(φ)

S(φ) =

∫ T

0

dτ
∑

x

ε
[
g(∂τφ(x , τ), ∂τφ(x , τ)) + ε−2dist2 (φ(x , τ), φ(x + ε, τ))

]
∼

∫ T

0

dτ

∫ L

0

dx [g(∂τφ, ∂τφ) + g(∂xφ, ∂xφ)]

∼
∫

d2x δµνg(∂µφ, ∂νφ) (x1, x2) = (x , τ)
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Take L,T →∞, so (x1, x2) ∈ R2

S(φ) =

∫
d2x δµνg(∂µφ, ∂νφ)

invariant under the euclidean group (relativistic quantum field theory).

Easy generalization:

For Σ a 2-dimensional manifold with riemannian metric γ,

Z (Σ, γ) =

∫
maps φ:Σ→M

Dφ e−S(φ)

S(φ) =

∫
Σ

d2x
√

det γ γµν(x) g(∂µφ, ∂νφ)

Discretize Σ to turn this into a finite dimensional integral (for Σ compact).

e.g., τ ∈ {0, 1ε, 2ε, 3ε, . . . ,N ′ε = T}.

S(φ) is (locally) scale-invariant, but Dφ is not. The cutoff distance ε breaks the
scale-invariance.
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Locality

Z (Σ, γ) =

∫
Dφ e−S(φ)

Dφ =
∏
x∈Σ

dvolg (φ(x)) S(φ) =

∫
Σ

d2x
√

det γ γµν(x) g(∂µφ, ∂νφ)

Locality:
The functional integral can be done patch-wise over Σ.

The degrees of freedom (integration variables) are distributed locally on Σ.
The action S is an integral (sum) over Σ of a local expression.

H =
∑
x
εH(x) with H(x) depending only on the φ(x ′) for x ′ near x .

The measure is encoded in its integrals (measurements), e.g.∫
Dφ e−S(φ) F1(φ(x1)) · · ·Fn(φ(xn)) Fk ∈ C∞(M) xk ∈ Σ .

Think of these correlation functions as distributions in the xk , smeared against
functions which are essentially constant over distances of the order of the cutoff
distance ε.
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The renormalization group (conceptual version)

Integrate out a tiny fraction δε/ε of the φ(x), distributed evenly over Σ.

The average spacing between points becomes slightly larger: ε→ ε+ δε.∫
Dεφ e−S(φ) =

∫
Dε+δεφ

∫
Dδεφ e−S(φ) =

∫
Dε+δεφ e−S(φ)−δS(φ)

The same expectation values are now given by a functional integral with slightly
larger cutoff ε and a slightly modified action S + δS .

Locality ensures that the change in the action has the form

δS(φ) = −δε
ε

∫
Σ

d2x
√

det γ
[
γµν(x) β(∂µφ, ∂νφ) + O(ε2)

]
for some symmetric 2-tensor field β(g) on M. The negligible error terms contain 4
or more derivatives ∂µ.
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So nothing observable changes if

ε→ ε+ δε g → g − δε

ε
β(g)

that is, nothing observable depends on ε if g depends on ε according to

ε
∂

∂ε
g(ε) = −β (g(ε))

Comments:

The renormalization group is a semi-group.

Information seems to be destroyed, in some sense.

The rg flow does not end.
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The renormalized metric

Consider euclidean 2-d metrics, γµν = µ2δµν .

µ−1 is our unit of distance.

The cutoff distance is unobservably small: µε << 1.

Let Rt be the rg flow
d

dt
Rt(g) = −β(Rt(g))

Define the renormalized metric

gr = Rln(1/µε)(g(ε))

which is independent of ε.
Everything observable depends only on µ and gr , invariant under the rg

µ→ µ+ δµ gr → gr +
δµ

µ
β(gr )

The formal 2d scale invariance — independence of µ — is gone, because we had
to introduce a scale, the cutoff ε, in order to make sense of the theory.
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The Ricci flow from the rg flow

The rg flow
d

dt

(
1

α′
g

)
= −Ricci(g) + O(α′)

does not become the Ricci flow in the limit α′ → 0.

We have to re-scale the rg “time” to s = α′t to get

d

ds
g = −Ricci(g) + O(α′)

A solution of this re-scaled rg equation is of the form

g̃(s) +
∞∑

n=1

α′n∆g̃n(s)

where g̃(s) is a Ricci flow and ∆g̃n(0) = 0. Then the perturbative solution of the
rg equation would be

1

α′
g̃ij(0) + tg̃ ′ij(0) + α′

[
1

2
t2(g̃ ′′ij (0) + t(∆g̃ 1

ij )
′(0)

]
+ · · ·

At each order in α′ the rg flow is polynomial in t.
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Perturbation theory

For α′ ∼ 0, the measure is dominated by the constant maps φ(x) = φ0 ∈ M.
Around each φ0 ∈ M, choose coordinates φi in Tφ0 M:

φi (φ0) = φi
0 φi (φ(x)) = φi

0 + πi (x)

The integral is now over the constants φ0 ∈ M and the fluctuations πi (x)

S(φ) = S(φ0;π) =

∫
Σ

dvolγ(x)
1

α′
gij(φ0 + π(x)) ∂µπi (x) ∂µπ

j(x)

∫
Dφ e−S(φ) (· · · ) =

∫
M

dvolg (φ0)

