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Zamolodchikov's c-theorem is reformulated by using the spectral representation for the
two-point function of the stress tensor . This approach makes explicit the unitarity constraints on
the field theory and implements a nice physical picture of the renormalization group flow . An
attempt is made to generalize the theorem above two space-time dimensions . There are two
candidate c-functions, the spectral densities for spin-zero and spin-two intermediate states . The
latter one is ruled out by means of examples . The spin-zero density can satisfy a generalized
c-theorem, if the corresponding "central charge" is well defined at the fixed points . A meaning-
ful charge is obtained by defining the theory on curved hyperbolic space . However, its limit to
flat space needs some assumptions which seem to hold for free theories only . As a by-product,
the trace anomaly in four dimensions is related to the spectral densities .
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. Introduction

The flow of the renormalization group (RG) [1] is the one-parameter transfor-
mation dg' = -13` dt in the space of field theories C given by the vector field
ß à(g) = i9 dg`/d r1 . In the early days of this subject, Wallace and Zia [2] first raised
the question whether this flow satisfies simple properties . They showed that the
RG is a gradient flow

ß'(g) = G'i(g) dO(g)lag',

	

(1.1)
where G'i is a riemannian metric, in the multi-coupling 11(p4 theory in n = 4 - E
dimensions, to three-loop order.
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Let us examine the consequences of the gradient flow . It forbids limit cycles and
more involved recurrent behaviours, like strange attractors. There are only fixed
points, which are the critical points of the potential 0. Away from them, 0 is
monotonically decreasing along the flow

d

	

a
âr0 =-,sia 70= -

(vO)2<0 .
g

Therefore the flow is irreversible . This fits our naive understanding of the RG
transformation, as in the Kadanoff block-spin transformation . The degrees of
freedom at short distance are averaged to define an effective theory at large
distance, causing an irreversible loss of information . Then one seeks for an
appropriate entropy function which monotonically increases. However, this intu-
itive argument is too rough, as its opposite sounds good as well . Namely, long
distance physics may display a variety of patterns and contain much more "infor-
mation" than short distance physics .
More evidence for the gradient flow is provided by the general nonlinear

a-model in two dimensions* [3]. This theory describes the propagation of a string
in the presence of background fields, which represent its massless states, like the
graviton Gam� and the dilaton 0. These background fields are couplings of the
Q-model, and indeed have a gradient flow, 80 a 80[G,,� , 0, . . . to low
order in perturbation theory [4] . There are arguments extending this property to all
orders [5] .

Moreover, the functional 0 turns out to be the effective action for the low
energy limit of the string theory [4] . Then eq. (1 .1) has a very nice physical
interpretation. The condition for scale (and conformal) invariance /30 = 0, ßG =
0' . . ., is equivalent to the equation of motion for the low energy states of the
string, 5.0 = 0, 8GO = 0, . . . . As it is often said, two-dimensional conformal field
theories correspond to classical vacua of the string . Moreover, irreversibility of the
flow in eq. (1.2) corresponds to the minimum energy principle for the stable
vacuum.

Irreversibility of the flow is proven in two dimensions by Zamolodchikov's
c-theorem [6] . It says that there exists a function c(g), which is monotonically
decreasing along the flow

ddc(g)
= - 672p'j3jG j i < 0

	

(1.3)
g

*Technically speaking, this discussion extends to n = 2 +E dimensions, because in minimal subtrac-
r

	

rtlon ß(,=2+e)=E9
r
+ßn=2Y
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and stationary for conformai invariant theories,

where it takes the value of the Virasoro central charge . The proof is very simple
and uses two new technical ingredients, besides euclidean invariance : (i) the
existence of the stress tensor T,,,,, GO unitarily of the field theory .
W us skewin it . -Consider iic corrclators Gf thc components of the stress tensor
~ T,,,u and T = T_ By euclidean invariance and the absence of anomalous

dimensions, they can be parametrized as follows,

<T(z,-'F)T(0,0)> =
F(zfA)

K Z e z

Equivalent definitions are

le, = 0

	

**

	

'acl(ig , = 0,

WA)
(0,0» =

	

z _z _ 1

(0( z, z) T(0, ®)i -
G(ziA)

ZC

	

1

È = -zH < 0,4

(IA)

where z = x' + Lv 2 is the complex coordinate, and A is a mass scale of the theory.
Euclidean invariance implies the conservation of the stress tensor, which gives
differential relations among the scalar functions F, G, H, written in terms of
t = z-F d F/d(z-F). They give

(IS)

for the quantity C = 2(F - !2

	

16G - -'-H), which reduces to the central charge at the
fixed point, where 19 = 0.

Unitarily of the theory says that H is positive definite, and it gives the inequality
in the r.h.s. of eq. (1 .5).

