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Abstract

This is the second note of a series on quasi Riemann surfaces which are metric abelian
groups whose integral currents are analogous to the integral currents in a Riemann
surface. This note is a collection of questions, comments, and speculations.
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Quasi Riemann surfaces were described in an earlier paper [1] motivated by considerations
from quantum field theory. The main elements of the mathematical proposal are summarized
in [2]. The present note follows with a collection of questions, comments, and speculations.
These are in addition to the many questions implicit in [2] about making its naive formal
constructions mathematically solid. The notation is as in [2]. References to equations in [2]
are of the form (I-6.2). As in [2] the presentation is entirely naive and formal; there is no
attempt at rigor; there is no attempt to be precise about topologies or domains of definition.

1 Classification conjecture

Conjecture: Connected quasi Riemann surfaces Q are classified by their Jaco-
bians J(Q). Every quasi Riemann surface Q is isomorphic to the quasi Riemann
surface Q(Σ) associated to a unique two-dimensional conformal space Σ whose
ordinary Jacobian J(Σ) is isomorphic to J(Q).

The following sections elaborate on this conjecture. But the meaning of “isomorphic” is left
vague. There is no supporting evidence so it would better be called speculation or wishful
thinking. Its appeal is the nice structure that it implies (described in sections 8 and 9 below).

The conjecture would open a route to a new construction of quantum field theories on
conformal 2n-manifolds M . For each two-dimensional quantum field theory on Riemann
surfaces Σ we would first have to generalize its quantum fields from the points in Σ to
the integral 0-currents in Σ. This is a problem in two-dimensional quantum field theory.
Then we could use the conjectured isomorphisms to transport the correlation functions from
Q(Σ) = Dint

0 (Σ) to the Q(M).

2 Homology groups

The chain complex of metric abelian groups (I-7.2), (I-8.2), (I-9.15)

0
∂−−→ Q3

∂−−→ Q2
∂−−→ Q1

∂−−→ Q0
∂−−→ Q−1

∂−−→ 0 Q0 = Q Q−1 = Z (2.1)

has homology groups

Hj = Qj,0/∂Qj+1 Qj,0 = Ker ∂ ⊂ Qj H3 = H−1 = 0 (2.2)

The skew(-hermitian) form I〈 ξ̄1, ξ2 〉 on ⊕jQj descends to give a nondegenerate form on
the ⊕jHj which in the real case is skew with values in Z and in the complex case is skew-
hermitian with values in Z ⊕ iZ. The skew(-hermitian) form provides Poincaré duality for
the homology groups Hj.

In the real examples Q(M) with Q = Dint
n−1(M)Z∂ξ0 for M a conformal manifold of

dimension 2n with n odd and n > 1

H0 = Hn−1(M) H1 = Hn(M) H2 = Hn+1(M) (2.3)

In the complex examples Q = Dint
n−1(M)Z∂ξ0 ⊕ i∂Dint

n (M) with n even or odd

H0 = Hn−1(M) H1 = Hn(M)⊕ iHn(M) H2 = Hn+1(M) (2.4)
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In the real examples Q(Σ) = Dint
0 (Σ) for Σ a Riemann surface, i.e., n = 1,

H0 = Hred
0 (Σ) = H0(Σ)/Z H1 = H1(Σ) H2 = Hred

2 (Σ) = H2(Σ)/Z (2.5)

because the chain complex (2.1) is the augmented chain complex of integral currents in Σ
whose homology is the reduced homology.

3 Connectedness

For simplicity, we assume the connectedness condition

H0 = 0 (3.1)

Equivalently the metric abelian subgroup Q0,0 = ∂−1{0} ⊂ Q is connected as a topological
space. In the examples Q(M) with n > 1 the connectedness condition is

Hn−1(M) = 0 (3.2)

In the examples Q(Σ) for Σ a Riemann surface the condition is

Hred
0 (Σ) = 0 (3.3)

which is the condition that Σ is connected.
Given the connectedness condition H0 = 0, Poincaré duality implies

C1 The only nonzero homology is in the middle dimension

Hj = 0 j 6= 1 ⊕j Hj = H1 (3.4)

C2 H1 is torsion-free.

