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Abstract 

Quantum string theory is written as integrable analytic geometry on the 
universal moduli space of Riemann surfaces. 

1. Introduction 

In this lecture I describe recent work of Stephen Shenker and 
myself, reformulating two dimensional conformally invariant 
quantum field theory [l] and string theory [2]. This work grew 
out of a line of investigation of string theory whose begin- 
nings were reported in Ref. [3]. Our main goal is to express 
string theory in an abstract geometric language which makes 
no reference to spacetime, motivated by the expectation that 
string theory, as a theory of quantum gravity, will produce 
spacetime dynamically. 

String theory is interesting, despite any direct experimental 
contact with feality, because it is the only available theory 
which seems both self-consistent and capable of exhibiting 
the basic features of the low energy world: quantum mech- 
anics, gravity, gauge forces, light fermions, chiral asymmetry 
and so on. But string theory as presently understood is an 
incomplete theory. It is limited to perturbation theory in 
weakly curved spacetimes; it requires an a priori choice of 
(partially compactified) spacetime and it permits too many 
such choices. 

There is apparently no direct experimental data on the 
process of string compactification. For the moment, we are 
forced to do what Nambu has called postmodern physics [4]. 
In such a remarkable circumstance, having an incomplete 
theory so far in advance of experiment, the most promising 
strategy is to investigate the formal structure of the existing 
theory so as to expose its most fundamental properties, in the 
hope that this will lead to effective methods of extracting 
predictions from the theory and perhaps even to new ways of 
doing theoretical physics. We should look for formal models 
which might provide guidance, playing a role in this post- 
modern physics analogous to that performed, for example, by 
superconductivity in electo-weak theory. 

We would especially like to rewrite string theory so as to 
have some hope of being able to control it mathematically, as 
an integrable quantum system, for example. Debatable pre- 
judices about the goal of physics aside, it is becoming difficult 
to imagine explaining the smallness of the cosmological con- 
stant without such precise mathematical control. 

The crucial constraint in this enterprise is that an abstract 
reformulation must exactly reproduce the mathematical 
structure of the existing recipe for perturbatively calculating 
the string S-matrix in weakly curved spacetimes by integrat- 
ing the partition function of the conformally invariant string 
world surface over the moduli space of all Riemann surfaces 
151. 

A traditional approach to nonperturbative string theory 
starts by writing a classical field theory of string and then 
attempts semi-classical calculations. We have not taken this 
approach, although string field theory was useful as a trial 
ground for thinking about the abstract structure of string 
theory [6]. The main drawback of string field theory is that it 
turns away from the most beautiful aspect of string theory, 
duality, which can be interpreted as conformal invariance of 
the string world surface. A second drawback of string field 
theory is that it makes arbitrary and unnecessary extrpolation 
from the on-shell content of string theory to obtain an off- 
shell formulation. This is unnecessary because string theory is 
a self-contained, potentially complete theory of physics. 

Our starting point is the equivalence between the string 
equation of motion and the condition of conformal invari- 
ance on the two dimensional quantum field theory of the 
string world surface. Solving the string equation of motion is 
analogous to the problem of finding all two dimensional 
conformal field theories [7-lo]. In particular, we take guid- 
ance from the unitary discrete series [9, 101 of conformal field 
theories which describe universality classes of two dimen- 
sional critical phenomena. We learn from their properties 
how to reformulate two dimensional conformal field as 
analytic geometry on the space of Riemann surfaces [I 13. A 
geometric formulation of perturbative string theory then 
follows immediately. As the setting we define the universal 
moduli space of Reimann surfaces, written I?. The universal 
moduli space contains all compact but not necessarily con- 
nected Reimann surfaces, without punctures or boundaries. 
I? is an effectively compact and connected analytic space, so 
its global analytic geometry is highly constrained. The funda- 
mental object of abstract string theory is a hermitian metric 
hirb in an infinite dimensional holomorphic vector bundle W 
over I?. The covariant derivative D associated with the metric 
h is defined by Dh = 0 or ah,b - h,,Ai = 0 (a covariant 
derivative in W has the form D = a + A ,  b = 8 where A is 
the connection (1, 0)-form). The quantum equation of motion 
of string is the condition of zero curvature: 

This means that, in principle, quantum string theory is inte- 
grable. 

To do nonperturbative string theory it will be necessary 
to construct a completion of the universal moduli space. 
Making such a completion might be thought of as adding to 
the moduli space some appropriate class of infinite genus 
surfaces. The integrable form of the abstract string equation 
of motion (1) will remain unchanged. Solving string theory 
will then be reduced, in principle, to algebra. The hardest 
problem will be to extract useful information from an 
abstract solution; to find, for example, a concrete semi- 
classical interpretation in terms of spacetime geometry. We 

F = [D, D ]  = 8A = 0.  (1) 
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must hope that the integrability of the theory will allow some ate z on the surface m, so the intrinsic surface metric takes the 
encouraging exact results in advance of a complete solution. form d? = ef@) ldzI2. A surface in spacetime is written 
For example, we might imagine using topological properties xg(I, z). For each Riemann surface m, the integral over maps 
of the completion of universal moduli space to demonstrate into spacetime has the form 
nonperturbatively the exact vanishing of the cosmological 
constant. 

For the present, we have expressed as analytic geometry 
on universal moduli space only the bosonic string pertur- 
bation theory and ordinary conformal field theory on finite 
genus Riemann surfaces. The perturbative bosonic string 
theory is only formal, because the quantum corrections are 
divergent. Supersymmetric string theories, on the other hand, 
are expected to have finite perturbative expansions. But for- 
mal study of the bosonic theory provides all the basic ideas 
we need. To write fermionic string theory as analytic geo- 
metry, it is only necessary to replace two dimensional confor- 
mal field theory by two dimensional superconformal field 
theory, and ordinary Riemann surfaces by super Riemann 
surfaces; the formal structure remains the same. The bosonic 
string theory as integrable analytic geometry on universal 
moduli space will be transcribed directly into fermionic string 
theory as integrable super analytic geometry on the universal 
super moduli space of super Riemann surfaces [12]. 

This reformulation of conformal field theory has potential 
applications beyond string theory, because two dimensional 
conformal field theory is the underlying calculus of several 
areas in physics and mathematics, including two dimensional 
critical phenomena, the representation theory of affine alge- 
bras and sporadic groups and the classical geometry of Calabi- 
Yau spaces. These can now be seen as aspects of a single 
subject - integrable analytic geometry on the universal 
moduli space of (super) Riemann surfaces 

While we were carrying out this work, several groups were 
investigating string theory in flat spacetime in terms of the 
analytic and algebraic geometry of moduli spaces of Riemann 
surfaces [ 131 and Martinec was discussing several ideas 
closely connected to aspects of the present work [14]. 

