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Abstract

I describe a project to develop a new kind of constructible
conformal field theory in 2n dimensions. For each ordinary 2d cft,
there is to be a corresponding new cft of (n−1)-dimensional
defects in any 2n-dimensional conformal space-time manifold M .

The quantum fields live on “quasi Riemann surfaces”, which are
certain complete metric spaces of integral (n−1)-currents in M .
These metric spaces have analytic structure analogous to ordinary
Riemann surfaces. The new cfts are to be constructed on the quasi
Riemann surfaces by analogy with the construction of ordinary 2d
cfts on ordinary Riemann surfaces.

The global symmetry group of the ordinary 2d cft will become the
gauge group of a local gauge symmetry in the new cft.

I envision a wide expanse of new quantum field theory to explore.

See http://www.physics.rutgers.edu/~friedan/#res for the
slides of the talk and other material.
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QFT is a still young subject.

The current ideas of what is a QFT might not be the last word.

I’m proposing a new territory of QFT.

I’m recruiting explorers.

This is best done among the naive and foolish so please pretend.

Put aside the sophisticated technologies and problems of QFT that
you know.

Keep only the elementary 2d CFT of the 1970’s.
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The space-time manifold M

The euclidean space-time M is
• an oriented manifold of dimension 2n
• compact and without boundary (for simplicity)
• with a conformal structure

The basic examples are M = S2n = R2n ∪ {∞}.

When n = 1, M is a Riemann surface.

The Hodge ∗-operator acting on n-forms is conformally invariant

(∗ω)ν1···νn(x) = ωµ1···µn(x)
1

n!
εµ1···µnν1···νn(x) ∗2 = (−1)n

Nothing else of the conformal structure will be used.

(Better “space with Hodge-∗ in the middle dimension” instead of
“manifold with conformal structure”.)

Limitation: 3 6= 2n. For physics, maybe only 2n = 4, n = 2.
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Recall the 2d gaussian model (the free 1-form in 2d)

j is a 1-form on a Riemann surface with equations of motion

dj = 0 d(∗j) = 0

Its integrals are 0-forms φ, φ∗ defined up to global symmetries

dφ = j dφ∗ = ∗j

φ(x)→ φ(x) + a φ∗(x)→ φ∗(x) + a∗

The vertex operators describe 0-dimensional (point) defects

Vp,p∗(x) = eipφ(x)+ip∗φ∗(x) Vp,p∗(x)→ Vp,p∗(x) eipa+ip∗a∗

U(1)×U(1) conditions (neeed for IR sanity in 2d)

φ(x) ∈ S1
R = R/2πRZ φ∗(x) ∈ S1

R∗ = R/2πR∗Z RR∗ = 1

symmetry group: a, a∗ ∈ U(1)×U(1) charges: p, p∗ ∈ 1

R
Z × 1

R∗
Z
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Express quantization of the free field theory by the
Schwinger-Dyson equation on the 2-pt functions
〈φ(x) j(x′)〉, 〈φ∗(x) j(x′)〉, 〈φ(x) ∗j(x′)〉, 〈φ∗(x) ∗j(x′)〉

Using complex coordinate z and the chiral field basis

j± =
1

2
(j ± i−1∗j), φ± =

1

2
(φ± i−1φ∗)

the S-D equation is exactly the Cauchy-Riemann equation

∂

∂z̄

1

z − z′
= πδ2(z − z′)

which is the foundation for complex analysis on Riemann surfaces.

