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Abstract
I suggest a minimal practical formal structure for a more fundamental
theory than the Standard Model + GR and review a mechanism that
produces such a structure. The proposed mechanism has possibilities of
producing non-canonical phenomena in SU(2) and SU(3) gauge theories
which might allow conditional predictions that can be tested.

These slides and other writings are posted on my web page

http://www.physics.rutgers.edu/~friedan/#Perimeter

During my visit to PI, I hope also to discuss informally a separate project
in pure QFT, a scheme to construct a new kind of QFT of extended
objects (also described on my web page).

http://www.physics.rutgers.edu/~friedan/#Perimeter


For the last 45 years, our most fundamental theory has been the
Standard Model + General Relativity.

SM+GR is an effective QFT with UV cutoff ∼ (103GeV)−1.

GR can be considered an effective QFT because quantum
corrections in GR are completely negligible at this huge distance
(103GeV)−1 = 1016`P .

SM+GR describes almost all physics at distances & (103GeV)−1.

Only dark matter, neutrino mixing, and some CP violation are
unexplained.
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I am interested in the possibility of formal fundamental physics:

1. hypothesize a “more fundamental” formal machinery that can
“produce” the Standard Model + General Relativity

2. predict consequences beyond the SM+GR that can be
checked experimentally

Prototypes:

GR from Newtonian Gravity + Special Relativity

Grand Unification from the SM

Grand Unification makes a conditional prediction that is testable.
The RG acting on the space of grand unified theories can produce
the SM. If the RG produces the SM, then it predicts proton decay
(which unfortunately has not been seen).
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In the 45 years since the SM was finished, none of the attempts at
formal fundamental physics has worked.

One natural response is to give up, at least for now, perhaps
hoping that experiment will eventually give more guidance.

Alternatively, it might be useful to reconsider the assumptions that
have guided the enterprise over these 45 years.

An analogy: hiking a mountain without a map. If after 45 years no
measurable altitude has been gained, maybe it is time to backtrack
and reconsider the previous choices of direction.

It might be especially useful to question the truisms and
mathematical idealizations that have governed the enterprise.
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A truism: that Quantum Gravity is needed

On the contrary,

It is implausible that any proposed Quantum Gravity can be
checked experimentally, since the smallest distance presently
accessible to experiment is Lexp ∼ (103GeV)−1 = 1016`P .

Assuming that Quantum Mechanics is valid over 16 orders of
magnitude in distance below where there is evidence is a
presumptuous extrapolation.
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A leading edge high energy scattering experiment has a certain size
L and probes our ignorance at distances < L.

at distances > L : QFT at distances < L : ?

Preparation of initial scattering states and detection of final
scattering states are described by the QFT at scale > L.

The scattering amplitudes between such QFT states capture the
physics at distances < L.

The minimal formalism for distances > L is an effective QFT.

An effective QFT is a QFT with UV cutoff L.

The minimal formalism for distances < L is an effective S-matrix.

An effective S-matrix is an S-matrix with IR cutoff L.

L is a sliding distance scale. What we mean by “short distance
physics” is relative. Progress pushes L smaller and smaller.
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A minimal practical formalism for fundamental physics:
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distance
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· · ·

L

QFT(L)S-matrix(L)

For every L� 1

a QFT(L) = an effective QFT with UV cutoff L describing
physics at distances > L, and

an S-matrix(L) = an effective S-matrix with IR cutoff L
describing physics at distances < L,

satisfying the following consistency conditions:
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For L′ < L (both � 1)

(1) QFT(L′) ⊃ QFT(L) via the QFT RG acting from L′ up to L.

(2) S-matrix(L) ⊃ S-matrix(L′) via the “S-matrix RG” which acts
by using the scattering states at the larger scale L
to make the scattering states at the smaller scale L′.

(3) S-matrix(L) agrees with the S-matrix derived from QFT(L’)
where both apply — between L′ and L.

L<L′

QFT(L)

QFT(L′)

S-matrix(L)

S-matrix(L′)
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For short distance physics, there is only S-matrix(L). We send
things in and measure what comes out.

There is no presumption of a quantum mechanical model of short
distance physics, no assumption there there is Quantum Mechanics
all the way down.

Having an S-matrix does not guarantee an underlying quantum
mechanical hamiltonian. Given a hamiltonian, an S-matrix can be
derived, but not vice versa.
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I came to these ideas during the period 1977 – 2002 in the process
of formulating a mechanism that produces such a formal structure.

