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Abstract

| describe a project to open a new territory of quantum field theory
where the fields live not on space-time but on certain complete
metric spaces of (n—1)-dimensional objects in a 2n-dimensional
space-time manifold M.

These metric spaces are “quasi Riemann surfaces”; their geometric
properties are formally analogous to Riemann surfaces.

Every construction of an ordinary 2d conformal field theory is to
give an analogous construction of a cft on the quasi Riemann
surfaces, and thereby a cft on space-time.

The global symmetry group of the 2d cft will become a local gauge
symmetry. A local quantum field theory in space-time will be
constructed by restricting to small objects.

| envision a wide expanse of new quantum field theory to explore.

See http://www.physics.rutgers.edu/~friedan/#res for slides

of the talk and other material. .


http://www.physics.rutgers.edu/~friedan/#res

The space-time manifold M

The euclidean space-time M is
e an oriented manifold of dimension 2n
e compact and without boundary (for simplicity)
e with a conformal structure

The basic examples are M = 52" = R?" U {oo}.
When n =1, M is a Riemann surface.
The Hodge *-operator acting on n-forms is conformally invariant

IO n
(k) () = Wi () 3 077, (2) # = (~1)

Nothing else of the conformal structure will be used.

(Better “space with Hodge-x in the middle dimension” instead of
“manifold with conformal structure'.)

Limitation: 3 # 2n. For physics, maybe only 2n =4, n = 2.
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Singular currents in M

A k-current (in the math sense) is a distribution on k-forms

w/w—/ oo () €417 () 2"

The oriented k-simplex A* is the basic k-dimensional object:
A% = a point, A! = alineinterval, A? = a triangle,

An oriented k-simplex o in M gives a k-current [o]

AR M /w—/aw
Ak

[0] is the characteristic J-function localized on o(AF) C M.
The singular k-currents are the integer linear combinations
,Dzing(M) = { Zz mi[oi],mi S Z}

They include the k-submanifolds of M. The singular k-current is
the physical object in M, the linear functional on k-forms,

independent of how it is made out of k-simplices as ) . m;[o;].
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The flat metric on D" (M)

Geometric Measure Theory introduces on Dy (M) the flat norm

€1l 74 which measures the physical ease of deforming £ — 0.

€l = inf (ke 1)-volume(&rsn) + K-volume(€ — 6k41)]
§k+1€IiZﬁ(A4)
e.g., a small 1-current & = / 1€ £1at = O(e)
€7 e

D" (M) is a metric space with the flat metric

dist (€1, £2) flar = |61 — ‘52Hﬂat
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Integral currents

The metric completion D" (M) is the space of integral k-currents
D} (M) € DY (M) € DI (M)
The additional currents, the limits of Cauchy sequences, are fractal.

Dim (M) is a metric abelian group — an abelian group that is a
complete metric space, the group operations respecting the metric.

The boundary of an integral current is an integral current
Z)Znt(JV{) 2)znt (]y[)

where the boundary operator on currents is the dual of d
| / do  (DE)" M (x) =~ N (r) 9P =0
¢
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Recall the 2d gaussian model (the free 1-form in 2d)

j is a 1-form on a Riemann surface with equations of motion
dj =0 d(xj) =0
Its integrals are O-forms ¢, ¢* defined up to global symmetries
dp=j  do" =xj
¢(x) = d(x) +a ¢ (x) = ¢"(x) +a

The vertex operators describe 0-dimensional (point) defects
V. p (z) = epe(z)+ip™ 9™ (z) Vp (z) = Vo (z) pipatip*a’
U(1) x U(1) conditions (neeed for IR sanity in 2d)

p(z) € S, =R/2rRZ  ¢*(x) € Sk =R/27R*Z  RR* =1

1 1
symmetry group: a,a” € U(1)xU(1) charges: p,p* € EZ X EZ
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Express quantization of the free field theory by the
Schwinger-Dyson equation on the 2-pt functions

(¢(x)j (")), (¢"(x)j(z")), (o(x)*j(z)), (¢"(x)*j(z))
Using complex coordinate z = x1 + ixs and the chiral fields

je=gGEiTe) pr=s(@kiT)

the S-D equation is exactly the Cauchy-Riemann equation

(P4 (2)djy (7)) = 16%(2 — 2)dzdz — =76%(z— 7))

which is the foundation for complex analysis on Riemann surfaces.