4 The Jacobian J(Q)

The real vector space of j-forms is Ωj = Hom(Qj,R). Its dual Dj = Ω∗j is the vector space
of j-currents. The Dj form a chain complex

0
∂−−→ D3

∂−−→ D2
∂−−→ D1

∂−−→ D0
∂−−→ D−1

∂−−→ 0 (4.1)

The linear operator J acts on D1 satisfying J2 = −1. In the examples J = εn∗ with
ε2n = (−1)n−1. D1 is a Hilbert space with inner product 〈 ξ̄1, ξ2 〉 = I〈 ξ̄1, Jξ2 〉. D1 decomposes
into orthogonal subspaces

D1 = ∂D2 ⊕Dhar
1 ⊕ J∂D2 Dhar

1 = Ker ∂ ∩ J Ker ∂

Ker ∂ = ∂D2 ⊕Dhar
1 Ker(∂J) = J Ker ∂ = Dhar

1 ⊕ J∂D2

(4.2)

Dhar
1 is the subspace of harmonic 1-currents. It represents the real homology and contains

the integer homology H1 as a lattice

H1 ⊂ Dhar
1 Dhar

1 = HR
1 = R⊗H1 (4.3)
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Dhar
1 is a complex Hilbert space with complex structure J .
The Jacobian J(Q) is the lattice H1 in the complex Hilbert space Dhar

1 along with the
skew(-hermitian) intersection form I〈 ξ̄1, ξ2 〉 on H1 which extends to Dhar

1 to give the Hilbert
space inner product 〈 ξ̄1, ξ2 〉 = I〈 ξ̄1, Jξ2 〉.

Call the complex dimension of Dhar
1 the genus g of the quasi Riemann surface

rankZ(H1) = 2g dimR(Dhar
1 ) = 2g dimC(Dhar

1 ) = g (4.4)

In the real examples Q(M) for M a conformal 2n-manifold with n odd

H1 = Hn(M) Dhar
1 = Hn(M,R) g =

1

2
bn (4.5)

where bn the nth Betti number. In the complex examples where n is odd or even

H1 = Hn(M)⊕ iHn(M) Dhar
1 = Hn(M,R)⊕Hn(M,R) = Hn(M,C) g = bn (4.6)

We write J(Q(M)) for the Jacobian J(QZ∂ξ0) of any of the quasi Riemann surfaces Q(M).
In the example Q(Σ) for Σ an ordinary Riemann surface the Jacobian of the quasi

Riemann surface is identical to the ordinary Jacobian J(Σ) of the Riemann surface

J(Q(Σ)) = J(Σ) (4.7)

5 What weak sense of isomorphism?

For the classification conjecture to be possible, isomorphism of quasi Riemann surfaces Q
and Q′ must be weaker than metric or topological equivalence. The Almgren-Dold-Thom
isomorphism [3]

πj(Dint
k (M)0 = Hj+k(M) j ≥ 1 (5.1)

implies
πj(Dint

n−1(M)Z∂ξ0) = Hj+n−1(M) j ≥ 1 (5.2)

so the metric topology of Q(M) depends on more of the structure of M than the Jacobian
J(Q(M)). (The Almgren-Dold-Thom isomorphism is presumably the composition

πj(Dint
k (M)0)

h∗−→ Hj(Dint
k (M)0)

Π∗−→ Hj+k(M) j ≥ 1 (5.3)

of the Hurewicz homomorphism h∗ with the action of Πj,k on the homology.)
We might define a weakening of a quasi Riemann surface Q to be a quasi Riemann surface

Q′ along with a homomorphism
f : Q→ Q′ (5.4)

satisfying

W1 f is continuous in the metric topology or perhaps is a metric map.

