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1. Introduction

In this paper we study the infrared behaviour of bulk critical one-dimensional quantum
systems with a boundary. These are 1D quantum systems whose bulk couplings are at a
critical point, but whose boundary couplings are not necessarily critical. We would like
to show that the boundary couplings are always driven to a renormalization group fixed
point in the far infrared, which is to say that the boundary always becomes critical in the
infrared limit. We would also like to show that the boundary entropy cannot decrease
without limit, but must approach some lower bound as the temperature decreases towards
zero. Alternatively, we would like to understand what kind of quantum boundary does not
go to an IR fixed point, or does release an unlimited amount of entropy as its temperature
goes to zero. We record here some partial results which might be useful as steps towards
these goals.

The boundary entropy, s, is the difference between the total entropy and the bulk
entropy (which is proportional to the length of the system). For critical boundaries, the
number g = exp(s) is the universal non-integer ground state degeneracy of Affleck and
Ludwig [1]. In [3], we proved a gradient formula

∂s

∂λa
= −gab(λ)βb(λ) (1)
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which expresses the boundary beta function, βb, as the gradient of the boundary entropy,
s, with respect to a certain metric, gab, on the space of all the marginal and relevant
boundary couplings. The λa are the boundary coupling constants. The boundary entropy
depends on the temperature and the boundary couplings, and satisfies the renormalization
group equation(

T
∂

∂T
+ βa∂

∂λa

)
s = 0, (2)

so the boundary gradient formula implies that

T
∂s

∂T
= βagabβ

b ≥ 0. (3)

Thus s(T ) always decreases with decreasing temperature, which is to say that the
boundary entropy always decreases under the renormalization group. The boundary is
critical, βa(λ) = 0, if and only if the boundary entropy is stationary in the temperature,
ds/dT = 0. The boundary entropy can decrease below zero because the third law of
thermodynamics does not apply. The boundary is not an isolated system.

We would like to understand the properties of the boundary in the far infrared. For
bulk 1D quantum systems, without boundary, the c-theorem [7] gives considerable control
over the infrared behaviour. The c-theorem states that a certain function of the bulk
couplings decreases under the renormalization group, is stationary if and only if the bulk
beta function vanishes, and cannot become negative. This is almost enough to show
that the bulk system must flow to a fixed point in the infrared. We point out below an
additional assumption that is needed.

The generic bulk system has a mass gap, so it flows in the infrared to the trivial
c = 0 fixed point, where no excitations remain. There does not seem to be an analogously
trivial boundary system. A boundary that flowed to s = −∞, g = 0 might provide a
candidate, but no such system is known. In every known example, the infrared limit is
a non-trivial boundary fixed point and the boundary entropy decreases to a finite lower
limit. Non-trivial boundary excitations always remain. It can be conjectured that the
boundary entropy is necessarily bounded below throughout a RG flow, and that the flow
necessarily ends at an IR fixed point, unless some pathologies develop. We would like to
understand what technical assumptions are needed to prove these conjectures, and what
physical principles they express.

The boundary gradient formula succeeds in excluding some exotic forms of
renormalization group behaviour. For example, limit cycles within the space of boundary
couplings are impossible. But the gradient formula by itself does not guarantee that the
system flows to an infrared fixed point. The boundary entropy might decrease without
bound, with βa(λ) never approaching zero. This possibility could be excluded if we could
show that the boundary entropy is bounded below (for a given bulk critical system). We
are at least able to show, under certain assumptions, that βagabβ

b → 0 in the infrared
limit (see section 6). This is analogous to what the c-theorem provides in the bulk. It
does not establish that βa vanishes in the infrared limit, just as the analogous bulk result
does not, but this is a step in the right direction.

A lower bound on the boundary entropy would also be of interest because it would
imply that only a bounded amount of information can be added to a given boundary or
junction within a near-critical quantum circuit. Such circuits have been argued to be
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the ideal physical systems for asymptotically large-scale quantum computers [4]. A lower
bound on the boundary entropy would be a very general constraint on the design of such
quantum computers.

There are a number of examples of a lower bound on g = exp(s) for boundary
conformal field theories corresponding to a given bulk conformal field theory. For
the compact U(1) Gaussian model with target radius R, normalized so that R = 1
is the self-dual radius, the lowest value of s corresponds to the Dirichlet boundary
condition, sD = −1

4
ln 2 − 1

2
ln R, when R ≥ 1, and to the Neumann boundary condition,

sN = −1
4
ln 2 + 1

2
ln R, when R ≤ 1, so the lower bound on s is −1

4
ln 2 − 1

2
|lnR|. Clearly,

there is no universal lower bound, independent of the bulk conformal field theory.
Another set of examples is provided by the conformal boundary conditions given by

the Cardy boundary states in rational conformal field theories [6]. Each Cardy boundary
state is labelled by a primary field i. We point out in the appendix that the Cardy state
with the smallest value of s is the one associated with the identity operator, i = 0, so
the lower bound on s is s0 = 1

2
ln S00 where S00 is the corresponding entry of the modular

S-matrix. In the case of the unitary c < 1 conformal field theories, the Cardy states are
all the possible conformal boundary conditions. For the unitary minimal models with
central charge

cm = 1 − 6

m(m + 1)
, m = 2, 3, . . .

the lower bound is

s0(m) =
1

4
ln

[
8

m(m + 1)
sin2

( π

m

)
sin2

(
π

m + 1

)]
.

In these examples, one can observe the crucial role of locality in putting a lower bound on
s. It is the imposition of the Cardy constraint, which is a form of the locality condition,
that ensures a non-zero overlap g = 〈B|0〉 between the boundary state and the conformal
vacuum.

In this paper, we start by arguing that any critical boundary system must have g > 0,
or else the system would not have a sensible thermodynamic limit. We then argue that,
for non-critical boundaries, the boundary contribution, θ(τ), to the trace of the energy–
momentum tensor goes to a multiple of the identity operator in the far infrared. We work
directly at T = 0. Specifically, we show that its connected two-point function in Euclidean
time satisfies

lim
τ→∞

τ 2〈θ(τ) θ(0)〉c = 0. (4)

We need to assume that, far from the boundary, the bulk conformal invariance is restored
in a strong sense. The canonical scaling dimension of θ(τ) is 1, so equation (4) comes
close to implying that θ(τ) vanishes up to a multiple of the identity operator, which would
imply that the infrared limit is scale invariant. To finish the argument, we need that the
correlation functions of the bulk operators satisfy a cluster decomposition condition in
the infrared limit. This is essentially the assumption that the infrared limit is a well-
defined boundary quantum field theory, in which case the vanishing of the two-point
function implies the vanishing of the operator. We do not know whether our assumption
is provable from general principles. If this gap can be filled, then the infrared limit
at T = 0 is a boundary quantum field theory with θ(τ) = 〈θ〉 1, which is a boundary
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conformal field theory. Given the previous argument that any boundary conformal field
theory has s > −∞, the boundary entropy of the original system would be bounded
below.

An analogous gap exists in the argument that the infrared limit in the bulk is always a
fixed point. An assumption is also needed that the infrared limit is a well-defined quantum
field theory, so that the vanishing of the two-point function of the trace of the energy–
momentum tensor implies that the operator itself vanishes. In the boundary case, the bulk
operator algebra does not change under the renormalization group, so the situation might
be better than in the bulk case. This leaves a hope that our results can be strengthened.

Our second approach is to use real time methods at T > 0. As a preliminary step, we
re-prove the boundary gradient formula using real time methods, based on the spectral
analysis of the flow of entropy through the boundary [5]. In this version of the proof, the
metric gab is given a physical interpretation. It is the renormalized boundary susceptibility
matrix, made finite by a natural subtraction. It can be measured experimentally. We try
to use the real time formalism to show that ds/dT = βagabβ

b/T is integrable with respect
to T at T = 0. This would imply a lower bound on s. We only succeed in showing that
T ds/dT → 0 as T → 0, which implies that βagabβ

b → 0. The condition of integrability
at T = 0 is reformulated as an estimate on the low temperature behaviour of a certain
spectral function, an estimate that we do not know how to prove.