The 2d Gaussian model might have led to complex analysis on
Riemann surfaces had mathematicians not already provided it.
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Heuristic

The 2d Gaussian model was one of the ur-cfts. It is only a slight
exaggeration to say that all of 2d cft (and non-conformal 2d qft)
emerged from the 2d Gaussian model:

the Virasoro algebra
2d nonabelian current algebra (at R = R∗ = 1)
torus models (several free 1-forms)
orbifolds of the above models
perturbation theory (sigma models, general nonlinear models)
conformal perturbation theory
· · ·
axiomatic formulations

The 2d Gaussian model can serve as a starting point from which to
explore the whole galaxy of 2d quantum field theory.
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Recall the free n-form in 2n dimensions

F (x) is an n-form on M with equations of motion

dF = 0 d(∗F ) = 0

Its integrals are (n−1)-forms A, A∗ defined up to local gauge
symmetries given by (n−2)-forms f , f∗

dA = F dA∗ = ∗F

A→ A+ df A∗ → A∗ + df∗

(n−1)-dimensional defects are described by fields that live on
(n−1)-dimensional objects ξ with boundary ∂ξ

Vp,p∗(ξ) = eip
∫
ξ A+ip∗

∫
ξ A

∗
Vp,p∗(ξ)→ Vp,p∗(ξ)eip

∫
∂ξ f+ip∗

∫
∂ξ f

∗

∫
ξ
A ∈ S1

R = R/2πRZ
∫
ξ
A∗ ∈ S1

R∗ = R/2πR∗Z RR∗ = 1
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Singular currents in M

A k-current (in the math sense) is a distribution on k-forms

ω 7→
∫
ξ
ω =

∫
M
ωµ1···µk(x) ξµ1···µk(x) d2nx

The oriented k-simplex ∆k is the basic k-dimensional object:

∆0 = a point, ∆1 = a line interval, ∆2 = a triangle, . . .

An oriented k-simplex σ in M gives a k-current [σ]

σ : ∆k →M

∫
[σ]
ω =

∫
∆k

σ∗ω

[σ] is the characteristic δ-function localized on σ(∆k) ⊂M .

The singular k-currents are the integer linear combinations

Dsing
k (M) =

{∑
imi[σi],mi ∈ Z

}
They include the k-submanifolds of M . The singular k-current is
the physical object in M , the linear functional on k-forms,
independent of how it is made out of k-simplices as

∑
imi[σi].
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The flat metric on Dint
k (M)

Geometric Measure Theory introduces on Dsing
k (M) the flat norm

‖ξ‖flat which measures the physical ease of deforming ξ → 0.

‖ξ‖flat = inf
ξk+1∈Dsing

k+1(M)

[
(k+1)-volume(ξk+1) + k-volume(ξ − ∂ξk+1)

]

e.g., a small 1-current ξ =

ε

ε
ε

ε

‖ξ‖f lat = O(ε)

Dsing
k (M) is a metric space with the flat metric

dist(ξ1, ξ2)flat = ‖ξ1 − ξ2‖flat
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Integral currents

The metric completion Dint
k (M) is the space of integral k-currents

Dsing
k (M) ⊂ Dint

k (M) ⊂ Ddistr
k (M)

The additional currents, the limits of Cauchy sequences, are fractal.

Dint
k (M) is a metric abelian group — an abelian group that is a

complete metric space, the group operations respecting the metric.

The boundary of an integral current is an integral current

Dint
k (M)

∂−−→ Dint
k−1(M)

where the boundary operator on currents is the dual of d∫
∂ξ
ω =

∫
ξ
dω (∂ξ)µ2···µk(x) = −∂µ1ξµ1µ2···µk(x) ∂2 = 0
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What are the (n−1)-dimensional objects ξ ?

We take Dint
n−1(M) as the space of (n−1)-dimensional objects ξ.

Recall that A, A∗ are (n−1)-forms and

Vp,p∗(ξ) = eip
∫
ξ A+ip∗

∫
ξ A

∗
∫
ξ
A ∈ R/2πRZ

∫
ξ
A∗ ∈ R/2πR∗Z

The rationale is
1. ξ is manifestly an (n−1)-current — a distribution on forms.
2. The (n−1)-simplices [σ] are basic objects.
3. The U(1) conditions are closed under integer linear

combinations. So Dsing
n−1(M) is the minimal space of objects.