W2 f(Q) is dense in Q′.

W3 f is injective or at least its kernel is insignificant.
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and preserving the quasi Riemann surface structure

W4 IQ = f∗IQ′

W5 dfJ = Jdf

Then we might suppose that there is a weakest Qweak such that Qweak is a weakening of every
weakening of Q. Finally we might suppose that Qweak depends on the Jacobian J(Q). We
might call the metric on Q induced from Qweak the weak metric, so Qweak is the completion
of Q in the weak metric. The weak metric sees only the structure given by IQ and J of the
integral j-currents in Q for j = 0, 1, 2, 3. The classification conjecture could hold in the sense
that any two quasi Riemann surfaces with isomorphic Jacobians are isomorphic as metric
abelian groups in their weak metrics.

6 What two-dimensional conformal spaces?

The conjecture would go on to say that Qweak is isomorphic to Q(Σ) for a unique two-
dimensional conformal space Σ with the same Jacobian as Q.

There are at least two problems with this part of the conjecture:

1. First, the two-dimensional conformal spaces must be more general than the Riemann
surfaces since not every Jacobian is the Jacobian of a Riemann surface.

2. The morphism Π3 : Dint
3 (Q) → Q3 = Z should be surjective. It is surjective in all the

examples Q(M) with n > 1.

For Σ a Riemann surface and Q = Q(Σ) = Dint
0 (Σ), the map Π3 : Dint

3 (Q) → Dint
3 (Σ) = Z

is identically zero because the augmentation Dint
3 (Σ) = Z is artificial; there are actually no

3-currents in a Riemann surface.
We might define a two-dimensional conformal space to be a metric space Σ such that

Qj = Dint
j (Σ) is a quasi Riemann surface, with skew intersection form IΣ and J operator

acting in the middle dimension. Such Σ would have to satisfy

Dint
j (Σ) = 0 j > 3 Dint

3 (Σ) = Z (6.1)

Then we might ask

1. Are there such spaces Σ?

2. Can an ordinary Riemann surface be augmented in some sense to give such a Σ?

3. Is there a unique such Σ for every Jacobian?

4. Is every Q(Σ) maximally weak? i.e., does Q(Σ)weak = Q(Σ)?

5. Does every Qweak equal some Q(Σ)?

6. Is there a way to reconstruct a two-dimensional conformal space Σ from its quasi
Riemann surface Q(Σ) so that the same process might be applied to any Q to get a Σ
with Qweak = Q(Σ)?

7. Do such spaces Σ have enough in common with ordinary Riemann surfaces to support
some form of complex analysis in one complex variable?
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7 The automorphism group Aut(Q)

Assume the classification conjecture. Assume every quasi Riemann surface is given its weak
metric. Define the automorphism group Aut(Q) of a quasi Riemann surface to be the group
of automorphisms of Qweak as a metric abelian group that preserve the skew(-hermitian) form
IQ and the J operator. Given the conjecture, Aut(Q) will only depend on the Jacobian J(Q)
and will be isomorphic to Aut(Q(Σ)) with J(Σ) = J(Q).

Suppose M is a conformal manifold with the same Jacobian as Q, J(QZ∂ξ0) = J(Q).
Let Conf(M) be the conformal symmetry group of M . Let Conf(M)∂ξ0 be the subgroup
that leaves fixed the integral (n−2)-boundary ∂ξ0. Then Conf(M)∂ξ0 will act as automor-
phisms of the quasi Riemann surface QZ∂ξ0 . By the conjecture QZ∂ξ0 is isomorphic to Q so
Conf(M)∂ξ0 occurs as a conjugation class of subgroups of Aut(Q)

Conf(M)∂ξ0 ⊂ Aut(Q) (7.1)

for all M with the given Jacobian and all ∂ξ0. For example consider the trivial Jacobian
J(Q) = 0 and M = S2n. Let ∂ξ0 be an (n−2)-sphere. Then Conf(M)∂ξ0 = O(n − 1) ×
O(n+ 2) All of these will occur as subgroups in Aut(Q).