The 2d Gaussian model might have led to complex analysis on
Riemann surfaces had mathematicians not already provided it.
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Heuristic

The 2d Gaussian model was one of the ur-cfts. It is only a slight
exaggeration to say that all of 2d cft (and non-conformal 2d qft)
emerged from the 2d Gaussian model:

the Virasoro algebra

2d nonabelian current algebra (at R = R* = 1)

torus models (several free 1-forms)

orbifolds of the above models

perturbation theory (sigma models, general nonlinear models)

conformal perturbation theory

axiomatic formulations of 2d cft

The 2d Gaussian model can serve as a starting point from which to
explore the whole galaxy of 2d quantum field theory.
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Recall the free n-form in 2n dimensions

F(x) is an n-form on M with equations of motion
dF =0  d(+F)=0

Its integrals are (n—1)-forms A, A* defined up to local gauge
symmetries given by (n—2)-forms f, f*

dA=F dA* = xF

A— A+ df A* — A* + df”

(n—1)-dimensional defects are described by fields that live on
(n—1)-dimensional objects £ with boundary 0¢

Vo (§) = eV L (€) = Vi ()P Joe T oc T
/A € S =R/2nRZ /A* € SL. =R/27R*Z  RR* =1
¢ 3
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Summary

@ We write the free quantum n-form on M as the free quantum

1-form on certain complete metric spaces Q C D™, (M).

@ In so doing, we build a precise formal analogy between
complex analysis on ) and complex analysis on a Riemann
surface — the Cauchy-Riemann equation in particular. So these
complete metric spaces () are called quasi Riemann surfaces.

@ Thus we have a precise formal analog of the 2d gaussian
model on the quasi Riemann surfaces Q.

@ There is now the prospect of constructing all the 2d conformal
field theories on the quasi Riemann surfaces, a vast new
territory of quantum field theory in 2n-dimensional
space-times M and a new way to formulate quantum field
theories — as fields on metric spaces (of currents) rather than
as fields on space-time.
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I'm proposing a new territory of QFT and trying to recruit
explorers.

Exploration is best done by naive and ambitious young people.

So please put aside the sophisticated technologies and problems of
QFT that you know. QFT is a still young subject. The current
ideas of what is a QFT might not be the last word.

Keep only the elementary 2d CFT from the 1970’s.
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What are the (n—1)-dimensional objects & 7

We take D™ (M) as the space of (n—1)-dimensional objects &.

Recall that A, A* are (n—1)-forms and

‘/pm* (5) = eipfg A+ip* fg A* /A c R/QT{'RZ /A* c R/27TR*Z
3 3

The rationale is

1.
2.
3.

4.

¢ is manifestly an (n—1)-current — a distribution on forms.
The (n—1)-simplices [o] are basic objects.

The U(1) conditions are closed under integer linear
combinations. So D, (M) is the minimal space of objects.

Take the metric completion D, (M) in order to do calculus.

Note that D, (M) is the space of extended objects for the free

n—1

n-form, not necessarily for any other theory.
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The free n-form as 2d gaussian model

Define scalar fields on D, (M)

o= 4 6= [4 50 V(g =@

Under a gauge transformation A — A 4+ df, A* — A* + df*
P(&) = ¢(§) +a(0€)  ¢7(§) = ¢"(£) + a™(08)

a(0¢) = /g =[5 ao0- /5 ar= [ r

Vot (§) — Vppr (&) P00 FP707(30)
Fix an (n—2)-boundary 9§y and consider only & with 0§ = 9&o
DMt (M)ag, = {€ € DM (M) 9¢ = &}

On D™, (M)g, the symmetries are just two numbers, a(9¢p) and
a*(0&p), independent of £&. The gauge symmetry acts on
DIt (M), as a global U(1)xU(1).
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The bundle of quasi Riemann surfaces

Consider as a fiber bundle

DI (M) —25 O (M) with fibers DI, (M)pe, —2 {960}

n—1

All the D™, (M)mo¢,, m € Z see the same U(1)xU (1) because
a(mo&p) = ma(0&y). So combine them to form the abelian group

DM (M), = mEEZ D (M) moe,

These are the “quasi Riemann surfaces” (modulo some technical
niceties). They form a fiber bundle of quasi Riemann surfaces

Q(M) — B(M) with fibers D" (M)z9e, —— Z0&

n—1

For brevity, write O L Z for any one of the fibers.