4. Take the metric completion Dint
n−1(M) to do calculus.

Note that Dint
n−1(M) is the space of extended objects for the free

n-form, not necessarily for any other theory.
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The free n-form as 2d gaussian model

Define scalar fields on Dint
n−1(M)

φ(ξ) =

∫
ξ
A φ∗(ξ) =

∫
ξ
A∗ so Vp,p∗(ξ) = eipφ(ξ)+ip∗φ∗(ξ)

Under a gauge transformation A→ A+ df , A∗ → A∗ + df∗

φ(ξ)→ φ(ξ) + a(∂ξ) φ∗(ξ)→ φ∗(ξ) + a∗(∂ξ)

a(∂ξ) =

∫
ξ
df =

∫
∂ξ
f a∗(∂ξ) =

∫
ξ
df∗ =

∫
∂ξ
f∗

Vp,p∗(ξ) −→ Vp,p∗(ξ) eipa(∂ξ)+ip∗a∗(∂ξ)

Fix an (n−2)-boundary ∂ξ0 and consider only ξ with ∂ξ = ∂ξ0

Dint
n−1(M)∂ξ0 =

{
ξ ∈ Dint

n−1(M) : ∂ξ = ∂ξ0

}
On Dint

n−1(M)∂ξ0 the symmetries are just two numbers, a(∂ξ0) and
a∗(∂ξ0), independent of ξ. The gauge symmetry acts on
Dint
n−1(M)∂ξ0 as a global U(1)×U(1).
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The bundle of quasi Riemann surfaces

Consider as a fiber bundle

Dint
n−1(M)

∂−−→ ∂Dint
n−1(M) with fibers Dint

n−1(M)∂ξ0
∂−−→ {∂ξ0}

All the Dint
n−1(M)m∂ξ0 , m ∈ Z see the same U(1)×U(1) because

a(m∂ξ0) = ma(∂ξ0). So combine them to form the abelian group

Dint
n−1(M)Z∂ξ0 = ⊕

m∈Z
Dint
n−1(M)m∂ξ0

These are the “quasi Riemann surfaces” (modulo some technical
niceties). They form a fiber bundle of quasi Riemann surfaces

Q(M)→ B(M) with fibers Dint
n−1(M)Z∂ξ0

∂−−→ Z∂ξ0

For brevity, write Q ∂−−→ Z for any one of the fibers.

There is a 2d cft – the gaussian model – on each Q. A copy of the
global symmetry 2d group G = U(1)× U(1) acts on each fiber,
comprising a local gauge symmetry over the base space B(M).
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The prototype quasi Riemann surface is the metric abelian group
of integral 0-currents in a Riemann surface Σ (the case n = 1)

Q(Σ) = Dint
0 (Σ) Q(Σ)

∂−−→ Z ∂ξ =

∫
ξ

1
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Tensor analysis on metric spaces.

GMT provides a construction of integral currents in any complete
metric space. So we are given Dint

j (Q), the metric abelian group
of integral j-currents in the metric space Q.
Define the j-forms on Q by

Ωj(Q) = Hom(Dint
j (Q),R) Ωj(Q)

d−→ Ωj+1(Q) dω(ξ) = ω(∂ξ)

A j-form is determined by its values on the infinitesimal
j-simplices, which generate Dint

j (Q). So the tangent bundle can
be defined as the set of infinitesimal 1-simplices in Q

TQ =
{
ε−1[σε] : σε : [0, ε]→ Q

}
This version of tensor analysis, if the metric space happens to be a
manifold M , is equivalent to the usual tensor analysis on manifolds.
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The maps Πj,n−1 : Dint
j (Q)→ Dint

j+n−1(M)

There are natural maps Πj,k : Dint
j (Dint

k (M))→ Dint
j+k(M)

which are derived from the equivalence

∆j →
{

∆k →M
}

= ∆j ×∆k →M = ∆j+k →M

In particular, taking k = n− 1 and restricting to Q

Πj,n−1 : Dint
j (Q)→ Dint

j+n−1(M) Πj,n−1∂ = ∂Πj,n−1

Π0,n−1 : 0-currents in Q → (n−1)-currents in M

Π1,n−1 : 1-currents in Q → n-currents in M

Π2,n−1 : 2-currents in Q → (n+1)-currents in M

A crucial technical point (requiring the flat metric completion)