2. Notation and basic facts

We will be using both real and Euclidean time descriptions of a one-dimensional quantum
system. The space–time coordinates are (x, t), x ≥ 0. The boundary is at x = 0. The
Euclidean time is τ = it. The space–time metric is

(ds)2 = −v2(dt)2 + (dx)2 = v2(dτ)2 + (dx)2

where v is the velocity of ‘light’. The system is in equilibrium at temperature T .
The imaginary time correlation functions are periodic in Euclidean time, with period
β = 1/T (in units with � = k = 1). The normalized equilibrium expectation values
are denoted by 〈O〉eq. The connected two-point expectation values are 〈O1 O2〉c =
〈O1 O2〉eq − 〈O1〉eq〈O2〉eq. The energy–momentum tensor is T µ

ν (x, t). Conservation of
energy–momentum in the bulk is expressed by

∂µT µ
ν (x, t) = 0 x > 0. (5)

The Hamiltonian is

H = −θ(t) +

∫ ∞

0

dx T t
t (x, t) (6)

where −θ(t) is the boundary energy operator. Energy conservation at the boundary is1

∂tθ(t) = T x
t (0, t). (7)

1 In the present paper our conventions differ from the ones in [3] in that the energy–momentum components have
canonical dimensions, instead of being dimensionless, as in [3]. As a result, extra factors of the RG scale µ are
present in various equations in [3].
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The energy density T t
t (x, t) is the only component of the energy–momentum tensor that

has a boundary contribution. See [3] for a more complete discussion of the bulk +
boundary energy–momentum tensor.

Bulk criticality is equivalent to local scale invariance in the bulk:

Θ(x, t) = T µ
µ (x, t) = T x

x (x, t) + T t
t (x, t) = 0 x > 0. (8)

The trace of the energy–momentum tensor is concentrated at the boundary,

Θ(x, t) = δ(x)θ(t), (9)

and can be expanded in the boundary fields:

θ(t) = βaφa(t) (10)

where the boundary operators φa(t) are the relevant and marginal fields localized at the
boundary. The coefficients βa comprise the boundary beta function. The operators φa(t)
have ultraviolet scaling dimensions all ≤1. The boundary coupling constants, λa, are
related to the boundary fields, φa(t), by

∂Z

∂λa
=

∂z

∂λa
= β〈φa(0)〉eq (11)

where Z is the full partition function and z is the boundary partition function. The
definition of z starts with a system of finite length, L. An arbitrary boundary condition
is imposed at x = L. In the thermodynamic limit L → ∞, the full partition function, ZL,
factorizes into a bulk part and a boundary part:

e−πcL/6βZL → zz′

where c is the bulk conformal central charge and the constants z and z′ are the boundary
partition functions of the boundaries at x = 0 and x = L respectively. Only the product
zz′ is determined. Unitarity of the quantum system implies that all the products zz′

are real and positive, for all pairs of boundary conditions. We can take the boundary
condition at x = L to be the same as the boundary condition at x = 0 (strictly speaking,
the CPT transform of the boundary condition at x = 0). Then e−πcL/6βZL → |z|2. Now
we can determine z as the positive real square root of |z|2. This is consistent, because
all the products zz′ are positive real numbers. We construct the system on the infinite
half-cylinder with a single boundary at x = 0 by taking the limit L → ∞, dividing by
z′ to eliminate dependence on the boundary condition at x = L. In terms of the bulk
conformal field theory on the half-cylinder, where the spatial coordinate is vτ and the
Euclidean time is x/v, the boundary condition at x = 0 is represented by a boundary
state 〈B|, while the ‘boundary condition’ at x = L is represented by the bulk ground
state |0〉, since all the excited states at x = L are suppressed exponentially in L. The
boundary partition function is the overlap z = 〈B|0〉. The logarithm of the full partition
function then takes the form

ln ZL =
cπ

6β
L + ln z (12)

where cπ/6β is the universal ground state energy density of the bulk conformal field
theory.
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The total entropy of the system is SL = (1 − β∂/∂β)ZL. Removing the bulk
contribution leaves the boundary entropy

s =

(
1 − β

∂

∂β

)
ln z. (13)

The boundary entropy is a function of µβ, where µ is the renormalization scale. It satisfies
the renormalization group equation(

−µ
∂

∂µ
+ βa ∂

∂λa

)
s =

(
−β

∂

∂β
+ βa∂

∂λa

)
s = 0. (14)

For thermodynamic quantities, the infrared limit µ → ∞ is equivalent to the zero-
temperature limit T → 0. In this paper, we will avoid writing µ and µ → ∞. Instead,
when we study thermodynamic quantities, we will take T → 0, and use the second form
of the renormalization group equation for s. When we study the quantum field theory
at T = 0, we will take the IR limit by scaling all times and distances to infinity in the
correlation functions.

The boundary beta function vanishes at a fixed point, so s is then a number,
independent of temperature: s = ln z = ln g, where g is the universal non-integer ground
state degeneracy of Affleck and Ludwig [1]. This is the ‘ground state’ degeneracy because,
being constant in T , it can be evaluated at T = 0. For any finite L, the energy spectrum
is discrete, so the ground state degeneracy is then an integer. The spectrum becomes
continuous in the limit L → ∞, so the numerical factor z = g can be an arbitrary
non-negative number. In particular, it is possible to have g < 1, s < 0.

Affleck and Ludwig conjectured that the value of g is larger at the ultraviolet fixed
point of a renormalization group trajectory than at the infrared fixed point [1, 2]. This
g-theorem was proved in [3] by proving the boundary gradient formula, equation (1). The
boundary gradient formula implies that the boundary entropy decreases with decreasing
temperature, ds/dT > 0, so the boundary entropy decreases along the renormalization
group trajectory, so the value of s = ln g at the ultraviolet fixed point, at T = ∞, is
greater than the value at the infrared fixed point, at T = 0. Ordinary entropy in statistical
mechanics always decreases with temperature, but this is not obvious for the boundary
entropy. The total entropy SL of the system of length L does go down with temperature,
trivially, but the large bulk contribution, cπL/3β, also decreases with temperature, so it
is not obvious that the difference, the boundary entropy, decreases with temperature.

The metric in the gradient formula is

gab =

∫ β

0

dτ

∫ β

0

dτ ′〈φa(τ)φb(τ
′)〉c

[
1 − cos

(
2π(τ − τ ′)

β

)]
(15)

so

ds

dT
=

1

T

∫ β

0

dτ

∫ β

0

dτ ′ 〈θ(τ)θ(τ ′)〉c
[
1 − cos

(
2π(τ − τ ′)

β

)]
. (16)

Canonical ultraviolet behaviour ensures that any non-universal contact terms in the two-
point function have dimension at most 2. The factor 1 − cos(2π(τ − τ ′)/β) vanishes to
second order at τ = τ ′, so no contact terms contribute to the metric. The metric is thus
finite and universal, assuming canonical ultraviolet behaviour. However, it is difficult to
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see a physical interpretation of the metric when it is written in this form, as an integral
of a two-point function over Euclidean time.

