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I will describe (sketch) a mechanism that produces a quantum field
theory in spacetime (a measure on euclidean spacetime fields) and,
at the same time, produces the corresponding quantum string
background.

It seems to me that this is the correct construction of the quantum
string background (a purely formal question). I don’t know if it is
the correct construction of quantum field theory. That is, I don’t
know if the mechanism actually operates in the real world. To find
out, I am trying to derive predictions of exotic low-energy
phenomena that might be observable.

I am in the process of investigating a possibility that this
mechanism produces exotic non-canonical low-energy degrees of
freedom whenever there is SU(2) gauge invariance. These
non-canonical degrees of freedom are associated with the nontrivial
homotopy group π1(SU(2) gauge fields on R4) = Z2 .
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This project is (very) speculative fundamental physics — obviously
an extreme longshot.
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The 2d general nonlinear model (1979)

A renormalizable 2d qft with infinitely many coupling constants∫
DX e−A(X) A(X) =

∫
d2z gµν(X)∂Xµ∂̄Xν

X(z, z̄) ∈M, a manifold

{2d coupling constants} = gµν(X), a riemannian metric on M

RG equation Λ
∂

∂Λ
gµν(X) = −Rµν(X) +O(R2)

Acting at small 2d distances, the 2d RG drives the metric gµν to a
fixed point, Rµν = 0.

The 2d RG is a mechanism that produces classical spacetime field
theory (taking M to be spacetime).
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This was enormously exciting (at least to me). It seemed to be
possibly a clue towards explaining where the laws of physics come
from.

Immediate questions:

1. Rµν = 0 is not quite Einstein’s equation. How to produce a
realistic field theory? (with gauge, fermion, scalar fields)

2. The fixed points Rµν = 0 have unstable directions (relevant
couplings). How to get stability?

3. Where does quantum field theory come from?

Questions 1 and 2 were answered when the nonlinear model was
interpreted as the string background.
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String backgrounds

The worldsurface of a string moving in a background spacetime is
described by a 2d nonlinear model.

β = 0 is a consistency condition (to get the Virasoro algebra, to
get a unitary string S-matrix)

β = 0 becomes a classical field equation derived from a spacetime
action when all possible renormalizable couplings (esp the dilaton
field) are included.

The fermionic string, with 2d N=1 susy, has more renormalizable
2d couplings: spacetime gauge fields, fermion fields, scalar fields

Stability is given by the GSO projection (absence of relevant
couplings = absence of tachyons) and by the remarkable
cancellation of higher loop terms in β when there is N = 2 susy
(spacetime supersymmetry).
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Questions

Should the string background be given by a classical field?

Shouldn’t it be given by a quantum mechanical state?

What is the quantum string background?

Is there a mechanism — a generalization of the 2d RG — that
produces a quantum field theory in spacetime and a quantum
string background?

It seems to me that we need a mechanism that produces quantum
field theory. There are too many quantum field theories. A
mechanism actually producing quantum field theory might bring
explanatory power.

Eventually, a proposal.
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The λ-model (2002)

Write λi for the 2d coupling constants,{
λi
}

= {the modes of the spacetime fields gµν , Aµ, ψα, φ, . . .}

LetM be the manifold of spacetime fields, so the λi are
coordinates onM.

Equivalently,M is the manifold of 2d qfts parametrized by the
coupling constants λi.

The λi couple to the approximately marginal 2d fields φi(z, z̄)
(e.g., the vertex operators ∂Xµ∂̄XνeipX).

The λi have scaling dimensions of the form −p(i)2, where p(i) is
the spacetime momentum of the mode λi.

The modes λi with p(i) small (in dimensionless units) are only
slightly irrelevant.
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Allow the λi to vary on the surface, becoming local sources
λi(z, z̄).

Set the λi(z, z̄) fluctuating at 2d distance scales < Λ−1,∫
Dλ e

−
∫
d2z 1

g2
Gij(λ)∂λi∂̄λj

e
∫
d2z λi(z,z̄)φi(z,z̄)

Gij(λ) = the natural metric on the manifold of spacetime fields
(the natural metric on the manifold of 2d qfts)

g = the spacetime coupling constant (the string cc)
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Quantum string background

∫
Dλ e

−
∫
d2z 1

g2
Gij(λ)∂λi∂̄λj

e
∫
d2z λi(z,z̄)φi(z,z̄)

Integrating out fluctuations of the λi(z, z̄) at 2d distances < Λ−1

produces insertions of the φi(z, z̄) in the surface.

