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Example: the 2d nonlinear model

Given a manifold M , there is a family of 2d quantum field theories (QFTs) parametrized by the Riemannian
metrics 1

α′ gij on M . (I’ll often write g for 1
α′ gij .)

The QFT is:
for every 2d surface Σ with metric γµν , a measure dρ on the space of maps φ : Σ→M

dρ(γ, g;φ) = Dφ e−S(φ)

where

S(φ) = ‖dφ‖2 =
∫
Σ

dvolγ(x)
1
α′
gij(φ(x)) ∂µφi(x) ∂µφj(x)

Dφ =
∏
x∈Σ

dvolg(φ(x))

This is actually well-defined as a formal power series in α′ (a “perturbative” quantum field theory).

Notice that the action S(φ) does not depend on the scale of γµν .

We usually just take Σ = R2 with euclidean metric γµν . I’ll try to explain why.

The measure is encoded in its integrals (measurements), e.g.∫
Dφ e−S(φ) F1(φ(x1)) · · ·Fn(φ(xn) Fk ∈ C∞(M) xk ∈ Σ .
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The renormalization group

The renormalization group (RG) is a flow on the space of QFTs, t → QFTt, generated by a vector field β,
such that:

QFTt in 2d metric e−2tγµν predicts the same measurements as QFT0 in γµν .

For the nonlinear model
d

dt

(
1
α′
gij

)
t

= −βij(gt) βij(g) = Rij +O(α′)

The QFTs are covariant under the flow:

d

dt
dρ(e−2tγ, gt) = 0

On R2 with γµν = Λ2δµν , we can write this RG group equation

d

dt
dρ(e−2tΛ2, gt) = 0

That is, if we scale the unit of distance larger Λ−1 → etΛ−1 and at the same time let the parameters of the
qft flow under the RG, nothing changes.

Another way to say this: if we flow under the RG, everything in the QFT becomes smaller. Then we make
the unit of distance larger and everything looks the same as before.
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The Ricci flow from the RG flow

The RG flow
d

dt

(
1
α′
gij

)
t

= −Rij +O(α′)

in the limit α′ → 0 does not become the Ricci flow.

We have to re-scale the RG “time” to a = α′t to get

d

da
gij = −Rij +O(α′)

A solution of this re-scaled RG equation is of the form

g̃ij(a) +
∞∑
n=1

α′n∆g̃nij(a)

where g̃ij(a) is a Ricci flow and ∆g̃nij(0) = 0. Then the perturbative solution of the RG equation would be

1
α′
g̃ij(0) + tg̃′ij(0) + α′

[
1
2
t2(g̃′′ij(0) + t(∆g̃1

ij)
′(0)
]

+ · · ·

At each order in α′ the RG flow is polynomial in t.

Another difference: we are quite sure that the RG flow is eternal for M = Sn with round metric, while the
Ricci flow ends in finite time.
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Lattice regularization

“Regularize” means to replace the formal integral over maps by an approximation that makes sense.

For example, approximate a square 2-torus of side L with a lattice Σ = ZN × ZN , The distance between
neighboring points is L/N .

The space of maps Σ→M is just MN2
.

Approximate the energy functional, for example by a sum over nearest neighbors

Slattice(φ) =
∑

(x,x′)

dist2
1
α′ gij

(φ(x), φ(x′))

The functional volume element is just the metric volume element on MN2

Dφ =
∏
x∈Σ

dvolg(φ(x))

The question is: can we take the continuum limit N →∞?

Also: do all regularizations give the same continuum limit?

Note that the integral depends only on N , not on L (2d scale invariance).
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Why quantum field theory?

An integral over paths in N is equivalent to a quantum mechanics on L2(N )∫
paths Φ(τ)
Φ(0)=Φ0
Φ(T )=Φ1

DΦ e−S(Φ) = 〈Φ1|e−TH |Φ0〉 = 〈Φ1|e−itH |Φ0〉

Analytically continue to T = it to get the kernel (matrix-elements) of the quantum mechanical time evolution
operator e−itH , where H is the hamiltonian.

For the 2d nonlinear model, let the surface Σ = R× S where S is 1-dimensional.

The maps φ : Σ→M are the paths in N = Maps(S →M).

The QFT is a quantum mechanics on L2(Maps(S →M)).

It’s called a quantum field theory because its operators such as F (φ(x, τ)) depend on the spatial position
x ∈ S, as well as the time τ , and commute for different x.

In string theory, take S = S1 to get a quantum mechanics for a closed string moving in a spacetime M with
spacetime metric 1

α′ gij .

6



Perturbation theory (formal)

For α′ ∼ 0, the measure is dominated by the constant maps φ(x) = φ0 ∈M .

Around each φ0 ∈M , choose coordinates φi in Tφ0M :

φi(φ0) = φi0 φi(φ(x)) = φi0 + πi(x)

The integral is now over the constants φ0 ∈M and the fluctuations πi(x) (modulo the constant πi(x)).