Given bulk conformal invariance, the symmetric energy–momentum tensor has only
two independent components:

T x
t (x, t) = −v2T t

x(x, t) = TR(x, t) − TL(x, t),

vT t
t (x, t) = −vT x

x (x, t) = TR(x, t) + TL(x, t).
(17)

The bulk conservation law implies that TR(x, t) and TL(x, t) are chiral currents:

TR(x, t) = TR(x − vt), TL(x, t) = TL(x + vt). (18)

They are related to the Virasoro operators in the ‘closed string’ channel:

TR(z) = Tzz(z) = − v2

2π
T (z) = −2π

β2

∞∑
n=−∞

e−2πnz/vβLn,

TL(z̄) = Tz̄z̄(z̄) = − v2

2π
T̄ (z̄) = −2π

β2

∞∑
n=−∞

e−2πnz̄/vβL̄n

(19)

where z = x + ivτ = x − vt. The coefficients are fixed by calculating the Hamiltonian
in the ‘closed string’ channel, where vτ is the spatial coordinate and x/v the Euclidean
time:

Hclosed =
2π

β
(L0 + L̄0) =

∫ β

0

dτ vT x
x .

On the semi-infinite cylinder, the boundary condition at x = ∞ is the bulk ground state,
which satisfies Ln|0〉 = L̄n|0〉 = 0, n ≥ −1. This implies that the bulk energy–momentum
tensor, within correlation functions, decreases at infinity as

T µ
ν (x, τ) ∼ e−4πx/β, x → ∞. (20)

Energy conservation at the boundary becomes

∂tθ(t) = TR(−vt) − TL(vt). (21)

Therefore

θ(t) =

∫ t

−∞
dt′ TR(−vt′) −

∫ t

−∞
dt′ TL(vt′)

=

∫ ∞

t

dt′ TL(vt′) −
∫ ∞

t

dt′ TR(−vt′). (22)

From (6), (17), (22) we obtain

H =

∫ ∞

−∞
dt TR(vt) =

∫ ∞

−∞
dt TL(vt). (23)
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3. Boundary entropy at a fixed point and locality

We argue that all critical boundaries have g > 0. Suppose otherwise. Then there would be
a conformal boundary condition given by a boundary state |B〉 such that g = 〈0|B〉 = 0.
In this case we should re-examine the L → ∞ thermodynamic limit. The boundary state
|B〉 is put at x = 0. At the other boundary, at x = L, we put a boundary condition 〈B′|.
We choose 〈B′| with the property that 〈B′|0〉 > 0 so as to ensure that a conformal vacuum
remains when we take the limit L → ∞. The one-point functions of bulk operators are
then defined as

〈φ(x, t)〉 = lim
L→∞

〈B′|e−LHclosedφ(x, t)|B〉
〈B′|e−LHclosed|B〉 . (24)

The numerator in this fraction goes as eLπc/6 for large L, while the denominator goes as
eL(πc/6−∆1) where ∆1 is the lowest eigenvalue occurring in the action of Hclosed on |B〉.
If 〈0|B〉 = 0, then ∆1 > 0 and the above limit is infinite, which means that there is no
sensible thermodynamic limit. Alternatively, we could try defining a thermodynamic limit
by putting the boundary state |B〉 on both ends of the cylinder. In the limit L → ∞, we
would obtain finite correlation functions on the infinite half-cylinder, but these correlation
functions would generically grow exponentially with separation and thus violate cluster
decomposition in the x-direction. So g > 0 for any sensible boundary conformal field
theory.

4. At T = 0, limτ→∞ τ 2〈θ(τ )θ(0)〉c = 0

Next, we try to argue that every boundary system flows to an infrared fixed point: a scale
invariant, conformally invariant boundary field theory. Then, by the argument above, the
boundary entropy would necessarily be bounded below, because the infrared fixed point
would have g > 0.

We work directly at T = 0. The Euclidean space–time is the half-plane, x ≥ 0,
−∞ < τ < ∞. We argue that

lim
|τ−τ ′|→∞

|τ − τ ′|2〈θ(τ)θ(τ ′)〉c = 0. (25)

Here 〈θ(τ)θ(τ ′)〉c is the zero-temperature connected correlator evaluated on the boundary
of the infinite half-plane. The factor |τ −τ ′|2 accounts for the canonical scaling dimension
of θ(τ).

If we can assume that the infrared limit is a boundary quantum field theory, then we
can conclude from equation (25) that θ(t) is a multiple of the identity in that limiting
theory, so the infrared limit is a conformally invariant boundary quantum field theory, a
fixed point of the renormalization group.

The last assumption, that the infrared limit is a quantum field theory, is also implicitly
present when the c-theorem is used to show that every bulk quantum field theory goes
to a fixed point (perhaps trivial) in the infrared. The c-theorem [7] implies that the
trace, Θ = T µ

µ , of the bulk energy–momentum tensor has a vanishing connected two-
point function in the infrared limit. This in turn implies that all correlation functions
of the limiting theory are conformally invariant. The implicit assumption is that those
correlation functions exist in the infrared limit. In the boundary case the situation might
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be more favourable, because the bulk operator algebra stays fixed (is not flowing). This
leaves a hope that our results can be strengthened.

Our argument is based on the principle that the system should become conformally
invariant far from the boundary. Consider the quantization in which τ is the spatial
coordinate and x is the Euclidean time (call this the x-quantization). Space is now the
entire real line, −∞ < τ < ∞. The boundary condition is represented by a state |B〉
inserted at x = 0. The correlation functions are expectation values of x-ordered products
of operators:

〈φ1(τ1, x1) . . . φn(τn, xn)〉B = 〈0|φ1(τ1, x1) . . . φn(τn, xn)|B〉 (26)

where 〈0| is here the vacuum state, and x1 ≥ x2 ≥ · · · ≥ xn. The correlation functions
are normalized, 〈0|B〉 = 1.

Suppose Q is the generator of a symmetry of the bulk system, specifically a global
conformal symmetry. Then 〈0|Q = 0. It seems reasonable to suppose that

〈0|Qφ1(τ1, x1) . . . φn(τn, xn)|B〉 = 0. (27)

For the bulk global conformal symmetry group, SL(2, C), we can take Q to be any of the
six generators

Qn =

∫ ∞

−∞
dτ(x + ivτ)nTR(x + ivτ),

Q̄n =

∫ ∞

−∞
dτ (x − ivτ)nT̄L(x − ivτ) n = 0, 1, 2.

(28)

We should note that there is a subtlety in the above reasoning. A conserved charge Q is
defined as an integral

Q =

∫ +∞

−∞
dτ jx(τ, x) = lim

R→∞

∫
|τ |<R

dτ jx(τ, x) (29)

where jx(τ, x) is the x-component of the corresponding current. Since we have very little
knowledge of the properties of the state |B〉 in general, we can worry that the limit R → ∞
taken in a correlator

lim
R→∞

〈0|
∫
|τ |<R

dτjx(τ, x)φ1(τ1, x1) . . . φn(τn, xn)|B〉 (30)

might not converge to zero. The problem with this limit could be due to a high density
of low energy states present in |B〉. If for some reason the above limit does not converge
to zero this would mean that the asymptotic symmetry Q is spontaneously broken by the
boundary condition |B〉. We will assume that this does not happen or, in other words,
the charge Q exists and is an asymptotic symmetry in the theory on a half-plane with
the given boundary condition |B〉. The condition 〈0|Q = 0, understood in the above
sense, implies that correlation functions are asymptotically conformally invariant. That
is, correlation functions containing a commutator [Q, φ(τ, x)] asymptotically vanish for
x → ∞. But the condition 〈0|Q = 0 is stronger.

At temperature T > 0, the Euclidean time is compact, so there is no subtlety in
expressing the bulk conformal invariance. In appendix A we use the bulk conformal
invariance at T > 0, then take the T → 0 limit, and, assuming that dispersion relations
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behave in a continuous fashion in this limit, we reproduce all the consequences of the
〈0|Q = 0 assumption that we are making here. It cannot be considered as a derivation
of the 〈0|Q = 0 condition, though, because the assumption of continuity at T = 0 is
essentially as strong as the 〈0|Q = 0 condition itself.