2. The string S-matrix 

The existing recipe for calculating perturbative string scatter- 
ing amplitudes calls for integrating the partition function of 
a two dimensional conformal field theory over the space of all 
Riemann surfaces. This is a generalization of the recipe orig- 
inally developed from the Veneziano formula and the Koba- 
Nielsen integral. It gives the perturbative S-matrix of strings 
propagating and scattering in some fixed background. In the 
original formulation of string theory the background was 
Minkowski spacetime. More generally, the background 
spacetime is some manifold M of dimension d.  

In the first quantized formalism, the string S-matrix is 
calculated by performing a reparametrization invariant path 
integral over string histories, which are surfaces in spacetime. 
A natural gauge fixing procedure is to introduce an intrinsic 
metric on the world surface, and to impose the conformal 
gauge on the intrinsic metric. The conformal classes of sur- 
face metrics are exactly the Riemann surfaces. In the confor- 
mal gauge the string path integral factors into an integral 
over the space of Riemann surfaces and an integral over maps 
each Riemann surface into spacetime. Let m = (ml, . . . , 
m”) be local analytic coordinates for the space of Riemann 
surfaces, the moduli space. Choose a local analytic coordin- 

.zS,(fi, m) = j DX D = n ddX(z, z), (2) 
:Em 

where A[x] is a local functional of the map xp((z, z). The most 
general local action functional has the form 

A[x] = ( m d(z dz g,,(x)8xp8xv + . . . 1. (3) 

The functional integral (2) is the partition function of the 
general two dimensional nonlinear model, the two dimen- 
sional quantum field theory whose action is A[x], The 
spacetime metric T-’g,,(x) appears as a coupling in the 
two dimensional field theory. The infinitely many couplings 
indicated by the ellipse are tensor fields on spacetime, of 
higher and higher rank as more and more derivatives of 
xp((z, z )  appear in the action. The couplings in the surface 
action A[x] express the background in which the strings move 
and interact. This is the only point in the calculation of the 
S-matrix where the background enters. 

In conformal gauge the string partition function also 
includes a contribution from the surface ghost fields: 

Z(fi, m) = Zgh(fi, m>Z,,(fi, m). (4) 

The surface ghost fields are free chiral fermions b(z), c(z) and 
&I), E(.?). The ghost field c represents infinitesimal repara- 
metrizations of the surface and the field b represents infinitesi- 
mal variations of the conformal gauge slice. The zero modes 
of b correspond to the nontrivial variations of the gauge slice, 
which are the infinitesimal variations in moduli space. Since 
there is no coupling between the two chiralities, except 
through the conformal anomaly, the ghost partition function 
is formally 

12 Zg,(fi, m) = I 1 DbDc e-lmbac 

Because of the zero modes of the b field, the string partition 
Z(fi, m) transforms as a density on the space of Reimann 
surfaces. The integral of the partition function over the space 
of Riemann surfaces gives the S-matrix. Let Mg be the moduli 
space of smooth, compact, connected Riemann surfaces of 
genus g, without boundary or punctures [I 13. The generating 
functional for the connected part of the S-matrix is 

where E. is the string coupling constant. From now on we 
absorb the factor E?g-2 into the partition function. 

The functional S,,,, gives the string S-matrix because its 
variations with respect to the couplings [(l/T)gpy(x), . . . ] 
are generalized Koba-Nielsen formulas for scattering ampli- 
tudes as integrals over the locations of vertex operators and 
over the moduli space. For example, varying the spacetime 
metric gives the integrated vertex operator 

(7) 

In flat spacetime, the Fourier transform is the familiar form 
of the vertex operator: 
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SgrV(x) = j d k  CJk) eik". (8) 

Let us note a few basic facts about the moduli spaces Mg , 
For a connected Riemann surface, the genus g is an integer 
which counts the number of handles. MO is a single point, the 
Riemann sphere. M ,  is the space of tori, a branched cover of 
the complex plane. For g > 1, Mg is a noncompact complex 
analytic space of complex dimension n = 3g - 3. The 
moduli spaces Mg are almost everywhere smooth manifolds. 
But for g > 0 each Mg contains a finite number of singular 
points where smoothness breaks down. The singularities are 
not especially pathological; at worst they are only corners in 
the moduli space. The singular points are the surfaces with 
discrete conformal symmetries. Technically, the moduli 
spaces Mg are V-manifolds, sometimes called orbifolds. At its 
generic smooth points Mg looks like a complex vector space 
C". At the singular points it looks like C" modulo the action 
of a finite group of linear transformations. 

So far we have described the connected part of the S- 
matrix in terms of a sum of integrals over the various moduli 
spaces M g .  As a motivation for our eventual definition of the 
universal moduli space of Riemann surfaces, we write the 
generating functional for the full S-matrix as an integral over 
a single space: 

j R  afi, m) (9) s = ,Sconn = 

where R is the space of all compact, smooth Riemann sur- 
faces, without boundary or punctures, but not necessarily 
connected. The derivation of eq. (9) from eq. (6)  is a matter 
of elementary combinatorics. The moduli space R consists of 
infinitely many disconnected components indexed by multi- 
plicities {n,}, where ng > 0 is the number of connected com- 
ponents of genus g in the surface: 

where Sym"(M,) is the n-fold symmetric product of Mg with 
itself, and Symo(Mg) is a single point. This symmetrization is 
due to the indistinguishability of the various connected com- 
ponents of a surface. If m = m, v m2 v . . . v mN is a sur- 
face with connected components m,,  m,, . . . then the par- 
tition function of m is 

N 

Z(fi, m) = n Z(f i i ,  mi). (1 1) 
i= I 

The integral of the partition function over each connected 
component of R is therefore 

Summing over the multiplicities {n,} gives eq. (9) for the 
generating functional of the full S-matrix. 

3. String theory and conformal field theory 

on the two dimensional quantum field theory of the world 
surface. Conformal invariance in quantum field theory is 
equivalent to the vanishing of the trace of the stress-energy 
tensor, up to a possible conformal anomaly. The conformal 
anomaly in two dimensions is proportional to the scalar 
curvature of the surface. On the plane or on the cylinder the 
stress-energy tensor is traceless. 