Assume that each ordinary two-dimensional conformal field theory can be extended from
ordinary Riemann surfaces to the quasi Riemann surfaces Q(Σ). Then the automorphism
group Aut(Q(Σ)) will act by on the conformal field theory by symmetries. There will be a
group homomorphism

Aut(Q)→ Sym(CFT2) (7.2)

for every symmetry group Sym(CFT2) of every two-dimensional conformal field theory
CFT2.

8 The bundle Q(M)→ B(M) of quasi Riemann surfaces

Q(M) → B(M) is the bundle of quasi Riemann surfaces QZ∂ξ0 → Z∂ξ0 associated to a
conformal 2n-manifold M . All of the QZ∂ξ0 ⊂ Q(M) have the same Jacobian so all are
isomorphic to Q = Q(Σ) with the same Jacobian. The spaces of isomorphisms

FZ∂ξ0 = Iso(Q,QZ∂ξ0) (8.1)

form a principal fiber bundle with structure group Aut(Q)

F (M)→ B(M) (8.2)

Q(M)→ B(M) is the associated bundle with respect to the action of Aut(Q) on Q.

9 A universal homogeneous bundle of quasi Riemann surfaces

For each Jacobian J(Q), Q = Q(Σ), we construct a universal homogeneous principal bundle

F univ(Q)→ Buniv(Q) (9.1)
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such that, for every manifoldM with the given Jacobian, F (M) embeds naturally in F univ(Q)

F (M) ⊂ > F univ(Q)

B(M)
∨

⊂ > Buniv(Q)
∨

(9.2)

The construction is motivated by the fact that all of the QZ∂ξ0 ⊂ Q(M) are actually identical
in the middle degree

QZ∂ξ0,1 = Dint
n (M) or QZ∂ξ0,1 = Dint

n (M)⊕ iDint
n (M) (9.3)

Let Aut(Q1) be the group of automorphisms of the metric abelian group Q1 that preserve
all the structure inherited from Q: the subgroups ∂Q2 ⊂ Ker ∂ ⊂ Q1, the skew(-hermitian)
form I〈 ξ̄1, ξ2 〉 and the J operator. Aut(Q) is the subgroup

Aut(Q) ⊂ Aut(Q1) (9.4)

consisting of those f ∈ Aut(Q1) for which f∗ : Dint
1 (Q1) → Dint

1 (Q1) is compatible with
ΠQ

1,1 : Dint
1 (Q1)→ Q2. The universal homogeneous bundle is

F univ(Q)→ Buniv(Q) = Aut(Q1)→ Aut(Q1)/Aut(Q) (9.5)

To construct the embedding F (M) ↪→ F univ(Q) use the fact that all the QZ∂ξ0,1 are the same
to define

g : F (M)× F (M)→ Aut(Q1) g(f1, f2) = f−1
1 ◦ f2/Q1 (9.6)

satisfying
g(f, f) = 1 g(f1, f2)g(f2, f3) = g(f1, f3) (9.7)

Then for any f0 ∈ F (M)
f 7→ g(f0, f) (9.8)

embeds the principal bundle F (M)→ B(M) into the universal homogeneous bundle.
Somewhat more detailed descriptions of Aut(Q1) → Aut(Q1)/Aut(Q) and of the em-

bedding F (M) ↪→ Aut(Q1) are in section 19 of [1].