The mechanism is a certain mathematically natural 2d nonlinear
model (2d-NLM), called the λ-model, whose target manifold is the
space of classical space-time fields which describe the classical
string backgrounds = the space of 2d coupling constants of the
string worldsheet.

At every L� 1, the λ-model produces a quantum string
background consisting of

an effective QFT(L) in the form of a functional measure on
the manifold of space-time fields with UV cutoff L

an effective 2d-QFT of the string worldsheet which gives an
effective string S-matrix(L) with IR cutoff L.
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I suggest exploring the λ-model because

1. It produces consistent realizations of the formal structure
described above: a QFT(L) and an S-matrix(L) for L� 1.

2. The 2d mechanism that produces QFT(L) does not
necessarily correspond to canonical quantization.

There are concrete possibilities of non-perturbative 2d effects
in the λ-model — winding modes and 2d instantons — that
will produce non-canonical degrees of freedom and
non-canonical interactions in QFT(L).

These possibilities arise when the space-time fields include
SU(2) and SU(3) gauge fields.

So there are concrete possibilities of testable conditional
predictions of the form: if QFT(L) contains the SM, then it
predicts such and such non-canonical degrees of freedom and
such and such non-canonical interactions.
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The λ-model proposal was the outcome of a line of thought that
started in 1977.
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The 2d-RG as a mechanism for space-time physics (1977–79)

In the general renormalizable 2d-NLM∫
DX e−

∫
d2z gµν(X)∂Xµ∂̄Xν

X(z, z̄) ∈M

the coupling constants are given by a Riemannian metric gµν(X)
on a manifold M .

The 2d-RG

Λ
∂

∂Λ
gµν(X) = −Rµν(X) +O(R2)

drives the 2d-NLM to a solution of Rµν = 0
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This was extremely exciting (at least for me).

The 2d-RG is a mechanism that produces solutions of a GR-like
space-time field equation Rµν = 0.

It suggested the possibility of actually answering the question

Where does space-time field theory come from?

or even

Where do the laws of physics come from?

with a quite unexpected mechanism: the 2d-RG.

By the late 1970s it had become clear that there are too many
effective QFTs. A mechanism was needed that would produce
effective QFTs more selectively than the QFT RG.

The 2d-RG seemed promising in that it was a mechanism that at
least produced classical field theory.
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The 2d-RG incorporated into string theory (1981–85)

The 2d-RG fixed point equation β = 0 as consistency
condition for the string S-matrix recipe (2d scale invariance)

A string background as a 2d-NLM of the worldsheet
with degrees of freedom Xµ(z, z̄) etc. such that
the 2d coupling constants are the space-time metric gµν(X)
plus non-abelian gauge fields, scalar fields, fermion fields, etc.

The β = 0 equation of this 2d-NLM (generalizing Rµν = 0) as
a semi-realistic classical field equation which includes GR and
potentially the SM

The string S-matrix at low momentum agrees with the
S-matrix of the perturbative canonical quantization of the
classical field equation β = 0.
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Questions (1987)

1. β = 0 is a only consistency condition for the string recipe.
How does the 2d-RG act in string theory as a mechanism?

2. Where does quantum field theory come from?
What produces a functional integral over space-time fields?

3. What is the quantum string background, which should be
given by a quantum state of a QFT?
(as opposed to the classical string backgrounds given by
classical fields solving Rµν = 0.)

4. What can produce an effective string S-matrix with IR cutoff
in an effective quantum background described by an effective
QFT with UV cutoff?
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These questions led in a direction that departed from the
mainstream of string theory, which was then assuming some
mathematical idealizations as truisms:

1. The string S-matrix as an asymptotic, idealized S-matrix
without IR cutoff — a “theory of everything”.

2. The string backgrounds as the backgrounds for such
asymptotic string S-matrices: the solutions of β = 0, i.e., the
Calabi-Yau manifolds (Rµν = 0) and generalizations.

3. The assumption that the low momentum physics of string
theory is the (supersymmetric) QFT that happens to have the
same low momentum scattering amplitudes as the asymptotic
string S-matrix.
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The λ-model (1988-2002)

Consider a 2d-NLM of the string worldsheet, with

λi = the 2d coupling constants,

φi(z, z̄) = the corresponding 2d scaling fields,

|φi〉 = the corresponding states on the circle.