Next, this equation is rewritten in terms of couplings and their derivatives, by
using the Callan-Symanzik equation (A d1dA +,8'd1dg')C(zfA, g -;(A))= 0. The
trace 19 is expressed in terms of the relevant fields O i of the theory around a fixed
point, and their correlators define a riemannian metric in C'

0 = 27rj3'iP j ,

	

~ O j( x) Oj(O) > I I .,,= I = Gij *

	

(1 .6)

2X

	

2X 19 ,

	

2X

	

9
_5 ---ß[S] =ß`f d

	

d

	

S=S*-

	

d2x

	

(1 .7)dt

	

27r f

	

f

	

f
where S* is the fixed-point action . Finally, eq. (13) is obtained for the c-function
C(g) = CIjZj='-
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Note that the c-theorem is weaker than the gradient flow (1 .1), which can only
be proven perturbatively in the neighbourhood of the fixed point . For this reason
we cannot strictly identify the c-function with 0.
There is so far no analogous theorem above two dimensions . The interest of

such an achievement would be in charting the space of field theories. It would be
an intrinsically nonperturbative property, and it would allow one to classify
theories unambiguously . Actually, suppose there are fixed points only. Then their
basins of attraction give well-defined universality classes. This is a fundamental
issue in field theory. The c-theorem in two dimensions has been widely used in this
way, yielding very important qualitative and quantitative results, both in statistical
mechanics of spin chains [7], and in string-theory model building [8] .
There have been attempts to formulate the c-theorem above two dimensions as

a property of the stress tensor . Actually, this operator is defined for any theory and
it couples to all the degrees of freedom. Moreover, it is believed that the
c-function should be a measure of degrees of freedom. Yet it seems to be a real
challenge to pin down its precise form.

First of all, Zamolodchikov's proof does not extend to higher dimensions. Due
to the larger number of tensor structures for the correlator <T,,ß(x)T,,v(0)>, it is
impossible to find a quantity with negative definite scale derivative, as in eq. (1.5).
Then Cardy made the following observation [9]. In two dimensions, the central

charge also parametrizes the trace anomaly in curved spaces. He then proposed a
candidate for the c-function in four dimensions, as the trace anomaly computed on
the sphere S4 . Though he did not prove that this quantity decreases along RG
trajectories, he verified this fact to lowest order in perturbation theory . Later on,
Osborn has elaborated on this idea [10,11] . In particular he has shown that the RG
equation satisfied by one coefficient of the n = 4 trace anomaly is similar to eq.
(1 .3). However the metric G is not manifestly positive in this case .
At the outset, these efforts miss the basic ingredient of unitarity . We do think

that this concept is at the heart of the c-theorem and, consequently, take a
different line of work.
An alternative proof of the c-theorem in two dimensions was given by Friedan

[121, using the Lehmann spectral representation of the correlator of two stress
tensors . Unitarity is manifest in this approach, as it simply means that the spectral
density is positive . Then the theorem follows by studying the behaviour of this
density along the RG flow . Its shape gives the "number" of degrees of freedom of
the theory as a function of the mass scale, and it shows the decoupling of massive
states in the IR limit . This gives a better physical picture of the loss of degrees of
freedom (and information) along the RG flow . This proof of the c-theorem is
recalled in sect . 2, together with some examples.

In sect . 3, we turn to constructing the equivalent spectral representation in any
dimension . Then the spectral density is made of two structures, for intermediate
states of spin 0 and spin 2, the latter existing only above n = 2. Both provide
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candidates for a c-function in higher dimensions, having different properties. On
one hand, the spin-two density gives the correlator < TaßT,,,> in the conformal field
theory, which has naturally associated a central charge. This charge is not mani-
festly decreasing along the RCS flow . On the other hand, the spin-zero density gives
a manifestly decreasing c-function, much like two dimensions, but the associated
central charge is not well defined at the conformal field theory. These basic facts
are summarized in sect . 4.

Sect . 5 is devoted to the study of the spin-two part. By means of perturbative
calculations on a number of interacting theories in 4 and 4 - E dimensions, we
show that the spin-2 candidate is not always decreasing along the flow . Then it
cannot satisfy a c-theorem. Particular attention is given to the A(p4 theory .

In sect . 6, we generalize the spectral representation in curved space . We
consider hyperbolic space of constant negative curvature, because the physical
criteria for building the Hilbert space are almost the usual ones in flat space
[13, 14]. We show that the more natural candidate c-function of spin 0 is well
defined there. Then we have been looking for a limit to flat space of this quantity,
which could be independent of the specific theory. This limit exists for free massive
bosonic and fermionic theories in two, three and four dimensions, due to a
remarkable sum rule independent of the curvature scale . However, this sum rule
does not hold in an interacting theory, the nonlinear a-model in three dimensions.
Therefore this program of going to curved space is so far unsuccessful. Neverthe-
less, we believe this idea is worth discussing, also in the light of some recent
literature [151. As a by-product, we clarify the meaning of the four-dimensional
trace anomaly.
We remind the reader of the basics of spectral representations in appendix A.