The λ-model is designed so that these insertions are the same as
the insertions produced by the froth of small handles at 2d
distances < Λ−1 in the worldsurface.

The λ-model acts at 2d distances < Λ−1 to produce an effective
2d qft whose correlation functions are defined at distances > Λ−1.
This is the quantum string background.

The λ-model calculates (nonperturbatively) the effects of the froth
of tiny handles. It substitutes for the froth of small handles.

The crucial design principle is 2d locality. The effective
worldsurface is local at 2d distances > Λ−1, so the string S-matrix
will have all the good properties implied by 2d locality.
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Production of QFT

Under the 2d RG, the small distance fluctuations of the λi(z, z̄)
are integrated out while at the same time the λi(z, z̄) are being
driven along βi(λ).

At each z, what evolves is a measure onM, a measure on the the
manifold of spacetime fields.

The 2d RG, acting over 2d distances up to Λ−1, drives this
measure to a limiting equilibrium measure.
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Production of QFT

Easier to study the evolution of functions f(λ) onM,

Λ
∂

∂Λ
f(λ(z, z̄)) = βi∂if −∇i(g2Gij∂jf)

the first term coming from the evolution of λi under βi(λ) and the
second term from integrating out the small distance fluctuations.
The measure then evolves as the dual

Λ
∂

∂Λ
ρ = ∇i(βi + g2Gij∂j)ρ

If βi were 0, the equilibrium measure would be the metric volume
element Dλ. For βi = Gij∂jS, the equilibrium measure is

Dλ e−
1
g2
S(λ)

.

In this way the λ-model produces a quantum field theory, a
measure on the spacetime fields.
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Radial quantization

The production of quantum field theory can be seen equivalently in
the radial quantization of the λ-model.

WriteM for the manifold of spacetime fields — the target
manifold of the λ-model. The λi are local coordinates onM.

Under 2d dilation, the loops inM evolve quantum mechanically.

The fluctuations of the non-zero modes of the loops λ(s) are
severely suppressed. The ground state wave function is
concentrated on the constant loops.

The evolution of the zero-modes is just stochastic quantization of
the quantum field theory with classical action S(λ).
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Small 2d distance = long distance in spacetime

Suppose the 2d qft is renormalized at 2d distance µ−1.

The λi are slightly irrelevant, with dimensions −p(i)2.

At 2d distance Λ−1 � µ−1, the effects of λi are suppressed by

(Λµ−1)−p(i)
2

= e−L
2p(i)2 , L2 = ln(Λµ−1) .

So λi with p(i)2 >> L−2 are effectively irrelevant. They can be
disregarded. Their fluctuations would have no effect.

L−1 is an effective UV cutoff in the λ-model.

Each 2d distance scale Λ−1 corresponds to a spacetime distance
scale L.

Small distance 2d physics is long distance spacetime physics.
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QFT/S-matrix complimentarity

The effective worldsurface is cutoff at 2d distance Λ−1. The string
propagator is

1− (Λµ−1)−p
2

p2

cutoff in the spacetime infrared at spacetime momentum L−1.

The string S-matrix in the effective background describes
scattering at spacetime distances < L.

The λ-model produces a qft describing spacetime physics at
distances > L and a string S-matrix describing physics at distances
< L.

The choice of Λ and thus of L is arbitrary, as long as L� 1.

As L varies, the λ-model ensures consistency between qft and
S-matrix.
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This is a realistic version of the string background. The string
background is the quantum mechanical apparatus where scattering
takes place.

This seems to me a practical form for a physical theory. It avoids
idealism — both the idealism of S-matrix theory and the idealism
of fundamental quantum field theory.

The λ-model has an intriguing property: it acts from the smallest
2d distances upwards, so it builds the spacetime qft from the
longest spacetime distances downwards.
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There are many internal, formal questions to investigate. But I
want to know whether or not the theory describes the real world.

Just because I find the theory philosophically satisfactory does not
mean that it is true. I want low-energy predictions that can be
checked against experiments.

There doesn’t seem much possibility of deriving the standard
model, or of verifying string theory. So take another tack.
Assume that the λ-model produces something like the standard
model. Would it necessarily produce something else at low energy,
something non-canonical and therefore exotic, that might be
possible to observe?