With this assumption, we can write, for any x > 0,

0 =




∫ +∞

−∞
dτ (x + ivτ)n〈TR(x + ivτ)θ(0)〉c n = 0, 1, 2

∫ +∞

−∞
dτ (x − ivτ)n〈TL(x − ivτ)θ(0)〉c n = 0, 1, 2

(31)

or, equivalently,

0 =




∫ +∞

−∞
dτ τn〈TR(x + ivτ)θ(0)〉c n = 0, 1, 2

∫ +∞

−∞
dτ τn〈TL(x − ivτ)θ(0)〉c n = 0, 1, 2.

(32)

Now we consider the spectral representations for the two-point correlation functions.
In Euclidean time we have

〈TR(x + ivτ)θ(0)〉c =
1

2πi

∫ ∞

−∞
dω [θ(τ)θ(ω) − θ(−τ)θ(−ω)]e−ω(τ−ix/v)AθR(ω)

〈TL(x − ivτ)θ(0)〉c =
1

2πi

∫ ∞

−∞
dω [θ(−τ)θ(ω) − θ(τ)θ(−ω)]eω(τ+ix/v)AθL(ω)

(33)

〈θ(τ)θ(0)〉c =
1

2π

∫ ∞

0

dω e−ω|τ |Aθθ(ω). (34)

The boundary conservation equation (7), written as

∂τθ(τ) = −i[TR(ivτ) − TL(−ivτ)], (35)

implies2

Aθθ(ω) = ω−1(AθR(ω) + AθL(−ω)) = ω−1(AθR(−ω) + AθL(ω)). (36)

We note, though we do not use it here, that TR(x − vt) and TL(x + vt) are self-adjoint
operators, so

AθR(ω) = AθR(−ω), AθL(ω) = AθL(−ω). (37)

and, by reflection positivity, Aθθ(ω) ≥ 0.
The spectral functions AθR(ω), AθL(ω) are related to the commutators as

AθR(ω) =

∫ +∞

−∞
dt eiωt〈i[TR(0, t), θ(0)]〉 =

∫ +∞

0

dt eiωt〈i[TR(0, t), θ(0)]〉,

AθL(ω) =

∫ +∞

−∞
dt e−iωt〈−i[TL(0, t), θ(0)]〉 =

∫ 0

−∞
dt e−iωt〈−i[TL(0, t), θ(0)]〉

(38)

2 In deriving this equation from the boundary conservation equation one uses the fact that the correlator
〈θ(τ )θ(τ ′)〉c vanishes for large separation and hence there cannot be a term proportional to δ(ω) in the spectral
function.
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where the final forms of the equations are consequences of the chirality of the
energy–momentum currents, equation (18), and causality (the vanishing of equal-time
commutators at non-zero separation). It follows from the final forms of equations (38) that
the spectral functions AθR(ω) and AθL(ω) are analytic in the complex upper half-plane.
Again, we note but do not use here that energy conservation at the boundary combined
with the bulk equal-time commutation relations of the chiral energy–momentum currents
now imply AθR(ω) = AθL(ω), so Aθθ(ω) = (2/ω)ReAθR(ω).

The conformal invariance of the bulk vacuum at large x, expressed by equations (32),
is equivalent to

0 =

∫ +∞

−∞
dω eiωx/vω−n−1AθR(ω) =

∫ +∞

−∞
dω e−iωx/vω−n−1AθL(ω), n = 0, 1, 2. (39)

It follows from (37) and (39) that

0 =

∫ +∞

−∞
dω ω−3[sin(ωx/v) ReAθR(ω) + cos(ωx/v) ImAθR(ω)]. (40)

This implies that the functions ReAθR(ω)/ω2 and Im AθR(ω)/ω3 are integrable at ω = 0.
This implies in particular that

lim
ω→0

Im AθR(ω)

ω2
= 0. (41)

Also, taking x → 0 in (40), we obtain a sum rule∫ +∞

−∞
dω

Im AθR(ω)

ω3
= 0. (42)

The just derived integrability properties of Im AθR(ω) and ReAθR(ω) at ω = 0, and
canonical UV behaviour, and analyticity in the upper half-plane allow one to write the
following subtracted dispersion relations:

Re AθR(ω)

ω2
=

1

2π

∫ +∞

−∞
dη

Im AθR(η)

η2
P

(
1

η − ω

)
,

Im AθR(ω)

ω2
= − 1

2π

∫ +∞

−∞
dη

Re AθR(η)

η2
P

(
1

η − ω

) (43)

for ω �= 0. The integrability of ImAθR(ω)/ω3 at ω = 0 allows us to take the limit ω → 0
of the first dispersion relation in (43) in a straightforward way and we obtain

lim
ω→0

Re AθR(ω)

ω2
=

1

2π

∫ +∞

−∞
dη

Im AθR(η)

η3
.

This equation together with the sum rule (42) and equation (41) imply that

lim
ω→0

AθR(ω)

ω2
= 0. (44)

By the same argument,

lim
ω→0

AθL(ω)

ω2
= 0. (45)
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Therefore by (36)

lim
ω→0

Aθθ(ω)

ω
= 0 (46)

which in turn implies (25), which was to be shown.
Noting that θ(τ) has a canonical scaling dimension 1, we infer that in the infrared

limit µ → ∞ the two-point function at hand goes to zero:

lim
µ→∞

〈θ(τ)θ(0)〉c = 0. (47)

In a quantum field theory, a local field with vanishing two-point function annihilates the
ground state, and therefore has vanishing correlation functions with all other fields. Thus,
if we can assume that we obtain a local boundary quantum field theory in the infrared
limit µ → ∞, and if we can assume that

〈0|Qφ1(τ1, x1) . . . φn(τn, xn)|B〉 = 0

for all the bulk global conformal symmetries Q acting far from the boundary, then we
can conclude that the limiting theory in the infrared has to be conformal, with a finite
boundary entropy. In such cases (when locality is preserved all the way to the far infrared)
the boundary entropy stays bounded from below.

5. Proof of the gradient formula in the real time formalism

Here, we will use the machinery of real time spectral analysis for equilibrium boundary
quantum field theory in 1 + 1 dimensions, as developed in [5]. Using the real time
formalism, we will re-state the proof that ds/dT ≥ 0 and the proof of the gradient
formula for the boundary beta function, ∂s/∂λa = −gabβ

b. The Riemannian metric on
the space of boundary couplings, gab(λ), is χab(0)/T , the renormalized static susceptibility
matrix of the boundary, divided by temperature. The dynamic susceptibility matrix of
the boundary, χab(ω), is renormalized by natural subtractions in such a way that the
static susceptibility matrix, χab(0), remains positive.

The first step will be to show that

ds

dT
=

1

2
T−2 Im F ′(0) (48)

where

F (ω) =

∫ ∞

−∞
dt e−iωt〈i[TL(vt) + TR(vt), θ(0)]〉eq. (49)

This is a Kubo formula for the change in the boundary entropy in response to a local
change in the temperature at the boundary. The response function F (ω) is analytic in
the upper half-plane. On the real axis, −Re F (ω) ≥ 0.

The second step is to show that Im F ′(0) ≥ 0, and therefore ds/dT ≥ 0, by deriving a
dispersion formula for Im F (ω) in terms of ReF (ω). The naive, unsubtracted dispersion
formula is divergent, because F (ω) can grow as fast as ω for large ω, by canonical
dimensional analysis in the ultraviolet limit. Fortunately, bulk conformal invariance will
imply a vanishing formula, F (i2πT ) = 0, which gives a natural subtraction point. The
subtracted dispersion formula converges as long as the ultraviolet behaviour is canonical
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(as long as the system approaches a renormalization group fixed point in the ultraviolet).
The subtracted dispersion formula will still imply Im F ′(0) ≥ 0, and therefore ds/dT > 0.