Π1,n−1 identifies each tangent space TξQ with a certain
subspace of Ddistr

n (M) which is closed under Hodge-∗.
Therefore ∗ acts on the tangent spaces TξQ.
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The dual maps on forms are

Π∗j,n−1 : Ωj+n−1(M)→ Ωj(Q) dΠ∗j,n−1 = Π∗j,n−1d

Π∗0,n−1 : (n−1)-forms on M → 0-forms on Q A(x) 7→ φ(ξ)

A∗(x) 7→ φ∗(ξ)

Π∗1,n−1 : n-forms on M → 1-forms on Q F (x) 7→ j(ξ)

∗F (x) 7→ ∗j(ξ)

Π∗2,n−1 : (n+1)-forms on M → 2-forms on Q

Now we have the classical 2d gaussian model on each fiber Q

dφ(ξ) = j(ξ) dφ∗(ξ) = ∗j(ξ) Vp,p∗(ξ) = eipφ(ξ)+ip∗φ∗(ξ)
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The intersection form on currents in M

There is a natural bilinear intersection form on currents in M

IM (ξ1, ξ2) =

∫
M
ξ
µ1···µk1
1 (x) ξ

ν1···νk2
2 (x)

εµ1···µk1ν1···νk2 (x)

k1! k2!
d2nx

• depending only on the orientation of M
• well-defined on all smooth ξ1, ξ2 and almost all integral ξ1, ξ2

(then giving the integer intersection number)
• nonzero only if dim(ξ1) + dim(ξ2) = dim(M)

IM (ξ1, ξ2) 6= 0 only if k1 + k2 = 2n

Pull back to Q: IQ(η1, η2) = IM (Πj1,n−1η1,Πj2,n−1η2)

IQ(η1, η2) 6= 0 only if j1 + j2 = 2

just as the intersection form of currents in a 2-manifold.
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The quantum 2d gaussian model on Q
Write the Schwinger-Dyson equation for 〈A(x)F (x′)〉 smeared
against two currents ξ1, ξ2. Roughly (detail to follow) the S-D
equation for the free n-form on M is

〈
∫
ξ1

A±

∫
ξ2

dF±〉 = 2πiIM (ξ1, ξ2) k1 = n− 1, k2 = n+ 1

Pulled back to Q, the S-D equation is

〈
∫
η1

φ±

∫
η2

dj±〉 = 2πiIQ(η1, η2) j1 = 0, j2 = 2

which has exactly the same form as the S-D eqn of the 2d gaussian
model on a Riemann surface Σ

〈
∫
η1

φ±

∫
η2

dj±〉 = 2πiIΣ(η1, η2) j1 = 0, j2 = 2

which (unsmeared) is the Cauchy-Riemann equation
∂

∂z̄

1

z − z′
= πδ2(z − z′)
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The S-D equations (details to be skipped)

We want the S-D equations to look the same for all n, so that
when they are pulled back to Q they will all be the same.

But ∗2 = (−1)n and the intersection form IM (ξ1, ξ2) has symmetry
properties and various other properties that depend explicitly on n.

Solution: use complex currents and set

Q = Dint
n−1(M)Z∂ξ0 ⊕ i∂Dint

n (M)

The tangent spaces TξQ are now complex vector spaces on which
∗ acts. Define

J = εn ∗ ε2n = (−1)n−1

so
J2 = −1

For n odd, εn is real. Then all currents can be taken real.
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Modify the intersection form so its properties are independent of n.

