The Space of Conformal Boundary Conditions
for the ¢ = 1 Gaussian Model

Daniel Friedan
Department of Physics and Astronomy
Rutgers, the State University of New Jersey

May 5, 1999

Abstract

This is a telegraphic summary of work done in 1993 to construct
abstractly the space of conformal boundary conditions of an arbitrary
two dimensional conformal field theory, and to construct explicitly the
spaces of conformal boundary conditions of the ¢ = 1 gaussian models.
The work was described briefly at a Rutgers group meeting, proba-
bly during the academic year 1993-94. This summary is based on a
fast re-reading of old notes. Reconstructing the proofs for the ¢ =1
gaussian models would require more serious archeological investiga-
tion. No references are given. Speculations which were made about
the situation for ¢ > 1 are omitted.

1 The space of conformal boundary condi-
tions of a conformal field theory

A is the commutative, associate algebra whose dual space A* is the linear
space of conformally invariant boundary states on the boundary of the unit
disk. A basis for A is given by the set of spin 0 conformal primary fields (i.e.
primary for both Virasoro algebras). The algebra structure on A is obtained
by letting primary fields act near the boundary on conformal boundary states.
A spin 0 primary field, approaching the boundary of the unit disk, takes a
conformal boundary state to a conformal boundary state. (This is rigorously



true in any unitary conformal field theory with central charge ¢ < 1.) This
action of A on A* is a linear map A ® A* — A*, which gives the structure
constants making A into a commutative, associative algebra. Commutativity
follows easily from SL(2, R) invariance on the disk. Associativity is proved
by sending two spin 0 primary fields to different points on the boundary, in
either order.

The space of conformal boundary conditions is B = spec(A), the space
of multiplicative linear functionals on the algebra A. A linear functional on
A is a conformal boundary state. The multiplicative condition is equivalent
to cluster decomposition on the disk, or equivalently on the strip. The space
of conformal boundary states can now be described as the space of measures

on B.

2 The ¢ =1 gaussian model

R is the radius of the target circle, normalized so that 1/R is the radius of
the dual target circle and R =1 is the SU(2) x SU(2) invariant model.

The vertex operators are V, 5, with conformal weights h = p? and h = p?,
where p—p = R™'k, k the integer U(1) charge, and p+p = Rn, n the integer
winding number or dual U(1) charge.

The description of the spaces B for all possible values of R is obtained by
first doing the case R = 1, then the rational values of R, then the irrational
values. But I describe the results here in reverse order.

3 Irrational R

For R an irrational number, B is a fiber space over the interval I = [—1,1].
Over the interior of the interval I, each fiber is a single point. Over each
endpoint of I, the fiber is a circle. The circle over the endpoint +1 is the
radius R target circle of the gaussian model, i.e. the Dirichelet boundary
conditions. The other circle, the fiber over the endpoint —1, is the radius
R™! dual target circle, i.e. the Dirichelet boundary conditions for the dual
gaussian model or, equivalently, the Neumann boundary conditions for the
original gaussian model.

The U(1) internal symmetry group acts by rotations on the circle over +1,
leaving the rest of B fixed. The dual U(1) acts by rotations on the circle over



—1, leaving the rest of B fixed. The part of B that lies over the interior of
the interval, and which is homeomorphic to the interior of the interval since
each fiber there is a single point, is the set of conformal boundary conditions
invariant under both U(1) internal symmetry groups.

Topologically, B is not Haussdorff. If you move in the interior of the
interval towards an endpoint, you approach every point on the circle over
that endpoint. The more precise view is measure theoretic. Fach point in B
is a conformal state. As you move in the interior of the interval towards an
endpoint, the conformal state approaches a decomposable state correspond-
ing to the uniform measure on the circle of boundary conditions that is the
fiber over the endpoint.

The Hilbert space of the bulk theory decomposes into irreducible rep-
resentations of the two chiral U(1) current algebras, characterized by the
U(1) charges (p,p). For R irrational, all of these representations of the U(1)
currents are irreducible under the two Virasoro algebras except the neutral
sector p = p = 0. The neutral sector decomposes under the Virasoro alge-
bras, with the spin 0 primaries being a collection ®;, [ = 0,1/2,1,3/2,---
having conformal weights h = h = [%. A basis for the algebra A is given by
the ®; and the spin 0 vertex operators Vj _,, 2p = R™'k, with integer U(1)
charge k # 0, and the V, ,, 2p = Rn with integer dual U(1) charge n # 0.