There is a 2d cft — the gaussian model — on each Q. A copy of the
global symmetry 2d group G = U(1) x U(1) acts on each fiber,

comprising a local gauge symmetry over the base space B(M).
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The prototype quasi Riemann surface is the metric abelian group
of integral O-currents in a Riemann surface ¥ (the case n = 1)

o) =Di"(x) 9F) -2z o= /51
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Tensor analysis on metric spaces.

GMT provides a construction of integral currents in any complete
metric space. So we are given D]’-"t(Q), the metric abelian group
of integral j-currents in the metric space Q.

Define the j-forms on Q by

Q;(Q) = Hom(D}"(Q),R)  9,(Q) % 11(Q)  duw(€) = w(2€)

A j-form is determined by its values on the infinitesimal
j-simplices, which generate D;"t(Q). So the tangent bundle can
be defined as the set of infinitesimal 1-simplices in O

TO = {6_1[0'5]3 O¢: [076] - Q}

This version of tensor analysis, if the metric space happens to be a
manifold M, is equivalent to the usual tensor analysis on manifolds.
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The maps IL;,,_1: DI"(Q) — DY, _ (M)

There are natural maps I ,: D" (D™ (M)) — D;’jrtk(M)

which are derived from the equivalence

Ao {ab s M) = AT x AR M o= AR M
In particular, taking k = n — 1 and restricting to Q

I n1: Dy™(Q) — DI, (M) 0,10 = Ol 4

IIpp—1: O-currents in @ — (n—1)-currents in M
Iy ,—1: l-currentsin @ — n-currents in M

Iy —1: 2-currents in @ — (n+1)-currents in M

A crucial technical point (requiring the flat metric completion)

I1y,,—1 identifies each tangent space T¢Q with a certain
subspace of DIt (M) which is closed under Hodge-.
Therefore * acts on the tangent spaces T¢ Q.
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The dual maps on forms are

H;,n—l: Qj+n—1(M) — Q](Q) de;,n—l - H;,n—ld

I05,,—1: (n—1)-forms on M — O-forms on Q A(z) — ¢(§)
A¥(z) = ¢"(€)

ln-1: n-forms on M — 1-forms on Q F(z) — j(6)
«F(x) = #j(£)

105, _1: (n+1)-formson M — 2-forms on Q

Now we have the classical 2d gaussian model on each fiber Q

dp(€) = j(€)  dp™(€) = #j(€)  Vppe(€) = PHOTW ()
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The intersection form on currents in M

There is a natural bilinear intersection form on currents in M

V v €y eopin. vy v (T
M(&1, &) = / €M1 Hkl 1 k2(x> H1 ugi'le'kQ( )d2nx

e depending only on the orientation of M

e well-defined on all smooth &1, &, and almost all integral &1, &
(then giving the integer intersection number)

e nonzero only if dim(&;) + dim(§2) = dim(M)
IM(§1,§2) 7é 0 only if ki+ko=2n

Pull back to QZ IQ(’I’]l,UQ) = IM(Hjl,nflanjg,nfan)

IQ(nl,nZ) 750 only if g1+ 72 =2

just as the intersection form of currents in a 2-manifold.
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The quantum 2d gaussian model on Q

Write the Schwinger-Dyson equation for (A(x) F(z')) smeared
against two currents &1, . Roughly (detail to follow) the S-D
equation for the free n-form on M is

</ Ai/ dF:t>:27TiIM(§1,§2) kk=n—1, ke=n+1
1 &2
Pulled back to Q, the S-D equation is
([ s [ die)=2milotmm) =0, ja=
m 2

which has exactly the same form as the S-D eqn of the 2d gaussian
model on a Riemann surface &

(/ ¢j:/ dj+) = 2mils(n1,n2) J1=0, jo=2
m 72

which (unsmeared) is the Cauchy-Riemann equation
0 1

0z z— 2

= 76%(z — 7))
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The S-D equations (details to be skipped)

We want the S-D equations to look the same for all n, so that
when they are pulled back to Q they will all be the same.