10 Quasi holomorphic curves

Define a quasi holomorphic curve in a quasi Riemann surface Q to be a function C : Σ→ Q
from a Riemann surface Σ to Q that preserves the J operators and the skew-hermitian forms
on integral currents

dCJ = JdC C∗IQ = IΣ IΣ〈 η̄1, η2 〉 = IQ〈C∗η1, C∗η2 〉 (10.1)

so a solution of the Cauchy-Riemann equations on Q pulls back along C to a solution of
the Cauchy-Riemann equations on Σ. Defne a local quasi holomorphic curve to be a quasi
holomorphic curve where the Riemann surface Σ is an open disk D in the complex plane.
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In the examples Q(Σ) = Dint
0 (Σ) for Σ a Riemann surface there is a canonical quasi

holomorphic curve C : z ∈ Σ 7→ δz ∈ Dint
0 (Σ). Restricting C to any coordinate neighborhood

in Σ becomes a local quasi holomorphic curve in Q(Σ). More quasi holomorphic curves in
Q(Σ) would be obtained by composing with automorphisms of Q(Σ).

The local quasi holomorphic curves are the local probes of the quasi Riemann surface.
Solutions of the Cauchy-Riemann equations on the quasi Riemann surface are displayed as
ordinary meromorphic functions on the local quasi holomorphic curves. In the proposed
quantum field theories, the local quasi holomorphic curves would express the local interac-
tions of the (n−1)-dimensional objects in terms of the operator product expansions of the
ordinary two-dimensional conformal field theory on the local quasi holomorphic curves.

If there are enough local quasi holomorphic curves in Q, then functions, forms, conformal
tensors, and the like on Q can be represented as coherent collections indexed by the quasi
holomorphic curves in Q of ordinary functions, forms, and conformal tensors on ordinary
Riemann surfaces. Local function theory on Q will be expressed in terms of function theory
on the collection of local quasi holomorphic curves.

Some questions:

1. Do quasi holomorphic curves exist in a general quasi Riemann surface Q? Do they
exist in the examples Q(M)? Do local quasi holomorphic curves exist?

2. Is the conjectured weak metric needed on a quasi Riemann surface for there to be quasi
holomorphic curves?

3. Given the classification conjecture, if Q is isomorphic to Q(Σ) there should be a quasi
holomorphic curve Σ→ Q, unique up to automorphisms.

4. For a given quasi Riemann surface, can the space of quasi holomorphic curves be
described? the space of local quasi holomorphic curves?

5. Are there enough local quasi holomorphic curves to distinguish solutions of the Cauchy
Riemann equations on Q?

6. Are there necessary and sufficient coherence conditions for collections of meromorphic
functions or conformal tensors on the quasi holomorphic curves?

7. Can quasi holomorphic curves be constructed explicitly in the basic cases M = S2n =
R2n ∪ {∞} for Σ the unit disk or the Riemann sphere.

11 The level N(Q)Z of a quasi Riemann surface

Define the level of a quasi Riemann surfaceQ to be the abelian subgroupN(Q)Z ⊂ Z (written
NZ when Q is understood) such that the skew(-hermitian) intersection form I〈 ξ̄1, ξ2 〉 takes
Q̄−1 ×Q3 to NZ ⊂ Z (or to NZ⊕ iNZ ⊂ Z⊕ iZ in the complex case).

I(Q̄−1 ×Q3) =

{
NZ ⊂ Z real case

NZ⊕ iNZ ⊂ Z⊕ iZ complex case (11.1)

N(Q)Z is an invariant of the quasi Riemann surface. Up to now we have been implicitly
assuming N(Q) = 1.
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In the examples Q(Σ) = Dint
0 (Σ) for Σ a Riemann surface, the level is N = 1 because

∂δz = 1, ∂1 = Σ, and δz has intersection number 1 with Σ.
In the examples Q(M) the level of QZ∂ξ0 is the subgroup NZ ⊂ Z of all the intersection

numbers of ∂ξ0 with integral (n+2)-currents in M . Call this invariant N(∂ξ0)Z. It seems
plausible that ∂ξ0/N will be an integral current. Then ∂ξ0/N will be a boundary if Hn−2(M)
is torsion-free.