In the algebra A, the ®; generate a sub-algebra Ay which is isormorphic
to the algebra of Legendre polynomials on the interval I, so spec(Ag) = I.
The inclusion of algebras Ay — A gives the fibering spec(A) — spec(Ay), i.e.
B — 1.

In the algebra A, the product of V, _, and V_, , is neutral and so equals
a linear combination of the ®; (in fact, of infinitely many of them). This
linear combination is, in fact, the characteristic function of the endpoint +1
in [. Similarly, the product of V,, and V_, _, is the characteristic function
of the other endpoint —1 in /. The V,_, and the ®; generate an ideal
in A, corresponding in B to the inclusion of the dual Dirichelet boundary
conditions, the circle fiber over the endpoint —1. The V, , and the ®; generate
another ideal in A, corresponding in B to the inclusion of the Dirichelet
boundary conditions, the circle fiber over the endpoint +1.



4 R=1

For R =1, the space B of conformal boundary conditions is exactly the group
manifold SU(2), the Dirichelet boundary conditions for the WZW model at

c=1.

5 R rational

When R is rational, some of the charged sectors of the chiral U(1) current
algebras are reducible under the two Virasoros. Again, there is a sub-algebra
Ag in A which has as a basis the spin 0 primaries which correspond to small
Virasoro representations (where small means smaller than the Verma module,
containing null vectors). So, again, there is a fibering B — By where B, =
spec(A).

The sub-algebra Ay can be described explicitly as a sub-algebra of the
functions on SU(2). The base space By is a quotient of SU(2) by a discrete
group action.

Parametrize each SU(2) matrix U by two complex numbers u,v with
|ul* + |v[* = 1. That is, the matrix elements of U are Uy = u, Uz = v,
Uy = —v, Uyy = @ Define an action of the discrete group Z x Z, two
copies of the integers, on SU(2) as follows. Let (n1,n2) in Z x Z take
(u7 U) - (62#2'711/]:5“7 eZm'nQRU>.

The sub-algebra Ag consists of the functions on SU(2) which are invariant
under this action of 7 x 7.

If R is irrational, then the discrete group acts ergodically on the phases of
u and v, so the invariant functions are the functions which depend only on,
say, 2|u| — 1. These are the functions on the interval. (But note that there
is much more structure in the quotient space of SU(2) then just the algebra
of invariant continuous functions. There is clearly some non-commutative
geometry there.)

The “small” spin 0 Virasoro primaries, which form a basis for the sub-
algebra Ag, consist of the set Y;,;5, where the conformal weights are h =
h = (2, the integer U(1) charge is k = R(p — p), the integer dual U(1) charge
is n = R™'(p+p), k is restricted to the subgroup of integers for which R™'k
is also an integer, n is restricted to the subgroup of integers for which Rn
is also an integer, [ — p must be an integer, [ > |p|, [ > |p|. Each of these
“small” Virasoro primaries Y, ,,; 5 can be identified with a function on SU(2),



namely the matrix element in the spin [ representation between the state of
spin p and the state of spin p. Moreover, the multiplication in the algebra is
exactly the multiplication of the corresponding functions on SU(2). And the
selection rules on the values of [, p, p are exactly the selection rules imposed
by invariance under the action of Z x Z on SU(2).

The idea of the proof is first to show this at R = 1, for the full algebra of
functions on SU(2). Then find the selection rules for rational R. Then show
that the multiplication law is the same as R = 1, for those “small” primaries
which survive the selection rules.

The remaining spin 0 conformal primaries are the vertex operators V, ,
with 2p € RZ — Z and the V, _, with 2p € R™'Z — Z. The spin 0 vertex
operators which have been excluded are those which correspond to represen-
tations of the chiral /(1) current algebras which are decomposable under the
Virasoro algebras. Those vertex operators are infinite sums of the “small”
primaries.

I believe (but my memory definitely needs to be checked in detail) that
the full space B of conformal boundary conditions, which is fibered over the
base space By = Z\SU(2)/Z, has the following structure. Everywhere on
the base By, except at the subsets u = 0 and v = 0, the fiber is a single
point. The subset of By at u = 0 is the circle |v| = 1 modulo the action of
Z, v — ™28y The subset of B lying above u = 0 is the original circle
|v| = 1. Similarly, the subset of B above v = 0 is the circle |u] = 1 and the
fibering is by the action of 7, u — e2mim Ry,

The two circles in B are again the Dirichelet and dual Dirichelet boundary
conditions.

There is surely an elegant description of B itself, not just of By, as a
quotient by a group action, the group now acting on a fiber space over SU(2).
But I cannot remember the details offhand. It should be reasonably easy to
reconstruct.