But #2 = (—1)" and the intersection form I;(&1,&2) has symmetry
properties and various other properties that depend explicitly on n.

Solution: use complex currents and set

Q =Dy (M)zog, ®i0D;" (M)
The tangent spaces T¢Q are now complex vector spaces on which
x acts. Define

SO

For n odd, €, is real. Then all currents can be taken real.
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Modify the intersection form so its properties are independent of n.

In{&.6) = enpgnlir(€1,&) ey = (—1)MmHmimiD/2 e

o In(&,&)=—1Iy(&,&)  (skew-hermitian)
o In(0&1,86) + Iy (€1,086) =0 (integration by parts)

o Iy(&1,JE ) is hermitian and positive definite on n-currents,
i.e., on (j+n—1)-currents with j =1
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The Schwinger-Dyson equation is now the same for all n
([ AL [ dFy) = ~2mivastin{6,62)
1 &2

Y4+ =1, 7—=-1, 74-=74+=0

written in terms of the chiral fields and their euclidean adjoints (F'
and A are now complex fields):

1
Py = (1 +i7'J)  Fp=P.F dAi=F:

Fl=F  Al=4:

Pulled back to Q, the S-D equation is the same as on a Riemann
surface X

<L%/@m:%WMd%m

2

where Io(71,m2) has the same properties as Is;( 71,72 ).
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Definition of quasi Riemann surface (details to be skipped)

Now we can define a quasi Riemann surface as a metric space
whose currents have the structures needed to write the
Cauchy-Riemann equation in the same form as the C-R equation
for an ordinary Riemann surface.

Here is the definition for the real case, which covers the examples
with n odd.
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A real quasi Riemann surface is
@ a metric abelian group Q with a morphism Q i> Z

@ a translation-invariant linear operator J on the tangent spaces
TeQ =TpQ

@ a densely defined translation-invariant integral bilinear form
Ig(m,n2) on ©®DI*(Q)
J
satisfying
1. J2=—1 (J is an almost-complex structure)
m,n2) 7 0 only if j1 + jo =2

Io(Oni,m2) +Ig(ni,0n2) =0 (integration by parts)

.U".'b.‘*’!\’

ITof

Io{mi,ne)=—Ig(n2,m) (skew symmetric)
(
ITof

n1,JJn2 ) on 1l-currents is symmetric and non-negative
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Prospects

We have the 2d gaussian model on the quasi Riemann surfaces Q
and, what is equivalent, the Cauchy-Riemann equation.

So we have the foundation for all the constructions of 2d cft on
the quasi Riemann surfaces Q.

Performing these constructions on the quasi Riemann surfaces
Q(M) will produce new cfts of (n—1)-dimensional defects in
conformal 2n-manifolds M.

We can further envision extending all the constructions of
non-conformal 2d qft to obtain, for each non-conformal 2d gft, a
non-conformal qft of defects in M.

A cornucopeia of questions present themselves — foundational
technical problems — opportunities to leverage 2d qft to develop a
new technology for doing gft in 2n dimensions — a new territory
of gft to explore. A sampling of possible questions follow.
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1. A classification conjecture

Conjecture

@ A quasi Riemann surface Q is classified up to isomorphism by
its Jacobian — the integral homology in the middle dimension
as a lattice in a complex vector space.

e Each Q is isomorphic to Q(X) = Di™(X) where ¥ is the
2-dimensional space with the same Jacobian as Q.