Question
The λ-model is a 2d qft. Are there nonperturbative 2d effects
that would show up in the spacetime qft produced by the
λ-model?
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M is the manifold of classical spacetime fields on R4.

Semi-classical 2d effects are
winding modes coming from π1(M)

2d instantons coming from π2(M)

π1(SU(2) gauge fields) = Z2, π2 = Z2

π1(SU(3) gauge fields) = 0, π2 = Z

Questions
1. Are there non-canonical low energy degrees of freedom in

spacetime associated with the nontrivial winding mode in the
manifold of SU(2) gauge fields?

2. Are there non-canonical low energy couplings associated with
the nontrivial 2-spheres in the manifolds of SU(2) and SU(3)
gauge fields?
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Minimal representatives (2010)
From computer investigations of the Yang-Mills flow, minimal
representatives of the nontrivial homotopy groups were found:

Minimal representatives

π1(SU(2) gauge fields) a loop of instanton pairs

π2(SU(2) gauge fields) a 2-sphere of instanton quartets

π2(SU(3) gauge fields) a 2-sphere of instanton pairs

The minimal loop has zero length (to be explained). The minimal
2-spheres have zero area. So there are chances of low energy
phenomena.

Most interesting is the possibility that the SU(2) winding mode
will show up as non-canonical low-energy degrees of freedom in
SU(2) gauge field theory.
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Twisted pairs

The minimal nontrivial loop of SU(2) gauge fields is a loop of
twisted pairs.

A twisted pair is an instanton in R4 with a tiny anti-instanton
glued in (or, alternatively, an anti-instanton with a tiny instanton
glued in).

A+ an SU(2) instanton of size ρ+ centered at x+

g−A−g
−1
− an anti-instanton of size ρ− ≈ 0, centered at x−,

twisted by g− ∈ SU(2)/±1

The nontrivial element of π1(SU(2) gauge fields) is represented by
a nontrivial loop in this SU(2)/±1.
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The metric on twisted pairs

Instead of the parameters ρ−, g− write

v− = ρ−(g−1̂) ∈ C2 where 1̂ = (1, 0) ∈ C2

The metric is smooth on this C2. At the origin,

(ds)2 =
1

g2
|dv−|2.

The space of twisted pairs (for fixed x+, ρ+, x−) is the orbifold

±v− ∈ C2/Z2 .

The minimal nontrivial loop is the zero-length loop in SU(2)/±1
at ρ− = 0 (at the blow-up of the origin).
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The λ-model winding mode is the twist field of this C2/Z2 orbifold.
(x+, ρ+, x−) are collective coordinates for the twist field.

If massless fermion fields are coupled to the SU(2) gauge fields,
there will be chiral zero modes in the instanton and in the
anti-instanton. The zero mode in the tiny anti-instanton is odd
under the Z2 (this is the SU(2) global anomaly made explicit) so
the orbifolding projects it away. The instanton zero modes survive,
becoming fermionic collective coordinates for the twist field. So
there are possibilities of interesting quantum numbers in the twist
field.
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The RG (YM) flow

For ρ− ≈ 0,

SYM = 2 +
4|v+|2|v−|2 − 16(v+ · v−)2

|x+ − x−|4

where

v− = ρ−(g−1̂), v+ = ρ+(g+1̂) 1̂ = (1, 0) ∈ C2

(g+ = 1 is global gauge fixing.)

Writing v− = (χ0 + iχ1, χ2 + iχ3), v+ = (ρ+, 0),

SYM = 2 +
4ρ2

+

|x+ − x−|4
(
−3χ2

0 + χ2
1 + χ2

2 + χ2
3

)
so there is one unstable direction (flowing to the flat connection).

The flow becomes interesting when ρ+ ≈ 0 as well as ρ− ≈ 0.
The unstable direction then becomes only marginally unstable.
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To do

The problem now is to understand the contribution of the twist
fields in the λ-model functional integral.

I suppose that we can express those contributions by introducing
new λ-fields λαtw which couple to the twist field, where the index α
stands for the collective coordinates of the twist field.

The dynamics of the new λ-fields is derived from the scaling
behavior of products of twist fields and ordinary fields.

The first question:
Is the classical 2d scale invariance of the twist field ruined by
perturbative quantum corrections? Are cancellations
needed? spacetime susy?

It seems that the unstable trajectory from the twisted pair to the
flat connection should be the key ingredient in the operator
product of two twists.
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