IM 〈 ξ̄1, ξ2 〉 = εn,k2−nIM (ξ̄1, ξ2) εn,m = (−1)nm+m(m+1)/2 ε−1
n

• IM 〈 ξ̄1, ξ2 〉 = − IM 〈 ξ̄2, ξ1 〉 (skew-hermitian)

• IM 〈 ∂ξ1, ξ2 〉+ IM 〈 ξ̄1, ∂ξ2 〉 = 0 (integration by parts)

• IM 〈 ξ̄1, Jξ2 〉 is hermitian and positive definite on n-currents,
i.e., on (j+n−1)-currents with j = 1
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The Schwinger-Dyson equation is now the same for all n

〈
∫
ξ̄1

A†α

∫
ξ2

dFβ〉 = −2πiγαβIM 〈 ξ̄1, ξ2 〉

γ++ = 1 , γ−− = −1 , γ+− = γ−+ = 0

written in terms of the chiral fields and their euclidean adjoints (F
and A are now complex fields):

P± =
1

2

(
1± i−1J

)
F± = P±F dA± = F±

F †± = F∓ A†± = A∓

Pulled back to Q, the S-D equation is the same as on a Riemann
surface Σ

〈
∫
η̄1

φ†α

∫
η2

djβ〉 = −2πiγαβIQ〈 η̄1, η2 〉

where IQ〈 η̄1, η2 〉 has the same properties as IΣ〈 η̄1, η2 〉.
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Definition of quasi Riemann surface (details to be skipped)

Now we can define a quasi Riemann surface as a metric space
whose currents have the structures needed to write the
Cauchy-Riemann equation in the same form as the C-R equation
for an ordinary Riemann surface.

Here is the definition for the real case, which covers the examples
with n odd.
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A real quasi Riemann surface is

a metric abelian group Q with a morphism Q ∂−−→ Z

a translation-invariant linear operator J on the tangent spaces
TξQ = T0Q

a densely defined translation-invariant integral bilinear form
IQ〈 η1, η2 〉 on ⊕

j
Dint
j (Q)

satisfying

1. J2 = −1 (J is an almost-complex structure)

2. IQ〈 η1, η2 〉 6= 0 only if j1 + j2 = 2

3. IQ〈 η1, η2 〉 = −IQ〈 η2, η1 〉 (skew symmetric)

4. IQ〈 ∂η1, η2 〉+ IQ〈 η1, ∂η2 〉 = 0 (integration by parts)

5. IQ〈 η1, Jη2 〉 on 1-currents is symmetric and non-negative
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Prospects

We have the 2d gaussian model on the quasi Riemann surfaces Q
and, what is equivalent, the Cauchy-Riemann equation.

So we have the foundation for all the constructions of 2d cft on
the quasi Riemann surfaces Q.

Performing these constructions on the quasi Riemann surfaces
Q(M) will produce new cfts of (n−1)-dimensional defects in
conformal 2n-manifolds M .

We can further envision extending all the constructions of
non-conformal 2d qft to obtain, for each non-conformal 2d qft, a
non-conformal qft of defects in M .

A cornucopeia of questions present themselves — foundational
technical problems — opportunities to leverage 2d qft to develop a
new technology for doing qft in 2n dimensions — a new territory
of qft to explore. A sampling of possible questions follow.
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1. A classification conjecture

Conjecture

A quasi Riemann surface Q is classified up to isomorphism by
its Jacobian — the integral homology in the middle dimension
as a lattice in a complex vector space.

Each Q is isomorphic to Q(Σ) = Dint
0 (Σ) where Σ is the

2-dimensional space with the same Jacobian as Q.

S2n = R2n ∪ {∞} has trivial Jacobian, so the conjecture implies
that all the quasi Riemann surfaces Q(S2n) are isomorphic

Dint
n−1(S2n)Z∂ξ0

∼= Dint
0 (S2) ∀n, ∀Z∂ξ0
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2. Construct cfts on M via the conjectured isomorphisms
Q = Dint

n−1(M)Z∂ξ0
∼= Dint

0 (Σ)

1. Start with an ordinary 2d cft on the 2d space Σ. Call it CFT2.

2. Lift CFT2 to Dint
0 (Σ). Call this ECFT2 (extended CFT2)

This lifting still remains to be done for the vertex operators of
the 2d gaussian model — i.e., renormalize them as fields on the
space of integral 0-currents η =

∑
imiδx1

Vp,p∗(η) = eip
∫
η φ+ip∗

∫
η φ

∗
= eip

∑
imiφ(xi)+ip

∗ ∑
imiφ

∗(xi)

In general, such a field Φ(η) might be described by a radial
quantization state at each point x ∈ Σ.