The index i labels the modes of the space-time fields, e.g.,

φi(z, z̄) = eipµ(i)Xµ
hµν(i) ∂Xµ∂̄Xν i ↔ pµ(i), hµν(i)

Inserting the perturbation

e
∫
d2z λiφi(z,z̄)

makes {λi} a system of local coordinates on the space of 2d-QFTs.
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The 2d scaling-dimensions and the 2d β-function are

dim(φi) = 2 + δ(i) dim(λi) = −δ(i) dim(λiφi) = 2

βi(λ) = −δ(i)λi +O(λ2)

where
δ(i) = p(i)2

The marginal couplings

dim(λi) = −δ(i) = 0

parametrize the β = 0 submanifold of 2d-QFTs.

The 2d-RG drives the worldsheet towards the β = 0 submanifold.
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(ds)2 = µ2|dz|2 is the 2d metric. Λ−1 � µ−1 is a 2d UV cutoff.

The cutoff string propagator (the cutoff 2d-cylinder) is

ln(Λ/µ)∫
0

dτ

(∑
i

|φi〉 e−τδ(i) 〈φi|

)
=
∑
i

|φi〉
1− e−L2δ(i)

δ(i)
〈φi|

where

e−L
2δ(i) = (Λ/µ)−δ(i) L2 = ln (Λ/µ)

The only propagating modes are those satisfying

δ(i) > L−2 which is p(i)2 > L−2

So the 2d UV cutoff Λ−1 is an IR cutoff L on the string S-matrix.

An effective 2d-QFT with 2d UV cutoff Λ−1 gives an effective
string S-matrix(L) with L2 = ln (Λ/µ).
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What are the effective 2d coupling constants at 2d scale Λ−1?

The perturbation s at 2d scale Λ−1 are parametrized by
microscopic coupling constants λi(Λ).

Their effects are suppressed by the 2d-RG running from Λ−1 to µ−1

λi(µ) = (Λ/µ)−δ(i) λi(Λ) = e−L
2δ(i)λi(Λ) dim(λi) = −δ(i)

If L2δ(i) > 1 then λi(Λ) is effectively irrelevant.

The effectively marginal couplings at 2d scale Λ−1 are those that
satisfy

δ(i) < L−2 which is p(i)2 < L−2

So there is a UV cutoff L on the modes of the space-time fields
that describe the effective 2d-QFT.
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Now let the λi vary on the worldsheet, becoming sources λi(z, z̄).

(Wait a bit for the rationale.)

Make the λi(z, z̄) fluctuate at 2d distances < Λ−1, governed by
the 2d-NLM∫

Dλ e−
∫
d2z g−2

strGij(λ)∂λi∂̄λj e
∫
d2z λi(z,z̄)φi(z,z̄)

where
Gij(λ) = the natural metric on the manifold of 2d-QFTs
gstr = the string coupling constant
λi(z, z̄) ∈M = the target space

= the manifold of classical string backgrounds
= the manifold of worldsheet 2d-QFTs
= the manifold of classical space-time fields.

This 2d-NLM is the λ-model.
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on the 2d distance scale:

0
λ-model

Λ−1

effective 2d-QFT

µ−1

L2 = ln (Λ/µ)� 1

The λ-fluctuations at 2d distances < Λ−1 produce an effective
2d-QFT with UV cutoff Λ−1.

This effective 2d-QFT in turn gives an effective string S-matrix(L)
with IR cutoff L.

The λ-model is designed precisely to implement the “S-matrix RG”.

23 / 33



The λ-fluctuations are designed precisely to replicate the froth of
small handles.

Integrating out the λ-fluctuations at 2d scales from Λ′−1 to Λ−1

Λ′−1 < Λ−1 L′ > L

takes the effective S-matrix(L′) with the larger IR cutoff L′ to the
effective S-matrix(L) with the smaller IR cutoff L

S-matrix(L′) ⊃ S-matrix(L)

by, in effect, integrating out the froth of small handles at 2d scales
between Λ′−1 and Λ−1, thereby integrating out the string modes
with p(i)2 from L′−2 up to L−2.

(The basic calculation is shown in the Appendix.)
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The λ-model (like any 2d-NLM) is specified by two pieces of data

the metric g−2
strGij(λ) on the target manifold

a measure dλ ρ(λ) on the target manifoldM which gives the
functional volume element∫

Dλ =
∏
(z,z̄)

∫
M
dλ(z, z̄) ρ(λ(z, z̄))

dλ ρ(λ) is called the a priori measure.