Locality implies that conformal invariance is equivalent to 
scale invariance which in turn is equivalent to the vanishing 
of the renormalization group /?-function, since the /?-function 
is the infinitesimal variation of the effective couplings of the 
field theory with respect to the two dimensional scale p. In the 
general nonlinear model (2) the scaling behavior of the coup- 
lings [(l/T)g,,(x), . . . ] can be calculated perturbatively in T, 
where T + 0 is the limit of large distance in spacetime. The 
/?-function for the spacetime metric is 

The renormalization group fixed point equation flIv = 0 thus 
becomes, at large distance in spacetime, Einstein's equation 
for the gravitational field. More generally, there is exactly one 
p-function for each coupling in the two-dimensional field 
action. In the limit T -+ 0 the fl-function for each coupling 
becomes a local differential operator on the corresponding 
spacetime tensor field. The equation of two dimensional 
conformal invariance thus has exactly the form of an equation 
of motion on the string background, where the background 
is encoded as the coupling of the two dimensional field 
theory. 

In the operator interpretation of a conformal field theory 
on the cylinder, or on the conformally equivalent punctured 
plane, the moments of the traceless stress-energy tensor 
T(z) = Z,, Z-"-~L,,,  F(5) = Xn Z - n - 2 t n ,  generate two com- 
muting Virasoro algebras 

The number c is the coefficient of the conformal anomaly. 
The operator L, generates the infinitesimal conformal trans- 
formation z + z + ~z"+', and & generates the complex con- 
jugate transformation. 

The Virasoro algebra was the language in which confor- 
mal invariance was originally equated with physical meaning- 
fulness of the string S-matrix. In string theory, the punctured 
plane is the world surface of a free string. Anomaly free 
conformal invariance implies gauge invariance of the string 
interaction under the local conformal transformations 
generated by the Virasoro algebra. This gauge invariance 
ensures the decoupling of spacetime ghosts to give a unitary 
S-matrix. The vanishing of the conformal anomaly in 
spacetime string theory fixes the dimension of spacetime; 

C = Cgh C,, = 0 C,, = d Cgh = - 26. ( 1 5 )  

Unitary of the S-matrix can be interpreted as the absence 
of net flux of string into, or out of, the vacuum. Thus the 

The recipe for the string S-matrix makes sense only if the 
string partition function is well-defined on the space of Rei- 
mann surfaces. This means that it must be independent of the 
local scale factor e""') in the two dimensional metric, which 
is exactly the condition of anomaly free conformal invariance 

string S-matrix is unitary if and only if the background is a 
solution of the quantum equation of motion. But string can 
be identified with its own background, since the scattering 
states of string can be identified with variations of the two 
dimensional couplings which encode the background. This is 
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one way of seeing that string theory is potentially a complete 
theory of physics. Since unitarity of the string S-matrix can 
be considered as the quantum equation of motion of string, 
as a condition on the background, and unitarity is equivalent 
to conformal invariance of the world surface, it follows that 
the string equation of motion is the condition of conformal 
invariance in two dimensional quantum field theory. What 
we gain by this rewriting of the string equation of motion is 
the possibility of abstracting it from spacetime. All we need 
do is replace the couplings of the classical two dimensional 
action (3) by some alternate parametrization of the two 
dimensional quantum field theory. We then interpret the 
integral (9) of the partition function as a functional of all 
possible variations of the background which preserve confor- 
mal invariance, giving the generating functional for an 
abstract generalization of the string S-matrix. 

One possible abstract parameterization of conformal field 
theories is given by the algebra of two dimensional quantum 
fields. There already exists a program, called the conformal 
bootstrap, to find all possible algebras of quantum fields 
satisfying the condition of conformal invariance [7, 81. The 
bootstrap idea is to attack two dimensional conformal field 
theory on the plane, or equivalently on the Riemann sphere, 
with first principles. Conformal invariance is expressed by the 
action of the Virasoro algebra, two dimensional locality by 
real analyticity of the correlation functions on the Riemann 
sphere, and two dimensional crossing symmetry by single- 
valuedness of the correlation functions (modular invariance 
on the punctured sphere). In string theory, correlation func- 
tions on the Riemann sphere translate into tree-level scatter- 
ing amplitudes. Conformal invariance, two dimensional 
locality and two dimensional crossing symmetry are equiv- 
alent to basic physical properties of the tree-level string S- 
matrix: unitarity, spacetime locality, and duality. The con- 
formal bootstrap describes a conformal field theory by the 
highest weights hi, Ji of the Virasoro algebra (the lowest Lo, 
Lo eigenvalues in each irreducible subrepresentation) and the 
operator product coefficients C(ijk) of the primary conformal 
fields corresponding to the irreducible subrepresentations. It 
then attempts to translate the basic conditions of conformal 
field theory into algebraic conditions on the numbers hi ,  kj 
and C(ijk). 

This program has several drawbacks as an abstract formu- 
lation of string theory. The weights and operator product 
coefficients do constitute a minimal set of ingredients for 
conformal field theory, but it has turned out to be extremely 
difficult to find the explicit algebraic bootstrap conditions. 
Also, the weights and operator product coefficients are very 
distant from the physically interesting two dimensional quan- 
tities, since they give only tree-level information about the 
string. Finally, this version of the conformal bootstrap is too 
mechanical and un-geometric to be aesthetically attractive. 

4. The c < 1 discrete series 

In the last few years it has become clear that the problem of 
describing all conformal field theories is much more tractable 
if c < 1 than in the general case [&lo]. In particular, the 
condition of unitarity (positivity of the metric) on represen- 
tations of the Virasoro algebra restricts the possible values of 
c < 1 and the possible highest weights to a discrete series of 
rational numbers [9]. Recently it was shown that modular 

invariance of the partition function in genus 1 puts stringent 
restrictions on the multiplicities of highest weights in the 
c < 1 discrete series [lo]. The form of the genus 1 partition 
function and of the genus 1 modular invariance equation for 
the discrete series were highly suggestive to us. The c < 1 
discrete series, whose physical application is the description 
of universality classes of two dimensional critical phenom- 
ena, can serve as a model setting from which to derive ideas 
about abstract string theory. 

Genus 1 Riemann surfaces can be parametrized by points 
z in the upper half plane Im z > 0. The torus parametrized 
by z is the complex plane with each point w identified with 
w + 1 and w + T [Fig. l(a)]. Two such tori z and t' are the 
same Riemann surface if and only if they are related by a 
modular transformation r' = (UT + b)/(cz + d )  with a, b, c, 
d integers satisfying ad - bc = 1. The moduli space MI is 
thus the quotient of the upper half plane by the modular 
group & . The modular group is generated by T ( z )  = z + 1 
and S(z) = - 1/z. The moduli space MI can be pictured by 
drawing the standard fundamental domain for & in the upper 
half plane and identifying its edges by the transformations T 
and TS [Fig. l(b)]. The points enii3 and i on the boundary of 
the fundamental domain are the only two singular or orbifold 
points in MI.  They are only fixed points of nontrivial modu- 
lar transformations. 