S(φ) = S(φ0;π) =
∫
Σ

dvolγ(x)
1
α′
gij(φ0 + π(x)) ∂µπi(x) ∂µπj(x)

∫
Dφ e−S(φ) (· · · ) =

∫
M

dvolg(φ0)
∫
V

Dπ e−S(φ0;π) (· · · )

V is the vector space of maps π : Σ→ Tφ0M (modulo the constant maps).

The integral over V is very close to a gaussian integral:

π̃i(x) = (α′)−1/2πi(x)

S(φ0, π) =
∫
Σ

dvolγ(x) gij(φ0) ∂µπ̃i(x) ∂µπ̃j(x) + O((α′)1/2)

The Feynman diagrams organize the perturbative calculation of nearly gaussian integrals over vector spaces.
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Regularize

Approximate the integration space V by the subspace Vt0 on which

−∇µ∂µ = ∆ < e−2t0 t0 � 0 et0 � 1

We would like to take the limit t0 → −∞.

Label the metric gt0 . The regularized (cutoff) measure is∫
dρt0(γ, gt0 ;φ) (· · · ) =

∫
M

dvolgt0 (φ0)
∫
Vt0

Dπ0 e
−S(gt0 ,φ0;π0) (· · · )

The integration space Vt0 is finite dimensional if Σ is compact.

If Σ = R2 then Vt0 is still infinite dimensional. This is the infrared problem. We won’t actually have to face
it.
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Renormalize

Take δ > 0 very small. Let Vt0,t0+δ be the subspace of short-distance fluctuations

e−2(t0+δ) < ∆ < e−2t0

The integration space decomposes: Vt0 = Vt0+δ ⊕ Vt0,t0+δ

π0(x) = π(x) + π′(x) π0 ∈ Vt0 π ∈ Vt0+δ π′ ∈ Vt0,t0+δ

We can integrate out the the short-distance fluctuations as long as the functions being integrated depend
only on the π ∈ Vt0+δ. (We only take measurements at 2d distances larger than et0 .)∫

Vt0

Dπ0 e
−S(gt0 ,φ0;π0) (· · · ) =

∫
Vt0+δ

Dπ
∫

Vt0,t0+δ

Dπ′ e−S(gt0 ,φ0;π+π′) (· · · )

=
∫

Vt0+δ

Dπ e−S
′(gt0 ,φ0;π) (· · · )

where
e−S

′(gt0 ,φ0;π) =
∫

Vt0,t0+δ

Dπ′ e−S(gt0 ,φ0;π+π′)
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Next, we argue that the new action takes the same form as the old

S′(gt0 , φ0;π) = S(gt0+δ, φ0;π) +O(et0)

for some slightly changed metric on M

gt0+δ = gt0 − δ · β(gt0)

gt0+δ is calculated in the form of a Taylor series around φ0 ∈ M . We do this for each φ0. Then we show
that the resulting Taylor series all come from a single metric gt0+δ on M .

So we have ∫
M

dφ0

∫
Vt0

Dπ0 e
−S(gt0 ,φ0;π0) (· · · ) =

∫
M

dφ0

∫
Vt0+δ

Dπ e−S(gt0+δ,φ0;π) (· · · )

which we write
dρt0(γ, gt0 ;φ) = dρt0+δ(γ, gt0+δ;φ)
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Some points about integrating out the short-distance fluctuations:

(1) ∆ ≈ e−2t0 � 1 so Σ might as well be euclidean R2

(2) The integrating out can be done effectively, order by order in α′, as a sum of

Feynman diagrams, each a bounded integral of a bounded function.

(3) β(gt0) depends only on gt0 , not on Σ or γµν (since e2t0∆ ≈ 1).

(4) The new metric gt0+δ is constructed covariantly wrt Diff (M).

(5) β(g), does not depend on any of the arbitrary choices, such as coordinate systems or
method of regularization, up to equivalence under Diff (M).

Changing these can only change β by a vertical vector field.
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Now iterate this infinitesimal process to obtain, for t > t0

dρt0(γ, gt0 ;φ) = dρt(γ, gt;φ)

where
dgt
dt

= −β(gt) .

Now suppose we can integrate the flow backwards in t0. In perturbation theory, we can in fact integrate the
flow backwards, because gt0 is polynomial in t0 at each order in α′.

Then a continuum limit exists
lim

t0→−∞
dρt0(γ, gt0 ;φ) = dρt(γ, gt;φ)

parametrized by t, gt. We might as well parametrize the continuum limit by g0 = g

The choice of t was arbitrary, so this continuum QFT is defined on all maps φ.