At 2d scale Λ−1, a point (z, z̄) represents a 2d block Λ−1 × Λ−1.
The measure dλ ρ(λ) summarizes the fluctuations inside a block.

dλ ρ(λ) evolves under the 2d-RG, diffusing in the target manifold
M due to the λ-fluctuations. At the same time, it is driven by the
beta-function βi(λ) because the λi are not exactly marginal, they
flow with the 2d scale Λ−1 towards the β = 0 submanifold.
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dλ ρ(λ) evolves by the driven diffusion equation

Λ
∂

∂Λ
ρ(λ) = ∇i

(
g2

strG
ij∂j + βi

)
ρ(λ)

(taking dλ to be the metric volume element onM).

dλ ρ(λ) at scale Λ−1 is produced by integrating out the
λ-fluctuations from 2d distance ∼ 0 up to Λ−1, driving it to the
equilibrium measure

dλ ρ(λ)→ dλ e
− 1

g2str
S(λ)

where βi = Gij∂jS

Recall that the λi are the spacetime field modes with UV cutoff L.

So dλ ρ(λ) is the functional integral of an effective QFT(L) with
classical action 1

g2str
S(λ).

Thus the λ-model produces a QFT(L) at every L� 1.
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The consistency conditions are satisfied:

S-matrix(L) ⊃ S-matrix(L′) for L > L′ by design of the λ-model.

QFT(L′) ⊃ QFT(L) via the QFT RG because of the 2d RG — the
decoupling of irrelevant operators.

S-matrix(L) and QFT(L) agree on amplitudes at scale ∼ L
because the scattering amplitudes of S-matrix(L) near the IR
cutoff L are given by the 2d correlation functions near the 2d UV
cutoff Λ−1, which are determined by the a priori measure dλ ρ(λ)
which is QFT(L).
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The λ-model is a nonperturbative 2d-NLM, with possibilities of
nonperturbative semi-classical effects:

winding modes associated to π1 of the target manifoldM
2d instantons associated to π2(M)

whereM = the manifold of space-time fields

πk(the manifold of SU(N) gauge fields in R4) = πk+3(SU(N))

So there are winding modes (k = 1) when π4(SU(N)) 6= 0

π4(SU(2)) = Z2

and there are 2d instantons (k = 2) when π5(SU(N)) 6= 0

π5(SU(2)) = Z2 π5(SU(3)) = Z
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The winding modes for SU(2) and the 2d-instantons for SU(2)
and SU(3) offer possibilities of conditional predictions.

If the λ-model produces SM+GR then it also produces

non-canonical degrees of freedom from the Z2 winding mode
in the manifold of SU(2) gauge fields on R4

non-canonical interactions from the 2d instanton in the
manifold of SU(2) gauge fields and the 2d instantons in the
manifold of SU(3) gauge fields on R4
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Z2 winding mode in the manifold of SU(2) gauge fields on R4

Let A(x+, x−, u) be a zero-size instanton at x+ and a zero-size
anti-instanton at x− with relative orientation u ∈ SU(2)/Z2.

L(x) =
1

8π
tr (Fµν(x)Fµν(x)) = δ4(x− x+) + δ4(x− x−)

Ltop(x) =
1

8π
tr (Fµν(x)∗Fµν(x)) = δ4(x− x+)− δ4(x− x−)

The winding mode representing the nontrivial element in π1 = Z2

is the nontrivial closed geodesic loop in SU(2)/Z2

θ 7→ A(x+, x−, u(θ)) u(0) = 1 u(2π) = −1

This loop inM has zero length, so the winding mode will be a 2d
field of scaling dimension = 0 + quantum corrections, so it has a
chance of participating in the a priori measure which is the
space-time QFT.
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The Z2 winding mode is bi-local in space-time, depending on the
two space-time points x+, x−.

The 2d instantons for SU(2) and SU(3) gauge fields are nontrivial
2-spheres in slightly more complicated configurations of zero-sized
instantons and anti-instantons.
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To do:

A huge amount of foundational technical work is still to be done.

More urgent is to find out if the λ-model can in fact make
conditional predictions of observable non-canonical effects in
SU(2) and SU(3) gauge theory in 4 dimensions.

1. Figure out how to calculate semi-classical corrections to the a
priori measure of a 2d-NLM coming from winding modes and
2d instantons.

2. Calculate the corrections to the canonical SM

from the bi-local winding mode in the manifold of SU(2)
gauge fields.

from the multi-local 2d instantons in the manifolds of SU(2)
and SU(3) gauge fields
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Especially tantalizing is the top-down construction of QFT(L).

The λ-model operates from 2d distance ∼ 0 up to Λ−1.

Recall that L2 = ln (Λ/µ).

So the λ-model builds QFT(L) from space-time distance ∼ ∞
down to L.

Unnaturalness could be natural in QFT(L).
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Appendix

The λ-model as S-matrix RG (the basic calculation)

Some philosophy

Some motivations
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The λ-model as S-matrix RG (the basic calculation)

Calculate the cutoff integral over the moduli of a small handle.