Equations (48), (49) were derived in [5] by considering the flow of entropy in real
time, in and out of the boundary, in analogy with the flow of electric charge in an electric
circuit. The flow of entropy is described by an entropy current operator, which is just the
energy current divided by the temperature. The right-moving entropy current operator
is the right-moving energy current divided by temperature, jL(x, t) = TL(x, t)/T . The
boundary entropy ‘charge’ operator is qS(t) = −θ(t)/T . The Kubo formula for the entropic
‘admittance’ of the boundary was written, using the chirality of the bulk entropy currents,
as

YS(ω) =

∫ ∞

−∞
dt e−iωt〈i[jL(0, t),−qS(0)]〉eq. (50)

The entropic ‘capacitance’ of the boundary is

ds

dT
= lim

ω→0

1

iω
YS(ω) = Im Y ′

S(0). (51)

These are exactly equations (48), (49), since T−2F (ω)/2 = YS(ω). Here, we derive
equations (48) and (49) directly.

The proof is based on the following assumptions:

(1) There is a local, symmetric energy–momentum tensor T µ
ν (x, t), Tµν = Tνµ.

(2) The system is locally scale invariant in the bulk. The trace of the energy–momentum
tensor vanishes in the bulk, T µ

µ = 0.

(3) The bulk system is conformally invariant. The bulk ground state in the ‘closed’
channel is annihilated by the Virasoro operators L0 + L̄0 and L1 + L̄1.

(4) The system exhibits canonical scaling behaviour in the ultraviolet (goes to a
renormalization group fixed point in the ultraviolet).

(5) The system is in equilibrium at temperature T . Equilibrium expectation values
of commutators of local operators, 〈[O1(t1),O2(t2)]〉eq, go to zero at large times,
t1 − t2 → ±∞.

(6) The Fourier transforms∫
dt e−iωt〈[O1(t1),O2(t2)]〉eq

are smooth functions of the frequency ω, for any local operators O1(t), O2(t).

5.1. The Kubo formula for ds/dT

The bulk energy density operator is [v−1TR(x − vt) + v−1TL(x + vt)] and the boundary
energy operator is −θ(t), so the thermodynamic energy of the full system (of length L) is

−∂

∂β
ln Z = 〈H〉eq =

〈
−θ(t) +

∫ L

0

dx [v−1TR(x − vt) + v−1TL(x + vt)]

〉
eq

.

The equilibrium expectation values 〈TR(x − vt)〉eq and 〈TL(x + vt)〉eq are constant in x
because they are independent of time, so 〈v−1TR(x − vt) + v−1TL(x + vt)〉eq is the bulk
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energy density, cπL/6β2, which is determined by bulk conformal invariance up to the value
of the bulk conformal central charge, c. The difference between the total thermodynamic
energy and the bulk energy is the thermodynamic boundary energy:

−∂

∂β
ln z = 〈−θ(t)〉eq.

The boundary entropy is given by formula (13). Thus we have

T 2 ∂s

∂T
= − ∂s

∂β
= β

∂

∂β
〈θ(0)〉eq = −β〈H θ(0)〉c. (52)

Approximate the Hamiltonian by introducing an arbitrary cut-off point x1 > 0:

H(x1, t) = −θ(t) +

∫ x1

0

dx [v−1TR(x − vt) + v−1TL(x + vt)] .

Approximate βH by integrating over imaginary time, τ = it, from 0 to β:

βH ≈
∫ −iβ

0

dt iH(x1, t).

Then

T 2 ∂s

∂T
= lim

x1→∞

∫ −iβ

0

dt (−i)〈H(x1, t) θ(0)〉c.

In fact, there is no dependence on x1, because

∂

∂x1

∫ −iβ

0

dt 〈H(x1, t) θ(0)〉c =

∫ −iβ

0

dt 〈[v−1TR(x1 − vt) + v−1TL(x1 + vt)] θ(0)〉c

which is zero because the rhs, evaluated in the ‘closed’ channel where x is imaginary time,
is a matrix element of the Virasoro operator L0 + L̄0 between a boundary state and the
bulk ground state, and the bulk ground state is annihilated by L0 + L̄0. Therefore, for
any x1 > 0,

T 2 ∂s

∂T
=

∫ −iβ

0

dt (−i)〈H(x1, t) θ(0)〉c. (53)

Now deform the contour of integration in the standard way to obtain the Kubo formula:

∂s

∂T
= T−2

(∫ 0−iβ

−∞−iβ

−
∫ 0

−∞

)
dt (−i)〈H(x1, t) θ(0)〉c

= T−2

∫ 0

−∞
dt 〈i[H(x1, t), θ(0)]〉eq. (54)

This is the Kubo formula for the entropic ‘capacitance’ of the boundary, which was derived
in [5] as the infinitesimal change in the entropic ‘charge,’ −θ(t)/T , produced in real time
by an infinitesimal change in the entropic ‘potential’ of the boundary.

The integrand in the Kubo formula is a distribution in t. In the derivation, the contour
deformation in the complex time plane is justified by Gauss’s law for distributions, applied
on the region −iβ ≤ Im t ≤ 0, Re t ≤ 0. The integral over the boundary of this region
vanishes. The boundary integral can be separated unambiguously into two parts—the
integral over the imaginary t axis from 0 to −iβ, and the rest—because the integrand is
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an ordinary function near t = 0 and near t = −iβ. In general, equilibrium expectation
values satisfy

〈H(x1, t − iβ) θ(0)〉eq = 〈θ(0) H(x1, t)〉eq
but here,

〈[H(x1, t), θ(0)]〉eq = 〈[H, θ(0)]〉eq = 0

for all real t in the range −x1 < vt < x1, by causality. It takes at least time x1/v for any
effect of the cut-off at x1 to reach the boundary, or vice versa. Therefore the integrand
in the Kubo formula is identically zero near t = 0. The equilibrium correlation function,
〈H(x1, t) θ(0)〉eq, is periodic on the imaginary t axis, with period iβ, without singularity
at t = 0 or t = iβ.

A second Kubo formula is obtained by deforming the integration contour in
equation (53) to positive times:

∂s

∂T
= T−2

∫ ∞

0

dt 〈−i[H(x1, t), θ(0)]〉eq. (55)

5.2. Using chirality of the energy currents

Local conservation of energy implies

∂tH(x1, t) = −TR(x1 − vt) + TL(x1 + vt),

and thus

T 2 ∂s

∂T
=

∫ 0

−∞
dt

∫ t

−∞
dt′ 〈i[−TR(x1 − vt′) + TL(x1 + vt′), θ(0)]〉eq. (56)

The boundary term at t′ = −∞ can be neglected because equilibrium expectation values
of commutators of local operators decay to zero at large times. Now use the chirality of
the bulk energy currents. For all t′ < x1/v,

〈[TR(x1 − vt′), θ(0)]〉eq = 〈[TR(x1 − vt′, 0), θ(0)]〉eq = 0

as an equal-time commutator of spatially separated operators. Therefore

T 2 ∂s

∂T
=

∫ 0

−∞
dt

∫ t

−∞
dt′ 〈i[TL(x1 + vt′), θ(0)]〉eq

=

∫ 0

−∞
dt′

∫ 0

t′
dt 〈i[TL(x1 + vt′), θ(0)]〉eq

=

∫ 0

−∞
dt′ (−t′)〈i[TL(x1 + vt′), θ(0)]〉eq

=

∫ ∞

−∞
dt′ (−t′)〈i[TL(x1 + vt′), θ(0)]〉eq. (57)

In the last step, it makes no difference to extend the time integral to +∞, because, for
all t′ > −x1/v,

〈[TL(x1 + vt′), θ(0)]〉eq = 〈[TL(x1 + vt′, 0), θ(0)]〉eq = 0
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as an equal-time commutator of spatially separated operators. Next, change the
integration variable to t = t′ − x1/v, obtaining

T 2 ∂s

∂T
=

∫ ∞

−∞
dt (−t + x1/v)〈i[TL(vt), θ(0)]〉eq.