3. Use an isomorphism Q ∼= Dint
0 (Σ) to put EQFT2 on each fiber Q.

Note: it also remains to renormalize Vp,p∗(ξ) in the n-form theory
for integral (n−1)-currents ξ. These renormalizations for all values
of n have to be consistent with the isomorphisms Q ∼= Dint

0 (Σ).
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3. The gauge ambiguity

The choice of isomorphism Q ∼= Dint
0 (Σ) for each fiber is not

unique. Different isomorphisms can produce theories on the fiber
that differ by an element of the global symmetry group G of CFT2.
The possible theories on the fibers form a principle G-bundle, a
gauge bundle, T (M)→ B(M).

Consider a CFT2 with nonabelian current algebra ja(x) in the Lie
algebra g of the global symmetry group G, e.g. the 2d Gaussian
model at R = R∗ = 1 with G = SU(2)× SU(2).

The ECFT on each fiber contains 1-forms ja(ξ) in the local Lie
algebra g∂ξ0 of the fiber. These correspond to n-forms F a(x) on
the space-time M , again in g∂ξ0 . The j

a(ξ) constitute the
curvature tensor of a nonabelian connection in the gauge bundle.

In this way, the CFT2 gives rise to a quantum theory with
nonabelian gauge symmetry over the base space B(M).
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4. Local space-time interpretation?

In the abelian case — the free n-form — the gauge symmetry over
B(M) reduces to ordinary local gauge symmetry in the space-time
M . Is there a local space-time interpretation of the nonabelian
gauge symmetry over B(M)?

More generally, the plan is to make a cft of (n−1)-dimensional
defects in 2n dimensions for for each ordinary 2d cft (and a
non-conformal qft from each 2d qft). Will these new theories have
a local space-time interpretation (assuming the projected
construction is successful)? Tiny defects look like points in M , so
fields Φ(ξ) on Q(M) will when restricted to small ξ give ordinary
local quantum fields on M . Will these form a local quantum field
theory on M? If so, will they be new local qfts in 2n-dimensions?
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5. Automorphism groups of the quasi Riemann surfaces

If the classification conjecture is correct, then there will be an
automorphism group Aut(Q(Σ)) for each Jacobian.

There will be a conjugacy class of group inclusions

Conf(M)→ Aut(Q(Σ))

for every conformal symmetry group of every conformal manifold
M with the given Jacobian.

Aut(Q(Σ)) will be the structure group of the fiber bundle of quasi
Riemann surfaces Q(M)→ B(M). Each fiber will be isomorphic
to Q(Σ) up to an element of Aut(Q(Σ)).

There will be a group automorphism

Aut(Q(Σ))→ Sym(CFT2)

for every global symmetry group Sym(CFT2) of a 2d cft.
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6. Quasi holomorphic curves in Q

A quasi holomorphic curve in Q is a morphism Q(Σ)→ Q, i.e., a
map C : Σ→ Q from a Riemann surface Σ to Q that preserves the
J-operator and the skew-hermitian form on currents.

The basic example is C : z ∈ Σ 7→ [z] = δz ∈ Dint
0 (Σ)

A local qhc is a qhc where C : Dε → Q where Dε is a tiny complex
disk. A tiny disk in Q is a tiny (n+1)-dimensional object in M .

The local quasi holomorphic curves are local probes. The fields of
an ECFT on Q pull back along C to become ordinary 2d conformal
fields of the underlying CFT2 on Σ.

For each local qhc, we have the radial quantization, Virasoro
algebras, and operator product expansion of the 2d cft on Dε.

This local 2d cft data on the collection of all local qhc’s provides a
local description of the ECFT on Q.
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