The partition function of a conformal field theory is the 
same for the two tori T and 5' because the flat metrics on the 
these tori, inherited from the complex plane, are related by a 
global scale factor cz + d. In the operator interpretation, 
writing q = eZnrr, the modular invariant partition function is 

z(?, z) = tr (q"+'"q'+';"). (16) 
The number c0 = - c/24 is the universal ground state energy 
of conformal field theory [15]. The appearance of is 
explained by the fact that the Virasoro generators Lo and to 
are normalized for the coordinate z = eZniw. In the punctured 
z plane, the torus z is made by identifying z with qz. The shift 
of the ground state energy is due to the conformal anomaly 
for the transformation w + z .  

r' 
0-1 

( a )  

i /3 

Fig. 1. (a) The torus parametrized by T. (b) The standard fundamental 
domain of the genus 1 modular group r, acting on the upper half 7 plane. 

Physica Scripta TIS 



82 D. Friedan 

For c in the discrete series let (h , }  be the finite set of 
highest weights allowed by unitarity and let 

(17) 
be the character of the irreducible Virasoro representation of 
heighest weight ha. Explicit formulas have been found for 
these characters [ 161. The partition function is written in 
terms of the characters by summing over the irreducible 
subrepresentations of the two Virasoro algebras: 

%+h) 
x Y 5 )  = tr (4 

z(?, 5 )  = ?(?)hibxb(5) (18) 
where hdb is the integer multiplicity of the highest weights 
f i  = h,, h = hb in the conformal field theory, and the 
summation convention is applied to the indices 2, b. 

Under the modular transformation T 

so invariance of the partition function under T is the con- 
dition that hdb = 0 unless the spin h, - hb (the eigenvalue of 
the rotation operator Lo - Lo) is an integer. Under S, the 
characters transform linearly: 

X U ( -  1/51 = s;xb(4, (20) 
where S; is a matrix of algebraic numbers. The characters 
~ " ( 5 )  thus form a closed collection of multi-valued analytic 
functions on the moduli space MI.  The modular invariance 
condition on the partition function (1 8) is now reduced to the 
invariance of the matrix hab: 

h,b = S;h;dSf. (21) 
This is a Diophantine equation because S: is algebraic while 
hrib is integer. For the first few values of c in the discrete series 
there seem to be very few solutions [IO]. 

The genus 1 partition function offers several lessons. First, 
it is possible to learn much about conformal field theory by 
studying the partition function alone. Second, given the 
modular properties of the Virasoro characters, modular 
invariance of the partition function is a powerful principle. 
Third, the real analyticity of the partition function is 
obtained by writing it as a hermitian product of locally 
analytic, multi-valued functions on moduli space. Fourth, the 
single-valuedness or modular invariance of the partition 
function is obtained from the modular invariance of the 
hermitian metric. 

The possibility of expressing conformal field theory 
through the partition function alone is very important for 
string theory. We already know that the string S-matrix can 
be written entirely in terms of the partition function. More- 
over, we do not want to specify a spacetime for the theory. 
This means that we must avoid specifying in advance the 
Hilbert space of the two dimensional conformal field theory 
or the space of quantum fields. For a surface with boundary, 
the boundary conditions on each boundary circle are identi- 
fied with the Schrodinger picture Hilbert space. Punctures are 
asymptotic forms of boundaries, where the boundary con- 
ditions introduce quantum fields at the punctures to give 
correlation functions. A correlation function can be thought 
of as the partition function of a surface with punctures. 
Therefore, to avoid knowing in advance the possible bound- 
ary conditions, we should work only with closed surfaces, 
without boundaries or punctures. We want to think of cor- 
relation functions as derivative quantities in conformal field 

theory; the essential object is the partition function on all 
closed surfaces, without boundary or puncture. 

5. The partition function and the universal moduli space 

In order to generalize from genus 1 to higher genus it is useful 
to translate the structure of the genus 1 partition function 
into geometric language. The characters ~"(7) form a linear 
representation of the modular group G, generated by the 
actions of T and S described in eqs. (19) and (20) above. The 
modular group is the fundamental group of the moduli space 
MI.  A representation of the fundamental group defines a flat 
holomorphic vector bundle W over MI, whose parallel trans- 
port matrices around closed loops are exactly the original 
representation. The characters ~ " ( 5 )  can be interpreted as the 
components, in a basis {e , }  of locally constant sections of W, 
of a global holomorphic section x = x"(r)e, of W over M , .  
The modular invariant matrix hlb is the component matrix 
hfib = h(Z,, eb)  of a globally defined flat hermitian metric h in 
W. Described invariantly, the partition function is 

This is the geometric structure which we generalize to 
higher genus. We will write the partition function for surfaces 
of arbitrary genus in the form 

z = h(X, X I .  

z(fi, m) = $a(fi)hat,$b(m) = h($, $1. (22) 

(Recall that m = (ml, m2, . . . ) are local analytic coordi- 
nates on moduli space.) The functions @(m) are multi-valued 
analytic functions of the moduli and the hermitian matrix hdb 
is constant. Geometrically, the functions @(m) are the com- 
ponents of a holomorphic section $ of a holomorphic vector 
bundle W over moduli space and the constants ha, are the 
components of a flat hermitian metric in W. Strictly speaking 
this is correct in genus g > 1 only for c = 0. For c # 0 the 
partition function Z(fi, m) is a section of a real line bundle 
E, 0 E,, where E, is a certain holomorphic line bundle over 
moduli space; $ is a section of E, 0 W and h is only projec- 
tively flat, i.e., its curvature tensor is an ordinary (1, 1) form 
times the identity matrix in W. These subtleties are treated in 
[l]. Here we limit the discussion to conformal field theory 
with c = 0, since the combined spacetime-ghost system of 
the string has c = 0. 

The crucial physical properties of the partition function 
are real analyticity and single-valuedness or modular invari- 
ance. They are obtained from the combination of the flatness 
of the hermitian metric h and the complex analyticity of the 
section I). Flatness means that there is a local basis of Win 
which the components of the metric are constant. In that 
basis, the complex analyticity of the components @(m) 
guarantees that the partition function is real analytic. Then 
single-valuedness is guaranteed by the fact that h and t j  are 
globally defined over moduli space. 

Flatness and analyticity are potentially effective geometric 
properties. In a connected space, a flat hermitian metric is 
equivalent to a unitary representation of the fundamental 
group. On a connected, compact space there are very few 
globally defined holomorphic sections of a vector bundle. For 
example, the only globally defined analytic functions are 
constant. Unfortunately, the moduli spaces Mg of connected 
Riemann surfaces are not compact and are not connected to 
each other. To make the geometry of conformal field theory 
effective we need a way of compactifying the moduli spaces 
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Fig. 2. (a) Forming a node in a disconnecting channel. (b) Forming a node 
in a handle. 

and of connecting them together. Both goals are accom- 
plished by introducing Riemann surfaces with nodes [ 1 11. 