The term proportional to x1 vanishes by (23) and thus

T 2 ∂s

∂T
=

∫ ∞

−∞
dt (−t) 〈i[TL(0, t), θ(0)]〉eq. (58)

In terms of the response function

FL(ω) =

∫ ∞

−∞
dt e−iωt〈i[TL(0, t), θ(0)]〉eq, (59)

T 2 ∂s

∂T
= i−1F ′

L(0). (60)

FL(ω) is analytic in the upper half-plane because the commutator vanishes for all t > 0,
by the chirality of the energy current.

By similar reasoning, the second Kubo formula, equation (55), becomes

T 2 ∂s

∂T
=

∫ ∞

−∞
dt t〈−i[TR(0, t), θ(0)]〉eq. (61)

In terms of the response function

FR(ω) =

∫ ∞

−∞
dt eiωt〈−i[TR(0, t), θ(0)]〉eq, (62)

T 2 ∂s

∂T
= i−1F ′

R(0). (63)

FR(ω) is analytic in the upper half-plane because the commutator vanishes for all t < 0,
by the chirality of the energy current. Finally, define

F (ω) = FL(ω) + FR(ω)

=

∫ ∞

−∞
dt e−iωt〈i[TL(vt) − TR(vt), θ(0)]〉eq (64)

so

T 2 ∂s

∂T
=

1

2
i−1F ′(0). (65)

5.3. Properties of F (ω)

(1) F (ω) is analytic in the upper half-plane.

(2) F (ω) = F (−ω̄).

(3) F (0) = 0.

(4) T 2(∂s/∂T ) = 1
2
Im F ′(0).

(5) F (ω)/ω2 → 0 as ω → ±∞.

(6) Re F (ω) =
∫ ∞
−∞ dt e−iωtω〈[θ(t), θ(0)]〉eq.

(7) −Re F (ω) ≥ 0 for all real ω.

(8) F (i2πT ) = 0.
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F (ω) is analytic in the upper half-plane because both FL(ω) and FR(ω) are. F (ω) =
F (−ω̄) because TL(x, t), TR(x, t) and θ(t) are self-adjoint operators. Property (2) implies
that F ′(0) is imaginary, so T 2∂s/∂T = Im F ′(0)/2. F (0) = 0 by equation (23).
F (ω)/ω2 → 0 as ω → ∞ by canonical dimensional analysis in the ultraviolet limit.
Each of TL(x, t) and TR(x, t) has scaling dimension 2, while θ(t)dt = βaφa(t)dt goes to
zero in the ultraviolet limit, assuming that the system goes to a renormalization group
fixed point in the ultraviolet. For property (6), evaluate

Re F (ω) = Re

∫ ∞

−∞
dt e−iωt〈i[TL(0, t) − TR(0, t), θ(0)]〉eq

= Re

∫ ∞

−∞
dt e−iωt〈i[ − θ′(t), θ(0)]〉eq

=

∫ ∞

−∞
dt e−iωtω〈[θ(t), θ(0)]〉eq.

For property (7), define the operator Fourier modes

θ̃(ω) =

∫ ∞

−∞
dt eiωtθ(t)

satisfying

θ̃(ω)† = θ̃(−ω)

[H, θ̃(ω)] = −ωθ̃(ω).

Then we have

2πδ(ω′ + ω)Reω−1F (ω) = 〈[θ̃(ω′), θ̃(ω)]〉eq. (66)

Next note that

〈[θ̃(ω′), θ̃(ω)]〉eq =
(
1 − eβω

)
〈θ̃(ω′) θ̃(ω)〉eq

and thus

2πδ(ω′ + ω)Reω−1F (ω) =
(
1 − eβω

)
〈θ̃(ω′) θ̃(ω)〉eq (67)

which implies

−Re F (ω) ≥ 0. (68)

Finally, for property (8), write

〈[TL(0, t), θ(0)]〉eq =
1

2π

∫
dω 〈[TL(0, t), θ̃(ω)]〉eq

so

〈[TL(0, t), θ̃(ω)]〉eq = eiωt(−i)FL(ω)(
1 − eβω

)
〈TL(0, t) θ̃(ω)〉 = 〈[TL(0, t), θ̃(ω)]〉eq

〈TL(0, t) θ̃(ω)〉c = eiωt
(
1 − eβω

)−1
(−i)FL(ω)

and therefore

〈TL(0, t) θ(0)〉c =
1

2πi

∫
dω eiωt FL(ω)

1 − eβω
. (69)

doi:10.1088/1742-5468/2006/03/P03014 18

http://dx.doi.org/10.1088/1742-5468/2006/03/P03014


J.S
tat.M

ech.
(2006)

P
03014

Infrared properties of boundaries in 1D quantum systems

We next Wick rotate to imaginary time τ = it, for 0 < τ < β, to get

〈TL(0,−iτ) θ(0)〉c =
1

2πi

∫
dω eωτ FL(ω)

1 − eβω
. (70)

Deform the contour of integration into the upper half-plane, picking up the residues at
the thermal poles:

〈TL(0,−iτ) θ(0)〉c =
−1

β

∞∑
n=1

eiωnτFL(iωn) (71)

where

ωn =
2πn

β
.

Then, by chirality of the energy current,

〈TL(x − ivτ) θ(0)〉c =
−1

β

∞∑
n=1

e−ωn(x−ivτ)/vFL(iωn). (72)

Similarly, also for 0 < τ < β,

〈TR(0,−iτ) θ(0)〉c =
1

2πi

∫
dω e−ωτ FR(ω)

e−βω − 1
(73)

so

〈TR(x + ivτ) θ(0)〉c =
−1

β

∞∑
n=1

e−ωn(x+ivτ)/vFR(iωn). (74)

Setting n = 1,

F (iω1) =
2π

β
〈K1(x) θ(0)〉eq (75)

where

K1(x) =
−β

2πv

∫ vβ

0

dy
[
eω1(x−iy)/vTL(x − iy) + eω1(x+iy)/vTR(x + iy)

]
. (76)

In the ‘closed’ channel, where x is imaginary time, K1(x) is the Virasoro operator L1 + L̄1.
Therefore, in the ‘closed’ channel, F (iω1) is a matrix element of L1 + L̄1 between a
boundary state and the bulk ground state. Global conformal invariance of the bulk system
implies that L1 + L̄1 annihilates the bulk ground state in the ‘closed’ channel. Therefore
F (iω1) = F (2πi/β) = 0.

5.4. Subtracted dispersion formula for Im F ′(0)

The vanishing formulae, F (0) = F (2πi/β) = 0, allow writing

η−1F (η) =
1

2πi

∫ ∞

−∞
dω

[
1

ω − η − iε
− ω + η + iε

ω2 + ω2
1

]
ω−1F (ω).
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The integral converges, because F (ω)/ω2 → 0 when ω → ±∞. Take the imaginary part
to get the dispersion formula

Im η−1F (η) =
1

π

∫ ∞

−∞
dω

[
P

(
1

ω − η

)
− ω + η

ω2 + ω2
1

] [
−ω−1 Re F (ω)

]
. (77)

Take η → 0 to get

Im F ′(0) =
1

π

∫ ∞

−∞
dω

−Re F (ω)

ω2(1 + ω−2
1 ω2)

. (78)

Thus Im F ′(0) ≥ 0. Equality, Im F ′(0) = 0, is possible only if ReF (ω) = 0, which implies

F (ω) = 0. It follows then from equation (67) that θ̃(ω) is proportional to δ(ω), which
implies that θ(t) is a multiple of the identity. This means that the boundary field theory
is scale invariant. Therefore ∂s/∂T ≥ 0, with equality if and only if the boundary field
theory is scale invariant.