For any quasi Riemann surface Q and any N ′Z there is a quasi Riemann surface

QN ′Z = ∂−1(N ′Z) ⊂ Q N(QN ′Z) = N ′N(Q) (11.2)

along with a net of inclusions

QN1Z ↪→ QN2Z N1Z ⊂ N2Z (11.3)

A more refined form of the classification conjecture would be that any Q of level NZ is
isomorphic to Q(Σ)NZ for the appropriate Σ.

12 The base space B(M)

The base space B(M) of the bundle Q(M)→ B(M) of quasi Riemann surfaces

B(M) =
{
maximal Z∂ξ0 ⊂ Dint

n−2(M)
}

(12.1)

which perhaps can also be described as

B(M) = the image of ∂Dint
n−1(M)− {0} in the projective space P∂Ddistr

n−1 (M)(R) (12.2)

When the homology group Hn−2(M) is torsion-free, Every ∂ξ′0 is of the form ∂ξ′0 = N∂ξ0 for
N(∂ξ0) = 1, so all the QZ∂ξ0 are of level 1 for Z∂ξ0 ∈ B(M). We can restrict the definition
of quasi Riemann surfaces requiring level 1. The bundle F (M)→ B(M) is a principal fiber
bundle as described in section 8 above.

When Hn−2(M) is not torsion-free, the picture is more complicated. The base B(M) has
a stratification indexed by the NZ ⊂ Z

B(M)NZ = {Z∂ξ0 ∈ B(M) : N(∂ξ0)Z ⊃ NZ}

B(M)N1Z ⊂B(M)N2Z N1Z ⊃ N2Z
(12.3)

The strata of the total space F (M) might be written (in the real case) as the space of
morphisms

F (M)NZ = Mor(QNZ → Z, Dint
n−1(M)→ ∂Dint

n−1(M)) (12.4)
with structure group Aut(QNZ).

13 Conformal-Hodge metric spaces

The quasi Riemann surfaces Q(M) are constructed using only the integral currents in M ,
the conformal Hodge ∗-operator acting in the middle dimension, and the intersection form
on integral currents. So the subject is not 2n-dimensional conformal manifolds, but metric
spaces with a ∗-operator acting on n-forms and a nondegenerate intersection form I(ξ1, ξ2)
on pairs of integral currents whose degrees add to 2n, possessing the same properties (I-4.2)
– (I-4.12) as in conformal 2n-manifolds.
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14 Z⊕ iZ in the definition of complex quasi Riemann surface

It looks awkward in the definition of complex quasi Riemann surface in section 9 of [2] that
the skew-hermitian form takes values in the abelian group Z⊕ iZ. Perhaps the best that can
be said is that Z ⊕ iZ is the smallest abelian group that contains the infinite cyclic group
Z and has automorphisms m 7→ im, i2 = −1, and m 7→ m̄, im = −im. The Jacobians of
the complex quasi Riemann surfaces are the Jacobians that are invariant under these two
automorphisms. In the complex examples Q(M), the abelians group Q1, Q2, and Q3 have
these automorphisms, but Q0 and Q−1 only have complex conjugation, not multiplication by
i. The definitions Q−1 = Z∂ξ0 and Q = Q0 = Dint

n−1(M)Z∂ξ0 ⊕ i∂Dint
n (M) are chosen as the

minimal extensions of the real examples such that the tangent spaces TξQ become complex,
allowing J = εn∗ to act.

References

[1] D. Friedan, “Quantum field theories of extended objects,” arXiv:1605.03279
[hep-th].

[2] D. Friedan, “Quasi Riemann surfaces,” April, 2017. http://www.physics.rutgers.
edu/pages/friedan/papers/Quasi-Riemann-surfaces-April-4-2017.pdf.

[3] F. J. Almgren, Jr., “The homotopy groups of the integral cycle groups,” Topology 1
(1962) 257–299.

10