Two elementary processes change the connectivity of a 
surface (Fig. 2 ) .  These are the two possible ways of forming 
a node and then removing it. A node is a point where the 
surface has a coordinate neighbourhood consisting of two 
disks with their origins identified (Fig. 3). When the node is 
removed, the two coordinate disks are separated, and a 
smooth surface is left, except for punctures at two points x 
and y corresponding to the origins of the two coordinate 
disks. In the first process [Fig. 2(a)] a connected surface m of 
genus g develops a node in a channel (tube) which disconnects 
the surface. The surface with node is labelled m,. When the 
node is removed the resulting surface m' is the union of two 
connected components, m, of genus g ,  and m2 of genus g2 ,  
with g = g, + g,. In the second process [Fig. 2(b)] the con- 
nected surface m of genus g develops a node which lies in a 
handle. Removing the node leaves a connected surface m' of 
genus g - 1. 

Various combinations of the two elementary processes of 
node removal produce surfaces with multiple nodes (Fig. 4). 

Fig. 3. A coordinate neighborhood of a node as two disks with their origins 
identified. 

Fig. 4. A surface m, with multiple nodes, and the corresponding smooth 
surface m' = n(m,) with the nodes removed. 

Each node a has an independent coordinate neighborhood 
consisting of a double disk. Removing the node a leaves two 
punctures, at x, and y,. If all the nodes are removed from a 
surface m,, and all the resulting punctures are erased, the 
result is a smooth surface we call n(mD) (Fig. 4). The surfaces 
m, with nodes are parametrized by the moduli of the smooth 
surfaces m' = ~(111,) and by the locations of the pairs of 
punctures (xg, y,)  on m' which are joined to form the nodes: 

Mg can be compactified by adding surfaces with nodes. 
The surfaces which are to be added are called the stable 
Riemann surfaces with nodes (connected, compact and of 
genus g).  Stability, for a surface with nodes of genus g > 1, 
means that when all the nodes are removed, the resulting 
surface with punctures has no continuous conformal sym- 
metries. That is, each connected component with the topo- 
logy of the sphere in the resulting surface must have at least 
three punctures. The surface m, in Fig. 4 is an example of a 

mD = (", yl, x 2 ,  y2, * . . 1. 

w = l n z  

Fig. 5 .  (a) The neighborhood of an opened node as two annuli with their 
inner circles identified. (b) The neighborhood of an opened node as a large 
annulus or long cylinder. 

Physica Scripta T15 



84 D. Friedan 

stable surface. The space of stable surfaces with nodes which 
are connected, compact and of genus g is written D g .  The 
union Ug = Mg U Dg is a compact V-manifold or orbifold, 
called the stable moduli space. Dg is called the compactiJica- 
tion divisor. Dg is a divisor in A?g because it is carved out 
locally by the vanishing of one analytic coordinate function, 

The coordinate q parametrizes the opening of a node 
(Fig. 5) .  Let m, = (m’, x ,  y )  be a surface with a node. Pick 
a coordinate neighborhood of the node as pictured in Fig. 3. 
From each of the two coordinate disks IziI < 1 remove an 
inner disk Jzi( < 1q1”2. Then identify the inner circles 
IziI = 1q(”’ by z2 = q / z ,  [Fig. 5(a)]. The conformal structure 
is held fixed outside the original neighborhood of the node, 
IziI < 1. The result is a smooth surface (except for whatever 
other nodes are present elsewhere on the surface). The surface 
near m, are parametrized by m = (m,, q) = (m’, x ,  y ,  q). 
The points q = 0 correspond to the surfaces with the node 
closed, i.e., m, = (m’, x ,  y ,  0). A useful coordinate to use 
for the neighborhood of each opened node is the annulus 
1q11’2 < Iz( < lql’” [Fig. 5(b)]: 

q = 0. 

(23) 

The conformal transformation w = In z makes the opened 
node into a long cylinder or tube [Fig. 5(b)]. The simplest 
example occurs in genus 1. The point q = eZniT = 0 corre- 
sponds to the limit of the torus in which it becomes the 
Riemann sphere punctured at 0 and 00 [cf. eq. (23)]. Adding 
the point q = 0 to M ,  makes the compact space which is 
a branched cover of the sphere. 

As a channel is closed, as q -, 0, the neighbourhood of the 
opened node becomes the infinite cylinder or the punctured 
plane. By two dimensional locality, the behavior of the con- 
formal field theory near the midpoint of such a tube is essenti- 
ally independent of the boundary conditions at the ends of 
the tube provided by the conformal field theory on the rest of 
the surface. Deep inside the tube only the ground state com- 
ponent of the boundary condition survives. This means that 
we only have to understand conformal field theory on the 
infinite cylinder in order to understand the behavior of the 
partition function near the compactification divisor. 

As q varies, the surface outside the neighborhood of the 
opened node is held fixed, so the boundary conditions at the 
ends of the tube, provided by the conformal field theory 
outside the tube, are independent of q (Fig. 6 ) .  If the tube 
does not separate the surface [Fig. 2(b)] then the boundary 
conditions at the ends of the tube are correlated. They are 
described by a density matrix e(%,, m,), in the operator 
representation of the field theory on the cylinder. If the tube 
does separate the surface [Fig. 2(a)] the boundary conditions 
at the two ends of the tune are uncorrelated, and can be 
represented by a density matrix e which is a pure state. The 
partition function of the surfae m = (m,, q)  near m, is 

(24) r, -r, Z(fi, m) = tr [q 4 e(%, m,>l. 
The trace can be expanded into a sum over a complete set of 
intermediate states 14), which are eigenstates of Lo and Lo 
with eigenvalues h, and k,: 

Z(fi2, m) = qh“44(41e(*,, m d l 4 ) .  (25) 
4 

f 

Fig. 6.  The sum over states in an almost closed channel. 

To interpret the expectation value of e in the state 4, turn the 
picture around and regard (41 and 14) as providing asymp- 
totic boundary conditions at the punctures x and y in the 
smooth surface m‘ = n(m,). These asymptotic boundary 
conditions produce at x and y the scaling field 4 correspond- 
ing to the state 14), so (4le(fi,, m , ) l 4 )  is the unnormalized 
two point function of the field 4 on the surface m‘: 

(4 ldfi, m,) l4 )  = z(fi’, “1 ( 4 ( x > 4 (  y ) > m , *  (26) 
At q = 0 the only intermediate state which contributes is the 
SL, invariant ground state IO), with h = /i = 0, which corre- 
sponds to the identity operator 1. Therefore the partition 
function on the compactification divisor satisfies the funda- 
mental factorization identity 

Z(fi,, m,) = Z(fi‘, m‘) or Z = Z o  n. (27) 
In words, the partition function of a surface with node is 
equal to the partition function of the surface with the node 
removed and the resulting punctures forgotten. The partition 
function is continuous under change of connectivity by the 
processes of Fig. 2. 