5.5. The gradient formula

Calculate

∂as = ∂a

(
1 − β

∂

∂β

)
z

=

(
1 − β

∂

∂β

)
∂az

=

(
1 − β

∂

∂β

)
〈βφa(0)〉eq

= −β2 ∂

∂β
〈φa(0)〉eq

= β2〈H φa(0)〉c

= β

∫ −iβ

0

dt i〈H(x1, t) φa(0)〉c (79)

where the last expression is independent of x1 and the result is thus exact, as before.
Deform the integration contour to negative times to get

−T∂as =

(∫ 0

−∞
−

∫ 0−iβ

−∞−iβ

)
dt i〈H(x1, t) φa(0)〉c

=

∫ 0

−∞
dt 〈i[H(x1, t), φa(0)]〉c

=

∫ 0

−∞
dt

∫ t

−∞
dt′ 〈i[TL(x1, t

′) − TR(x1, t
′), φa(0)]〉c

=

∫ 0

−∞
dt (−t)〈i[TL(x1, t), φa(0)]〉c

= i−1F ′
La(0) (80)

where

FLa(ω) =

∫ ∞

−∞
dt e−iωt〈i[TL(0, t), φa(0)]〉eq. (81)
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The spectral function FLa(ω) is analytic in the upper half-plane. Equation (81) is a Kubo
formula giving the response of the boundary fields to a local change of temperature.

A second Kubo formula is obtained similarly by deforming the contour to positive
times:

−T∂as = i−1F ′
Ra(0) (82)

where

FRa(ω) =

∫ ∞

−∞
dt eiωt〈(−i)[TR(0, t), φa(0)]〉eq. (83)

FRa(ω) is analytic in the upper half-plane. Define

Fa(ω) = FLa(ω) + FRa(ω)

=

∫ ∞

−∞
dt e−iωt〈i[TL(vt) − TR(vt), φa(0)]〉eq (84)

so

−T∂as = 1
2
i−1F ′

a(0). (85)

Fa(ω) satisfies

(1) Fa(ω) is analytic in the upper half-plane.

(2) Fa(ω) = Fa(−ω̄).

(3) Fa(0) = 0.

(4) −T∂as = 1
2
Im F ′

a(0).

(5) Fa(i2πT ) = 0.

(6) βaFa(ω) = F (ω).

(7) Re Fa(ω) = Re
∫ ∞
−∞ dt e−iωtω〈[θ(t), φa(0)]〉eq.

(8) Re Fa(ω)/ω2 → 0 as ω → ∞.

Properties (1)–(5) are derived just as for F (ω). Property (6) follows from θ(t) = βaφa(t).
For property (7), evaluate

Re Fa(ω) = Re

∫ ∞

−∞
dt e−iωt〈i[TL(0, t) − TR(0, t), φa(0)]〉eq

= Re

∫ ∞

−∞
dt e−iωt〈i[ − θ′(t), φa(0)]〉eq

= Re

∫ ∞

−∞
dt e−iωtω〈[θ(t), φa(0)]〉eq. (86)

Property (8) follows from property (7) and canonical scaling in the ultraviolet, since the
boundary operators, φa(t), all have scaling dimensions ≤ 1, and θ(t) dt vanishes in the
ultraviolet limit.

As before, the vanishing formulae allow writing a subtracted dispersion formula:

Im η−1Fa(η) =
1

π

∫ ∞

−∞
dω

[
P

(
1

ω − η

)
− ω + η

ω2 + ω2
1

] [
−ω−1 Re Fa(ω)

]
(87)
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where ω1 = 2πT . Take η → 0 to get

Im F ′
a(0) =

1

π

∫ ∞

−∞
dω

−Re Fa(ω)

ω2(1 + ω−2
1 ω2)

. (88)

Now use property (7) and the identity θ(t) = βaφa(t) to write

−Re Fa(ω) = ReωGab(ω)βb (89)

where

Gab(ω) =

∫ ∞

−∞
dt e−iωt〈[−φb(t), φa(0)]〉eq. (90)

In terms of the operator Fourier modes

φ̃a(ω) =

∫ ∞

−∞
dt eiωtφa(t),

〈[−φ̃b(ω
′), φ̃a(ω)]〉eq = 2πδ(ω′ + ω)Gab(ω)

so

〈φ̃b(ω
′) φ̃a(ω)〉c = 2πδ(ω′ + ω)

Gab(ω)

eβω − 1
. (91)

Therefore

(1) Gab(ω)/ω is a non-negative Hermitian matrix,

(2) Gab(−ω) = −Gab(ω),

(3) Gab(−ω) = −Gba(ω).

The dispersion formula for Im F ′
a(0) becomes

Im F ′
a(0) =

1

π

∫ ∞

−∞
dω

Re Gab(ω)βb

ω(1 + ω−2
1 ω2)

(92)

which is the gradient formula,

∂as = −gabβ
b

with

Tgab =
1

2π

∫ ∞

−∞
dω

Re Gab(ω)

ω(1 + ω−2
1 ω2)

(93)

being a positive symmetric matrix, a Riemannian metric on the space of boundary
couplings.
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5.6. The renormalized boundary susceptibility matrix

Formally, the dynamic susceptibility matrix is given by the Kubo formula

χab(ω) =

∫ 0

−∞
dt e−iωt〈i[ − φb(t), φa(0)]〉eq (94)

however the integral diverges at t = 0. The unrenormalized boundary susceptibilities are
divergent. The Fourier transform of the formal Kubo formula is

χab(η) =
1

2π

∫ ∞

−∞
dω

Gab(ω)

ω − η − iε
(95)

which diverges, in general, since Gab(ω) can grow as fast as ω for large ω. Renormalizing
the boundary susceptibilities requires two subtractions: a constant subtraction and a
linear subtraction, proportional to η. A renormalized dynamic susceptibility matrix is
defined by

χren
ab (η) =

1

2π

∫ ∞

−∞
dω

[
1

ω − η − iε
− ω + η + iε

ω2 + ω2
1

]
Gab(ω). (96)

The subtractions are chosen so that χren
ab (ω) will be compatible with the natural

susceptibilities Fa(ω) and F (ω):

Fa(ω) = χab(ω)βb

F (ω) = χab(ω)βaβb.

Fa(ω) and F (ω) are natural in the sense that they are constructed without arbitrary
subtractions, in terms of the chiral energy currents outside the boundary. χren

ab (ω) is a
dynamic susceptibility matrix in the sense that (1) it is analytic in the upper half-plane,
(2) it satisfies, on the real axis,

χren
ab (ω) − χren

ba (ω) = iGab(ω) =

∫ ∞

−∞
dt e−iωt〈i[−φb(t), φa(0)]〉eq

and (3) its static limit,

χren
ab (0) = Tgab, (97)

is a positive symmetric matrix. The metric gab on the space of boundary couplings is the
renormalized static susceptibility matrix for the boundary, divided by the temperature.

5.7. The imaginary time formula for the metric

The imaginary time formula for the metric gab is [3]

Tgab =

∫ β

0

dτ 〈φb(−iτ) φa(0)〉c [1 − cos(ω1τ)] . (98)

From equation (91),

〈φb(−iτ) φa(0)〉c =
1

2π

∫
dω eωτ Gab(ω)

eβω − 1
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and therefore

Tgab =
1

2π

∫
dω

Gab(ω)

eβω − 1

∫ β

0

dτ eωτ

[
1 − 1

2
eiω1τ − 1

2
e−iω1τ

]

=
1

2π

∫
dω

Gab(ω)

ω(1 + ω−2
1 ω2)

which is exactly equation (93) for Tgab, since Gab(−ω) = −Gab(ω). So the real time and
imaginary time formulae for the metric gab are equivalent.