Make a small handle by identifying the boundaries of two holes of
radius r around nearby points z1, z2 in the worldsheet.

(z − z1)(z − z2) = q = r2eiθ

Integrate over the moduli z1, z2, q, summing over states on the
boundaries (the θ integral projecting on the spin-0 states).

∫
d2z1

∫
d2z2

∫ 1
2
|z1−z2|

Λ−1

dr

r∑
i1,i2

r−δ(i1)φi1(z1, z̄1) Gi1i2 r−δ(i2)φi2(z2, z̄2)

The cutoff-dependence comes from the approximately marginal
fields, the φi with δ(i) ∼ 0.
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∫
d2z1

∫
d2z2 ln (Λ|z1 − z2|)Gi1i2 φi1(z1, z̄1) φi2(z2, z̄2)

Cancel the small handle with the λ-model 2-point function

∫
d2z1

∫
d2z2 〈λi1(z1, z̄1) λi2(z2, z̄2) 〉φi1(z1, z̄1) φi2(z2, z̄2)

This works to first order in the sum over handles in any classical
background λ, therefore the full interacting 2d-NLM with target
metric Gij(λ) removes the cutoff dependence to all orders,
therefore replicates exactly the sum over small handles.
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Some philosophy

Influences include Bohr’s philosophy that a fundamental theory
should be expressed in terms of what is observable, and by
Heisenberg’s S-matrix philosophy.

But I prefer pragmatic versions of these philosophies.

I try to adopt a useful interpretation of ‘what is observable’, rather
than an extreme, idealized interpretation.

For example, the route of Bohr and Heisenberg to Quantum
Mechanics was guided by a focus on observable transitions, but in
the end QM described the world by quantum states and transition
amplitudes, which are not observable, but only their absolute
squares. On the other hand, these idealizations have been so
successful that they are essential to a practical version of what is
observable, at least at the distance scales where there is evidence.
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The idealized version of the S-matrix philosophy wanted to replace
Quantum Mechanics entirely with an asymptotic S-matrix.

This totalitarian philosophy has re-appeared from time to time
when Quantum Mechanics has seemed to hit a wall at the frontier
of fundamental physics. But each time, QM has managed to
surmount the apparent wall.

It seems to me crazy to imagine doing all of what Physics currently
does with only an S-matrix, even in principle.

On the other hand, a pragmatic version of the S-matrix philosophy
seems reasonable. An effective S-matrix is a practical formulation
of what we can actually observe at distances smaller than the limit
of our best quantum mechanical model.
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Another guiding principle was avoidance of premature
mathematical idealization. Eventually, a successful fundamental
theory may be formulated in beautiful mathematics. But there is
no telling how far away that is or in what direction. There is no
telling in advance which mathematically beautiful forms will prove
useful for fundamental physics.

I avoided in particular the mathematical idealizations of asymptotic
S-matrices and continuum QFTs. Practical S-matrices have IR
cutoffs. Practical QFTs have UV cutoffs, including 2d-QFTs of the
string worldsheet.

I especially avoided the idealization of the asymptotic string
S-matrices. Their backgrounds are the classical Rµν = 0
space-time geometries (and generalizations). An asymptotic
S-matrix leaves no room for the production of a QFT at large
distance. A QFT has to be associated by hand to the asymptotic
string S-matrix, by matching to the low momentum string
scattering amplitudes.
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Some motivations

By the late 1970s, there seemed good motivation to find a
mechanism besides the QFT RG that produces effective QFTs. The
space of effective QFTs looked too big. The QFT RG offered no
compelling physical selection principle except perhaps naturalness.

More recently, experiment has been weighing against naturalness
as a selection principle, strengthening the motivation for some
other, more specific QFT production mechanism.
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In the 1980s, there were several motivations for using the string
theory S-matrix for short distance physics.

1. String theory constructs S-matrices without assuming a short
distance QFT.

2. The string scattering states include massless particles, in
particular a spin-2 graviton, so would be suitable for short
distance scattering in backgrounds that include SM+GR.

3. The β = 0 equation of the original general 2d-NLM, Rµν = 0,
was not quite Einstein’s equation. The β = 0 equation for the
2d-NLM of the string worldsheet was a potentially realistic
space-time field equation.

4. The RG fixed points, β = 0, of the general 2d-NLM have
unstable directions. The 2d supersymmetry of the string
worldsheet 2d-NLM eliminates the unstable directions
(tachyons in the S-matrix).
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