So far we have only looked at a single node. The surfaces 
with exactly one node form the generic part of the compactifi- 
cation divisor. The surfaces with multiple nodes form the 
self-intersections of the compactification divisor (Fig. 7). 
Since independent, non-overlapping coordinate neighbor- 
hoods can be chosen for each node, and since the opening of 
each node ignores what is happening outside the neighbor- 
hood of that node, the opening of the nodes is described by 
independent coordinates qa,  Near a surface m, with multiple 
nodes, the moduli space is parametrized by m = (m,, q l ,  
q2, . , . ), where m, itself is parametrized by the smooth 
surface m’ = n(m,) and by the locations of the punctures in 
m‘. A sum over intermediate states 14a) can be performed in 
each node a separately, giving 

In particular, the ground state factorization condition 
2 = Z 0 n holds on all of the self-intersections of the com- 
pactification divisor. The partition function is continuous 
under all changes of connectivity produced by the formation 
and removal of nodes. 
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Fig. 7. A surface with multiple nodes as a self-intersection of the compactif- 
ication divisor. 

The independence of the coordinates qz for the opening of 
multiple nodes, i.e., the tranversality of the self-intersections 
of the compactification divisor, should be a key ingredient in 
the eventual proof of finiteness for the perturbative fermionic 
string in any supersymmetric background. This transversality 
means that it will suffice to demonstrate finiteness separately 
for each q. integral in a neighborhood of 0. Thus the proof 
will depend only on properties of the appropriate supercon- 
formal field theory on the cylinder [12]. 

The factorization equation (28) can be used to reconstruct 
the correlation functions of the quantum fields from the 
behavior of the partition function near the compactification 
divisor. The essential properties of the correlation functions 
follow from the properties of the partition function. Real 
analyticity of the partition function makes the correlation 
functions also real analytic. Modular invariance of the par- 
tition function makes the correlation functions crossing 
symmetric, since permutations of punctures can be realized 
by modular transformations. The correlation functions will 
automatically be SL, invariant, since they are expressed in 
terms of modular invariants of the punctures. 

The local conformal invariance of the reconstructed 
theory is expressed through the dependence of the partition 
function on the moduli. Differentiating with respect to the 
moduli inserts smeared stress-energy tensors in correlation 
functions. To see local conformal symmetry in the cylinder, 
attach a surface of large genus to the boundaries of the 
cylinder. Local conformal transformations of the cylinder are 
approximated by the many independent variations of the 
moduli for the handles outside the cylinder. 

The reconstruction of the correlation functions cannot be 
done directly, because the correlation functions which appear 
in eq. (28) are special in that they contain each field c$# twice. 
However, nodes which separate the surface m, give corre- 
lation functions on m‘ = n(m,) which are products of corre- 
lation functions on the connected components of m’. The 
paired fields 4,(x,) and 4 @ ( y z )  occur on different com- 
ponents, In this way a large class of products of correlation 
functions on the Riemann sphere can be obtained. We conjec- 
ture that this is enough information to reconstruct the corre- 
lation function themselves. There could be some difficulty in 
the reconstruction when multiple fields 4 have the same 
dimensions h,, 5, as when there are internal symmetries in 
the conformal field theory. But this should be no more serious 
than the difficulty of reconstructing a quantum field theory 
with charges from the correlation functions of the neutral 
fields. 

Any given correlation function appears as a factor on the 
right-hand side of the factorization equation (28) for many 
different surfaces m,. It  is the ground state factorization 
condition 2 = 2 0 n which ensure the consistency of the 
correlation functions obtained at different points in the com- 
pactification divisor. Suppose two surfaces m, and mb factor 
into n(m,) = mo U m ,  and n(mb) = m, U m2, with the 
same punctures on m,. We check that the reconstructed 
correlation functions on the two copies of mo agree by finding 
a third surface mg which factors into n(mg) = m, v m3,  
again with the same punctures on m,, such that m3 can be 
deformed into either m, or mz by closing the appropriate 
channels and removing nodes. This guarantees that the corre- 
lation functions on m, reconstructed near m, and near mb are 
the same as those reconstructed near mg and therefore are 
consistent with each other. 

The ground state factorization condition 2 = 2 0 n only 
makes sense if the partition function is defined on a moduli 
space closed under the process of forming and removing 
nodes. The collection of stable moduli spaces A?* of con- 
nected surfaces will clearly not do, since the removal of nodes 
can produce a disconnected surface. The smallest moduli 
space which is closed under these processes is the space of all 
stable, compact, but not necessarily connected Riemann sur- 
faces: 

R = g=o fi ( c  n=O Symn(ag)). (29) 

This is what we call the universal moduli space. The partition 
function is clearly defined on I?. The surfaces with nodes in R 
form the universal compactification divisor D = I? - R. 
The map n which eliminates the nodes is a map from D to R. 
This is pictured along with the inclusions of R and D in I? in 
the following diagram 

D + R  

R 
n 1  /” 

I? has infinitely many connected components in the naive 
topology inherited from R. But if we allow continuous paths 
which move through the compactification divisor via the map 
n, then I? is a connected space. 

By now it should seem natural to make I? into a connected 
analytic space by taking as local analytic functions the func- 
tions f which are analytic on each naive component and 
which satisfy f = f 0 n on the compactification divisor. With 
this analytic structure, eq. (30) is a commuting diagram of 
analytic maps. With this analytic structure I? is effectively 
compact as well. It is easy to see that the only global analytic 
functions are the constants, since a global analytic function f 
must be constant on all the naive components of 8, since they 
are compact, and the constants must all be equal by 
f = f 0 n. The fundamental physical conditions of real analy- 
ticity, modular invariance and ground state factorization are 
subsumed into the condition that the partition function be a 
globally defined real analytic function on universal moduli 
space. 

We have another motivation for introducing this universal 
moduli space. If there is to be any use in describing quantum 
string in terms of analytic geometry on moduli space nonper- 
turbative string effects must be included. As long as the 
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connected components of the surfaces all have finite genus we 
are only doing the perturbation theory. The moduli of infinite 
genus surfaces should in some sense be the limit g + 03 of the 
moduli spaces of finite genus surfaces. But the moduli spaces 
Mg are not suitable for taking this limit, since for g e g' there 
is no inclusion Mg + Mg,. 8 on the other hand can be written 
as a limit of sequence of finite dimensional spaces, essentially 
corresponding to the string perturbation expansion. We 
expect that nonperturbative string theory can be done as 
analytic geometry on some completion of I? in this limit. Call 
this hypothetical completion 8,. Intuitively, Rm should be 
very regular. The completion of the compactification divisor, 
D, , should be essentially dense in I?, , since the partition 
function would be zero unless almost all channels were nearly 
closed. The commuting diagram (30) should have interesting 
consequences for the geometry of 8, . 