The cutoff is e2t0∆ < 1 and the action is scale invariant, so

dρt0(γ, gt0 ;φ) = dρ0(e−2t0γ, gt0 ;φ)

so we can write the continuum limit as

dρ(γ, g;φ) = lim
t0→−∞

dρ0(e−2t0γ, gt0 ;φ)

= lim
t0→−∞

dρ0(e−2t0−2tγ, gt0+t;φ)

= dρ(e−2tγ, gt;φ)

which is the RG covariance of the QFT.
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Construction of non-perturbative QFTs

We want to construct honest QFTs, not just perturbative ones. For this, we need to run the RG flow in
reverse. Moreover, we need some control over the behavior as t→ −∞.

The only nonlinear models that are easily controlled are at α′ ≈ 0.

There are fixed points 1
α′ gij at α′ = 0 for

Rij − λgij = (Lvg)ij = ∇ivj +∇jvi

for some vector field v on M . The rhs expresses the fact that βij is defined only up to infinitesimal diffeo-
morphisms of M , that the RG flow actually acts on the space of metrics modulo Diff (M).

For λ > 0, the fixed point at α′ = 0 is repulsive in the α direction, so the RG flow can be run backwards
forever.

For λ = 0, the same is true because of the O(α′) term in βij .

For λ < 0, the fixed point is attractive in the α′ = 0 direction. These describe limits of the RG flow as
t→ +∞.

Ancient solutions of the Ricci flow might give new QFTs, if there is enough control of the limit t→ −∞. It
would be necessary to show stability against the terms at higher order in α′.
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Gradient formulas

Let’s switch to a more abstract notation. Let λI be coordinates on the space of QFTs. For the nonlinear
model, the λI are coordinates on the space of metrics g. The RG flow is

dλI

dt
= −βI(λ) .

A gradient formula would be
∂F

∂λI
= GIJ(λ)βJ(λ)

for some function F and some riemannian metric GIJ on the space of QFTs.

The fixed points β = 0 would then be the critical points of F .

F would decrease under the RG flow:

dF (λ)
dt

=
∂F

∂λI
dλI

dt
= −GIJβIβJ ≤ 0 .
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String theory

The fixed point equation βij = 0 looked like Einstein’s equation in general relativity, the classical theory
of gravity. Einstein’s equation comes from an action principle: its solutions are the critical points of the
Einstein-Hilbert action. So I spent some early efforts on looking for a gradient formula for βij , with little
success.

In string theory, a 2d QFT on a surface Σ = R× S1 describes the quantum mechanics of a string.

The scale-invariance condition β = 0 is a technical consistency condition on the string quantum mechanics.

Soon after the renormalizability of the nonlinear model was demonstrated, it was realized that nonlinear
models described the quantum mechanics of a string moving in a space-time manifold M , in a background
gravitational metric 1

α′ gij .

For string theory, a term was added to the 2d action S(φ) proportional to the 2d scalar curvature∫
Σ

dvolγ(x) Rγ D(φ(x)) .

The dilaton function D on M provided an additional set of parameters: a larger family of QFTs.

We calculated βI(λ) for this expanded set of parameters, to leading order in α′, and found an action F (λ)
such that the critical points of F were the solutions of βI(λ) = 0.
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The c-theorem

There are axiomatic treatments of QFT, on R2 in particular, so we can talk of the space of QFTs in the
abstract. We have many examples, some exactly soluble, and some general knowledge of this space.

The c-theorem says that, for euclidean metrics γµν on R2, there is a function c(γ, λ) such that

c(γ, λ) ≥ 0

−d
dt
c(e−2tγ, λ) ≤ 0

If c(γ, λ) is covariant under the RG, then the second inequality is equivalent to

d

dt
c(γ, λt) ≤ 0

There is an argument that c should be RG-covariant, but not a completely general or rigorous argument.
To get RG-covariance in general, in enough generality to apply to the nonlinear model, it is necessary to
add parameters λI playing in the abstract the same role as the dilaton function D(φ). This might spoil the
condition c ≥ 0.

The c-theorem looks like it should have come from a gradient formula, but in fact it did not.

It is still open whether there is a general gradient formula for the RG flow on the space of 2d QFTs.
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Boundary QFT

QFT can be done on surfaces Σ with boundary. The basic cases are Σ = R× [0,∞) and Σ = S1 × [0,∞) In
string theory, Σ = R× I is used for the open string.

Additional parameters λa describe the boundary behavior. They also flow under the RG,

dλa

dt
= −βa(λ)

What has been studied mostly are the situations where the bulk QFT is at a fixed point, βI = 0, so only
the boundary parameters λa can flow.

The nonlinear model provides examples: mean curvature flow and Donaldson flow (most likely neither in
complete generality).

Anatoly Konechny and I proved a general gradient formula on the space of boundary QFTs (with bulk
βI = 0)

∂s(λ)
∂λa

= Gab(λ)βb(λ)

where s(λ) is literally the quantum mechanical entropy in the boundary at a given fixed temperature and
Gab is a riemannian metric on the space of boundary QFTs. So

ds

dt
≤ 0

and is stationary exactly at the fixed points. We have not been able to put any lower bound on s.
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