521 = R?" U {co} has trivial Jacobian, so the conjecture implies
that all the quasi Riemann surfaces Q(S52") are isomorphic

DM (S 20, = DIM(S?) Vn, VZo&
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2. Construct cfts on M via the conjectured isomorphisms
Q = D% (M)zae, = Dy (%)

n—1

1. Start with an ordinary 2d cft on the 2d space X. Call it CFTos.

2. Lift CFTy to D™ (X). Call this ECFTy (extended CFTs)
This lifting still remains to be done for the vertex operators of
the 2d gaussian model — i.e., renormalize them as fields on the
space of integral O-currents ) =), m;0y,

‘/;;7;)* (77) — e’ip f” ¢+ip* f,] ¢* — eip Zz m1¢>(x1)+zp* Z,L mizj)* (xl)

In general, such a field ®(n) might be described by a radial
quantization state at each point x € Y.

3. Use an isomorphism Q = Dé”t(E) to put EQFT3 on each fiber Q.

Note: it also remains to renormalize V}, ,+(£) in the n-form theory
for integral (n—1)-currents £. These renormalizations for all values

of n have to be consistent with the isomorphisms Q = D" (%).
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3. The gauge ambiguity

The choice of isomorphism Q = D& (32) for each fiber is not
unique. Different isomorphisms can produce theories on the fiber
that differ by an element of the global symmetry group G of CFTs.
The possible theories on the fibers form a principle G-bundle, a
gauge bundle, T (M) — B(M).

Consider a CFTy with nonabelian current algebra j*(x) in the Lie
algebra g of the global symmetry group G, e.g. the 2d Gaussian
model at R = R* =1 with G = SU(2) x SU(2).

The ECFT on each fiber contains 1-forms j%(&) in the local Lie
algebra gog, of the fiber. These correspond to n-forms F*(x) on
the space-time M, again in ggg,. The j*(§) constitute the
curvature tensor of a nonabelian connection in the gauge bundle.

In this way, the CFTs gives rise to a quantum theory with
nonabelian gauge symmetry over the base space B(M).
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4. Local space-time interpretation?

In the abelian case — the free n-form — the gauge symmetry over
B(M) reduces to ordinary local gauge symmetry in the space-time
M. ls there a local space-time interpretation of the nonabelian
gauge symmetry over B(M)?

More generally, the plan is to make a cft of (n—1)-dimensional
defects in 2n dimensions for for each ordinary 2d cft (and a
non-conformal gft from each 2d qft). Will these new theories have
a local space-time interpretation (assuming the projected
construction is successful)? Tiny defects look like points in M, so
fields ®(&) on Q(M) will when restricted to small £ give ordinary
local quantum fields on M. Will these form a local quantum field
theory on M7 If so, will they be new local gfts in 2n-dimensions?
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5. Automorphism groups of the quasi Riemann surfaces

If the classification conjecture is correct, then there will be an
automorphism group Aut(Q(X)) for each Jacobian.

There will be a conjugacy class of group inclusions
Conf(M) — Aut(Q(X))

for every conformal symmetry group of every conformal manifold
M with the given Jacobian.

Aut(Q(X)) will be the structure group of the fiber bundle of quasi
Riemann surfaces Q(M) — B(M). Each fiber will be isomorphic
to Q(X) up to an element of Aut(Q(X)).

There will be a group automorphism
Aut(Q(X)) — Sym(CFTy)

for every global symmetry group Sym(CFTs) of a 2d cft.
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6. Quasi holomorphic curves in QO

A quasi holomorphic curve in Q is a morphism Q(3) — Q, i.e., a
map C: ¥ — Q from a Riemann surface ¥ to O that preserves the
J-operator and the skew-hermitian form on currents.

The basic example is C': 2 € ¥+ [2] = §, € DI (%)

A local ghc is a ghc where C: D, — Q where D, is a tiny complex
disk. A tiny disk in Q is a tiny (n+1)-dimensional object in M.

The local quasi holomorphic curves are local probes. The fields of
an ECFT on Q pull back along C' to become ordinary 2d conformal
fields of the underlying CFT5 on .

For each local ghc, we have the radial quantization, Virasoro
algebras, and operator product expansion of the 2d cft on D..

This local 2d cft data on the collection of all local ghc's provides a
local description of the ECFT on Q.
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