6. The hermitian metric and the holomorphic section 

We now construct, given a conformal field theory, a holo- 
morphic vector bundle Wuniversal moduli space, a hermitian 
metric hzb in Wand a holomorphic section @"(m) of W, such 
that the partition function is 2 = h($, $). Write the set of 
primary conformal fields { 4k} ,  with corresponding highest 
weights {/ikr h k } .  

We do the construction first on M g .  Pick a stable surface 
m, with 3g - 3 nodes, such that when all the nodes are 
removed the resulting components consist of 2g - 2 spheres, 
each containing exactly three punctures. Such a surface is 
pictured in Fig. 8 ,  where the spheres are represented by 
vertices and the nodes by lines. There are a finite number of 
these maximally stable surfaces. The partition function near 
m, can be expressed effectively in terms of the operator 
product coefficients and the highest weights. Let {q,} be the 
coordinates describing the opening of the nodes labelled by 
a = 1, . . . , 3g - 3 .  Then m = ( q l ,  . . . , q3g-3)  is a com- 
plete set of local analytic coordinates on Mg near m,. Label 
the spheres or vertices by the triplets (a, /?, y )  of channels 
which they connect to. 

Calculate the partition function by summing over a com- 
plete set of irreducible representations of the Virasoro alge- 
bra in each channel. For each term in the sum let k, label the 

Fig. 8. Diagram of a maximally stable surface of genus g constructed from 
2g - 2 spheres (the vertices) connected at 3g - 3 nodes (the lines). 

irreducible representation occuring in the channel a, and 
write k = ( k l ,  . . . , k3g-3) ,  so the sum is over all possible 
values of the multi-index k.  Let 2, be the contribution to the 
partition function of the representations labelled by k.  Write 
li(k) = (kl , . . . , Lk3g-,) and h(k) = @ k l ,  . . . , hs-,) for 
the corresponding highest weights. Now calculate Zk by sum- 
ming over the states in each of the irreducible representations 
k,.  These states are generated by the L,, and the L,, acting on 
the highest weight states. Now apply the general factorization 
equation (28) and use (in principle) the Virasoro commu- 
tation relations. The crucial point is that the L, and the E,, 
commute, so all combinations of the descendents in L,, and 
the descendents in L,, occur. The result is that each contri- 
bution of irreducible representations k is the product of a 
holomorphic function and an anti-holomorphic function: 

zk(fi, m> = [ vertices n C(ka, k,, k,)ld6(k)(fi)+"'"'0) (31) 
(%%Y) 

where the C(k,, k,, k , )  are the three point functions on the 
sphere or, equivalently, the operator product coefficients of 
the primary fields: 

w,, k,, k , )  = (4k,(Wk&l)4kY(O)) = (4kJ4k&1)14ky)* 
(32) 

The locally analytic functions $h(k)(m) are generalized charac- 
ters. In principle, they can be calculated in power series in the 
q, using only the commutation relations of the Virasoro 
algebra L, and the values of the 3g - 3 highest weights h(k). 

Now, let b = ( b l ,  . . . , b3g-3)  be a multi-index, where bi 
ranges over all the values of the highest weights h which occur 
in the theory, and similarly let ii = (GI, . . . , ii3g-3) with G 
ranging over all the values of occurring in the theory. The 
sum over all contributions (31) gives the partition function in 
the form 

~ ( m ,  m) = $i(fi)hab$b(m). (33) 
where 

(34) 

This construction works directly only in some neighbour- 
hood of each of the maximally stable surfaces. We presume 
that the locally analytic functions $"(m) can be analytically 
continued to give multi-valued functions on the whole of 
moduli space, and that they are closed under analytic con- 
tinuation. Equivalently, we assume that the power series for 
the @(m) converge in large enough neighborhoods of the 
maximally stable surfaces m, to collectively cover M g ,  and 
that the functions corresponding to different m, are linearly 
related on the overlaps of these neighborhoods. These techni- 
cal assumptions are not likely to be easily proved. 

Given these assumptions, the multi-valued functions 
@ ( m )  define a representation of the fundamental group of 
Mg,  the modular group 4. Equivalently, they define a flat 
vector bundle W over Mg,  and are the components of a 
holomorphic section $ of W. The single-valuedness of the 
partition function then requires that h~ be an invariant her- 
mitian inner product in the representation of c, or equiv- 
alently a flat hermitian metric in W (dividing out by the null 
space of hdb if there is one). 
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The hermiian metric and holomorphic section have now 
heen constructed (modulo technical assumptions) over the 
moduli spaces Mg and thus, by taking tensor products, over 
R. But to make use of the effective connectedness and com- 
pactness of the universal moduli space 8 we need to fit 
together the vector bundles W over the various connected 
components of R to give a single vector bundle over 8. To see 
how $"(m) and h6b behave when a channel is closed, simply 
include that channel as one of the nodes in a maximally stable 
surface mp and study the behavior near m, . It will be evident 
that $ and h individually satisfy factorization identities. For 
example, if m,  is a surface with a node which separates it into 
two components mi and m2,  then there are constants F& such 
that 

= F b " c $ b ( m l ) $ c ( m 2 )  
(35) 

Such factorization constants for a vector bundle Wover R are 
exactly what is needed to define a vector bundle over 8, with 
$ a global holomorphic section and h a flat metric. The 
analogue off = f 0 7c = 7c*f for functions is a rule $ = n*$ 
for vector valued functions, which expresses the value of $ on 
D in terms of its value on R = n(D). Equation (35) does 
exactly this, since the tensor product construction gives 
$b(m,)$'(m2) as the value of $ on ~ ( m , )  = mi U m,. 
Equation (35) obviously implies that 2 = h($,  $) is a real 
analytic function on E.  