6. Estimate of ds/dT using the dispersion formula

Combining formula (65) with the dispersion relation (78) we can write

ds

dT
= 2π

∫ ∞

−∞
dω

−ReF (ω, T )

ω2(4π2T 2 + ω2)
. (99)

Here we included the temperature argument in the notation for the response function:
F (ω) = F (ω, T ). By property (2) from section 5.3 the function ReF (ω, T ) is even on the
real axis. Since F (0, T ) = 0 (property (3)) the integral on the right-hand side of (99) is
well defined for T > 0. In the limit T → 0 however the poles at ω = 0 and ω = ±iω1

coalesce. To separate off the dangerous part we rewrite the right-hand side as

ds

dT
= 2π

∫ ∞

−∞
dω

−Re F (ω, T ) + (ω2/2) ReF ′′(0, T )

ω2(4π2T 2 + ω2)
− π

2T
F ′′(0, T ). (100)

Here the integral on the right-hand side converges as T → 0 to a constant

f = −2π

∫ +∞

−∞
dω Re F (ω, 0)P

(
1

ω4

)
(101)

where P(1/ω4) is the standard (even) distribution regularizing the function 1/ω4. The
first term in (100) is therefore integrable at T = 0.

Let us look now at the second term on the right-hand side of (100). By comparing
formula (33) with the T → 0 limit of formula (73) we obtain

AθR(ω) = − lim
T→0

FR(ω, T ). (102)

It follows then from (44) that

lim
T→0

F ′′(0, T ) = 0. (103)

However general analysis stops here as we have no control in general over how fast F ′′(0, T )
vanishes as T → 0 and thus cannot conclude whether

Re F ′′(0, T )

T

is integrable in a neighbourhood of T = 0.
Equation (103) implies that Tds/dT → 0 as T → 0. Note that in deriving this we

used in the essential way the consequences of the bulk conformal invariance on a half-plane,
that is the condition 〈0|Q = 0 discussed in section 4.
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Although the above manipulations do not lead to demonstrating the boundedness
of s they boil the problem down to having an estimate of the zero-temperature limit of
F ′′(0, T ). For models possessing an asymptotic power expansion at small temperature
(such as the Ising model with a boundary magnetic field) the existence of a lower bound
on s follows from (100), (103).
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Appendix A. 〈θθ〉c decays at infinity from bulk conformal invariance at T > 0

From (19) and (73) we obtain

−2π

β
e−2πnx/vβ〈0|Lnθ(0)|B〉 =

∫ β

0

dτ e2πinτ/β〈TR(x + iτ)θ(0)〉eq

=
1

2π

∫ β

0

dτ e−2πinτ/β

∫ +∞

−∞
dω eω(−τ+ix/v) −iFR(ω)

(e−βω − 1)

=
1

2π

∫ +∞

−∞
dω eiωx/v iFR(ω)

(ω − 2πin/β)
(A.1)

where on the left-hand side 〈0| is the conformal bulk vacuum, |B〉 is the boundary state
representing our boundary condition on a cylinder of circumference β. Here we use a
representation for correlators corresponding to quantization with x being a Euclidean
time. Since 〈0|Ln = 0 for n ≤ 1, we have∫ +∞

−∞
dω eiωx/v FR(ω)

(ω − 2πin/β)
= 0, n ≤ 1, x > 0. (A.2)

Taking an appropriate linear combination of the above equations with n = −1, 0, 1 we get

∫ +∞

−∞
dω eiωx/v FR(ω)

ω(ω2 + 4π2/β2)
= 0, x > 0. (A.3)

The limit x → 0 gives a sum rule∫ +∞

−∞
dω

FR(ω)

ω(ω2 + 4π2/β2)
= 0. (A.4)

As proved in section 5, the function ReFR(ω) is even on the real line and the function
Im FR(ω) is odd. Thus equation (A.3) implies that∫ +∞

−∞
dω

[cos(ωx/v) ImFR(ω) + sin(ωx/v) ReFR(ω)]

ω(ω2 + 4π2/β2)
= 0 (A.5)

for x > 0. The spectral function FR(ω) = FR(ω, T ) is related to the zero-temperature
spectral function as in (102)

lim
T→0

FR(ω, T ) = −AθR(ω).
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Thus in the limit T → 0 equations (A.5) (assuming the limit commutes with the
integration) imply that the functions Im ARθ(ω)/ω3 and ReARθ(ω)/ω2 are integrable at
ω = 0.

We did not use here the analyticity of FR(ω) in the upper half-plane. That and
the sum rule (A.4) imply that FR(i2πT ) = 0. This zero can be considered as the sole
manifestation of the conformal invariance at T > 0. Another zero is situated at ω = 0.

This allows us to write a subtracted dispersion relation

ReFR(ω)

(ω2 + 4π2/β2)
=

1

2π

∫ +∞

−∞
dη

Im FR(ω)

(η2 + 4π2/β2)
P

(
1

η − ω

)
,

Im FR(ω)

(ω2 + 4π2/β2)
= − 1

2π

∫ +∞

−∞
dη

ReFR(ω)

(η2 + 4π2/β2)
P

(
1

η − ω

)
.

(A.6)

As T → 0 these dispersion relations at least formally (more on this below) go into the
dispersion relations (43) and the sum rule (A.4) goes into the sum rule (42). It was
demonstrated in section 4 how the last two imply (44). Analogous considerations hold for
FL(ω) and imply (45).

It should be stressed that in all these manipulations it is implicitly assumed that
taking the limit T → 0 commutes with integrations in dispersion relations. Or equivalently
that the dispersion relations for T > 0 go to those at T = 0 in a continuous fashion. It
could happen that there are singularities of FR(ω) in the lower half-plane that approach
ω = 0 as T → 0. The above conclusions for the behaviour of AθR(ω) at zero would then
be incorrect. The continuity at T = 0 of the above equations is essentially equivalent to
the condition of the asymptotic conformal invariance on a half-plane 〈0|Q = 0 discussed
in section 4.

To conclude we see that, assuming the just discussed continuity at T = 0, the finite
T conformal invariance implies formulae (44), (45) and, as a consequence, the vanishing
of the 〈θ(τ)θ(τ ′)〉c correlator in the infrared.

Appendix B. A lower bound on boundary entropy of Cardy states3

For rational conformal field theories there is a set of local conformal boundary conditions
that preserve the chiral algebra in the most straightforward way—Cardy boundary states.
These boundary states are constructed via the modular S-matrix Sij as

|i〉 =
∑

j

Sij√
S0j

|j〉〉

where |j〉〉 are Ishibashi states. (Note that in the proof of the Verlinde formula one shows
at an intermediate step that S0j > 0 and thus the division makes sense.) The boundary
entropies of the Cardy states are

gi = 〈0|i〉 =
Si0√
S00

.

We are going to show that

gi ≥ g0 =
√

S00. (B.1)

3 The contents of this appendix grew from discussions of AK with G Moore.
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The S-matrix entries Sij can be considered as a collection of common eigenvectors of the
fusion matrices. By the Perron–Frobenius theorem there is a unique a common eigenvector
whose set of eigenvalues consists of the maximal eigenvalues of the respective fusion
matrices. It is uniquely characterized by the property that all its entries are positive.
Since S0j > 0 this eigenvector corresponds to the zero weight and the corresponding
collection of maximal eigenvalues is

γmax
i =

Si0

S00

.

On the other hand, the inequality (B.1) translates into

Si0 ≥ S00

and hence we need to prove that the maximal eigenvalues of the fusion matrices are all
greater or equal to one. To this end we note that the dimension of the Friedan–Shenker
vector bundle [10] over a genus g Riemann surface with n punctures in representations
i1, . . . , in is given by the formula [8]

dimH(Σg; (P1, i1), . . . , (Pn, in)) =
∑

p

1

(S0p)2(g−1)

Si1p

S0p
· · · · · Sinp

S0p
. (B.2)

For g = 1 each summand is a product of all eigenvalues of the ikth fusion matrix. Since
the number of punctures and the weights ik can be arbitrary and the left-hand side of the
above equation is a natural number we conclude that the maximal eigenvalues have to be
greater than 1. This concludes the proof of (B.1).
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