∫
V

Dπ e−S(φ0;π) (· · · )

V is the vector space of maps π : Σ→ Tφ0 M (modulo the constant maps).
The integral over V is very close to a gaussian integral:

π̃i (x) = (α′)−1/2πi (x)

S(φ0, π) =

∫
Σ

dvolγ(x) gij(φ0) ∂µπ̃i (x) ∂µπ̃
j(x) + O((α′)1/2)

The Feynman diagrams organize the perturbative calculation of nearly gaussian
integrals on vector spaces.
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Regularize

Approximate the integration space V by the subspace Vt0 on which

−∇µ∂µ = ∆ < e−2t0 t0 � 0 et0 � 1

We would like to take the limit t0 → −∞.
Label the metric gt0 . The regularized (cutoff) measure is∫

dρt0 (γ, gt0 ;φ) (· · · ) =

∫
M

dvolgt0
(φ0)

∫
Vt0

Dπ0 e−S(gt0
,φ0;π0) (· · · )

The integration space Vt0 is finite dimensional if Σ is compact.
If Σ = R2 then Vt0 is still infinite dimensional. This is the infrared problem. We
won’t actually have to face it.
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Renormalize

Take δ > 0 very small. Let Vt0,t0+δ be the subspace of short-distance fluctuations

e−2(t0+δ) < ∆ < e−2t0

The integration space decomposes: Vt0 = Vt0+δ ⊕ Vt0,t0+δ

π0(x) = π(x) + π′(x) π0 ∈ Vt0 π ∈ Vt0+δ π′ ∈ Vt0,t0+δ

We can integrate out the the short-distance fluctuations as long as the functions
being integrated depend only on the π ∈ Vt0+δ. (We only take measurements at
2d distances larger than et0 .)∫

Vt0

Dπ0 e−S(gt0
,φ0;π0) (· · · ) =

∫
Vt0+δ

Dπ
∫

Vt0,t0+δ

Dπ′ e−S(gt0
,φ0;π+π′) (· · · )

=

∫
Vt0+δ

Dπ e−S′(gt0
,φ0;π) (· · · )

where

e−S′(gt0
,φ0;π) =

∫
Vt0,t0+δ

Dπ′ e−S(gt0
,φ0;π+π′)
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Next, we argue that the new action takes the same form as the old

S ′(gt0 , φ0;π) = S(gt0+δ, φ0;π) + O(et0 )

for some slightly changed metric on M

gt0+δ = gt0 − δ · β(gt0 )

gt0+δ is calculated in the form of a Taylor series around φ0 ∈ M. We do this for
each φ0. Then we show that the resulting Taylor series all come from a single
metric gt0+δ on M. This means that we need only calculate explicitly the leading
term in the Taylor series.
So we have∫

M

dφ0

∫
Vt0

Dπ0 e−S(gt0
,φ0;π0) (· · · ) =

∫
M

dφ0

∫
Vt0+δ

Dπ e−S(gt0+δ,φ0;π) (· · · )
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∆ ≈ e−2t0 � 1 so Σ might as well be euclidean R2

The integrating out can be done effectively, order by order in α′,
as a sum of Feynman diagrams, each a bounded integral of a bounded
function.

β(gt0 ) depends only on gt0 , not on Σ or γµν (since e2t0 ∆ ≈ 1).

The new metric gt0+δ is constructed covariantly wrt Diff (M), so β(g) is a
covariant function of g . Choosing natural coordinate systems on M gives the
perturbation series for β(g) manifestly in terms of the curvature tensor and
its covariant derivatives.

β(g) does not depend on any of the arbitrary choices, such as coordinate
systems or method of regularization, up to equivalence under Diff (M).
Changing these can only change β by a vertical vector field.
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Construction of QFTs

Perturbatively, the rg flow is polynomial in time, at each order in α′, so we can
run the rg back to time −∞, so we can remove the cutoff and construct
continuum correlation functioins.

But we want to construct honest QFTs, not just perturbative ones. We need flows
that exist for t → −∞ and we need control over the behavior as t → −∞.

The only obvious way to find rg trajectories that go to α′ = 0 as t → −∞.

There are fixed points 1
α′ gij at α′ = 0 for

Rij − λgij = (Lv g)ij = ∇ivj +∇jvi

for some vector field v on M. The rhs expresses the fact that βij is defined only
up to infinitesimal diffeomorphisms of M, that the rg flow actually acts on the
space of metrics modulo Diff (M).

For λ > 0, the α′-direction is unstable, so there is at least one rg trajectory that
can be run backwards forever.
For λ = 0, the same is true because of the O(α′R2) term in β.
For λ < 0, the fixed point is attractive in the α′ direction. These describe limits of
the RG flow as t → +∞. 19 / 20



Ancient solutions of the Ricci flow might give new QFTs, if there is enough
control of the limit t → −∞. It would be necessary to show stability against the
terms at higher order in α′.

Further topics:

supersymmetric nonlinear models (Kahler-Ricci flow)

boundary conditions and the boundary rg flow (mean curvature flow,
Yang-Mills flow, Calabi flow?)

axiomatic 2-d qft: the c-theorem (a function on the space of qfts that
decreases under the rg flow)

lack of a gradient formula for the rg flow on the space of qfts

gradient formulas for the boundary rg flow
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