To apply this formulation of c = 0 conformal field theory 
to string theory we need to take account of the zero modes of 
the ghost system. The moduli space is the gauge slice for the 
conformal gauge. Therefore there is one zero mode b, of the 
ghost field b(z) for every tangent direction in moduli space. 
The ghost fermionic functional integral is zero unless these 
zero modes are absorbed by a factor ll, b,dm16,dfi' intro- 
duced as an integrand. This is why the string partition func- 
tion is a density on moduli space. The b, contribute to the 
holomorphic section $"(m) for the string; the 6, contribute to 
$ . Therefore the string holomorphic section $ is proportional 
to ll, dm', i.e., it transforms as a holomorphic half-density on 
moduli space. In the standard notation for differential forms 
on analytic spaces, the holomorphic half-densities are sec- 
tions of the line bundle K = A ~ ~ ~ T * R ' . ' .  Thus the string 
holomorphic section $ is a section of K 0 W. This is exactly 
what is needed to make 2 = h($ ,  $) a density, since the 
metric h absorbs the factors i7 and W to leave 2 as a section 

The ghost zero modes also are responsible for modifying 
the factorization condition for $. Suppose m, is a surface 
with a node. Write m' = n(m,) for the smooth surface with 
the node removed, write ( x ,  y )  for the punctures on m' left by 
the node, and write q for the coordinate parametrizing the 
opening of the node. As we have seen, (m', x ,  y ,  q )  are coordi- 
nates for the surfaces near m,. In conformal theory, the fac- 
torization condition on $ would be of the form, for example, 
of eq. (35). More generally, $(m', x ,  y ,  0) = n*$(m'), express- 
ing $ at m,  in terms of $ at m' = 7c(m,). In string theory the 
factorization condition expresses a residue of $ at q = 0 in 
terms of $ at m': 

h2b (mD)F:, E 2 F d ,  d2 = hEldl  (mi )h?2d2(m2). 

of I r q 2 .  

$(", x, y ,  4 )  q-2dqdxdy $("I. (36) 
The abstract string S-matrix is given by the integral 

(37) 

considered as a functional of the flat hermitian metrics h,  
which are the backgrounds solving the string quantum 
equation of motion. For bosonic string this can only be a 
formal expression since, by eq. (36), the integral is always 
divergent. We assume, in writing S[h] as a function of the 
metric alone, that for any sensible background metric h, the 
section $ will be uniquely determined, at least to the extent 
that it affects S. 

7. A topological interpretation 

It is possible to write an even more gauge invariant version of 
this abstract string theory. For any flat hermitian connection 
in a vector bundle W we can write an exterior derivative on 
differential forms in 1 with coefficients in W. 

(38) Q = dm'D, + dfiiDi 

(39) 
The hermitian metric h in W gives a hermitian product 
h(G, o) on differential forms w with coefficients in W, using 
the antisymmetric product of differential forms. The value of 
h(G, o) is an ordinary differential form on 8. The inner 
product. 

( G b X  = jR U) (40) 

makes at least formal sense. With respect to this inner 
product, again only formally in the bosonic theory, 

Qt = Q. (41) 
Equations (39) and (41) give an even more abstract version of 
the string equation of motion. 

It is easily checked that the inner product (40) is formally 
invariantundero + o + Qq, andisnullon formso = Qq, 
so it is really an inner product on cohomology classes with 
coefficients in W. It is also easy to see that any holomorphic 
half-density $ with coefficients in W satisfies 

Q$ = 0 (42) 
so the string holomorphic section represents a cohomology 
class [$I with coefficients in W. The S-matrix depends only on 
the class [$I. The uniqueness condition on I(/ is the require- 
ment that the cohomology be one dimensional. 

The final point is based on conversations with D. Kazhdan 
and E. Martinec (and of course S .  H. Shenker). The inner 
product on cohomology given by eq. (40) determines an 
intersection matrix on the dual homology theory. So the string 
S-matrix can be interpreted as an intersection number. 

8. Conclusion 

I will end by mentioning what seem to be some interesting 
directions in which to pursue this abstract formulation of 
string theory. Most obvious is the extension to fermionic 
string [12]. As mentioned previously, this is a straight- 
forward transcription of the bosonic theory to the super 
moduli space of super Riemann surfaces. As an immediate 
application, we expect to be able to use N = 2 superconfor- 
mal invariance and the structure of the super moduli space of 
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N = 2 super Riemann surfaces [17] to prove abstract finite- 
ness and renormalization theorems to all orders in pertur- 
bation theory. Such theorems would apply in particular to 
perturbative fermionic string theory in flat spacetime and also 
in any supersymmetric compactification. 

Another question which can be investigated within pertur- 
bation theory is the derivation of eq. (37) for the S-matrix 
from the quantum equation of motion F = 0 or Q’ = 0. The 
relation between the two is at the moment only indirect. A 
basic issue which we have not addressed is how, and when, to 
interpret an abstract solution of string theory as a description 
of spacetime geometry. This requires understanding the 
characteristic intrinsic properties of the conformal field 
theories which are nonlinear models for weakly curved 
spacetimes. The abstract formulation of Wick rotation can 
also be addressed in the perturbative theory. And of course 
there are several technical assumptions which need to be 
proved. 

The deepest problems have to do with constructing and 
interpreting a non-perturbative theory. The main technical 
task is to find a good completion of universal moduli space. 
This might be done by studying Riemann surfaces of inifinite 
genus, but it probably not necessary to do so. The string 
theory is defined entirely in terms of intrinsic analytic geo- 
metry on universal moduli space. The theory has forgotten 
that this analytic space parametrizes Riemann surfaces. So 
it should be possible to complete universal moduli space 
directly, without reference to surfaces. This might suggest 
that interpreting the theory as a theory of strings in spacetime 
would not be sensible except in the perturbative approxi- 
mation. 

The first step is to understand the criteria which should 
govern such a completion. Then, given a completion, we 
would ask if the nonperturbative string equation of motion 
has a unique solution. It might be that there is a unique 
non-perturbative solution over the completion of universal 
moduli space in a sense similar to that in which there are far 
fewer von Neumann algebras than C*-algebras. There is no 
real reason to suppose that a nonperturbative theory of 
gravity should allow for Wick rotation and the concomitant 
manifold of solutions, or even a quantum mechanical inter- 
pretation. A related question is whether there is a sense in 
which a perturbative solution can be completed to give a 
nonperturbative solution, or whether perturbative solutions 
can be measured as approximations to the nonperturbative 
solution(s). This is connected to the need for an abstrct theory 
of measurement, since the validity of a perturbative approxi- 
mation should depend on the regime it is applied to, i.e., to 
the observables of interest. It would seem necessary to 
address these foundational issues in string theory in order to 
understand how to ask the crucial question of whether there 
is a regime of non-perturbative string theory susceptible to a 
semi-classical interpretation in terms of spacetime geometry 
and, in particular, which spacetime geometry of the many 
now available [18]. 

Underlying these questions is the most basic one: whether 

the metric h and the holomorphic section II/ should be inter- 
preted as structures more basic than the Hilbert space and 
hamiltonian of quantum mechanics, whether the equation of 
flatness on universal moduli space is a fundamental principle, 
whether this geometric formalism of abstract string theory 
provides a new formulation of physics. 
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