Details of the perturbative calculations in Acp4 theory are given in appendix B. The
techniques for hyperbolic space are given in appendix C.

2. The c-theorem in two dimensions

The basic idea of a spectral representation [16] consists in constraining the form
of a two-point correlator by enforcing Poincaré invariance of the propagating
intermediate states . In appendix A we recall how to derive it . By analysing the
correlator of two stress tensors, a simple and physically transparent proof of the
c-theorem follows .

Let us suppose the theory can be defined on an n-dimensional curved space with
riemannian metric g,v, at least infinitesimally close to flat space. Then the stress
tensor is defined by the rr-tric variation

g (x)
2V

	

<TJ.v(x)O(xl) . . . ) --- Sg,v(x) ( O(xi) . . . )gill"
where V is the volume of the S" -' sphere .

It follows from this definition that T,, � has the canonical dimension n.
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The spectral representation of a two-point correlator in euclidean field theory is
obtained by inserting the identity operator written as

I=

	

di£2 J~Lz- f
dIL2S+(p2+ 1£2),

0
(2.2)

where J0,L2 is the projection on unitary representations of the Poincare group
labelled by p2 = -A2

(p« _
_ id

s is the euclidean momentum operator). The
physical Hilbert space is made of irreducible representations with positive energy,
selected by S +, also called highest weight representations .

Let us consider the correlator of two stress tensors on the plane,

Ti

	

x

	

d2
P

	

ipx (gpvP
2 _PwPv)

( gPQP
2 _PPPQ)(TMII(x)TP"(0)i = 3f d~ c(1~)f

	

2 e

	

2 +

	

2

	

-
o

	

(2Tr)

	

P 11

(2.3)

In two dimensions there is only one Lor2ntz invariant made out of p. with four
indices and which is compatible with conservation of the stress tensor . Therefore
we are only left with one unknown scalar function of the intermediate mass scale
,,, the spectral density c(tL). This density also depends on a mass scale in the
theory, that we call A, as well as on dimensionless couplings g`.
The proof of the c-theorem goes on by establishing the properties of c(I.) .
(i) Reflection positivity of the euclidean field theory [17], i.e. unitarity of the

Hilbert space, implies that c(A) > 0.
(ü) Let us compute the dimension of dtL c(tL) . It vanishes, due to dim(T,,�) = 2.

Then this spectral density is a dimensionless measure of degrees of freedom!
(iii) The form of c(L) in a scale-invariant field theory is completely fixed by its

dimensionality . There are no scales in the theory, therefore we must have either

c(tu) = coB(tL) or c(A) (x 1/lc.	(2 .4)

The second possibility gives an infrared (IR) divergence in the spectral representa-
tion at tL = 0. So only the first behaviour is allowed . Thus, in a scale-invariant
thPnrv the. çne.rtral fncti_nn mnst ?he a delta funçtion at 0.> r

(iv) Then, scale invariance a conformal invariance in two dimensions. Let us

substitute a delta function in the spectral representation

2
Tr

	

00

	

d`P

	

(p
2
)

	

7'r-f

	

dgc(g) f

	

2 eip'

	

2+

	

2 = - 3co
a2&(2)( x) .

	

(2.5)
o

	

(2~r) P
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The two-point function of the trace of the stress tensor vanishes for I x 10 0, so the
trace annihilates the vacuum, so the trace is zero, so the theory is conformally
invariant*. Note that this argument relies on the good definition of the spectral
representation. This holds under our hypothesis (2.1), which also implies that the
stress tensor is a local field of the theory.

(v) f the theory is not scale invariant, the general form of c(lu) is

where c I is supported away from ;, = 0 and depends on the mass scale A of the
theory.

(vi) Let us analyse the long OR) and short (UV) distance behaviour of the
two-point function (2.3). Using the complex coordinate z = X1 + ix 2, we obtain**
as

	

--)~ 0,

as Z

	

zc,
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C(

	

) = coci(tL) + cl(u, A),

	

(2.6)

1
<

	

_(Z)

	

~(0)~ __"

	

4

	

dg c(tL)

	

(2.7)
2z 0

1

	

E

~( z)T~(®)~ -~

	

"M f du c(l.) .	(2 .8)
2L

	

E--*®

According to the RG, these

	

syrnptotic limits of the massive theory are described
by the UV and IR scale-invariant theories which lie at the end points of the IZG
trajectory. Since these are conformal invariant, we can identify the coefficients of

*The contact term left in this correlator is unfamiliar in conformal field theory . In general, contact
terms can be modified by adding local terms to the effective action, i .e . their form depends on the
renormalization scheme . In the present case, it can be cancelled by redefining the stress tensor .
Accordingly, the traceless part TZZ is no more a true tensor and, under conformal transformations,
it takes an additional term, the schwartzian derivative . The stress tensor redefined in this way
fulfills the pi ,operties of conformal field theories, as discussed in ref. [18] .

**These formulae are easily obtained in momentum space, where the courier transform of 1/z4 is
Or/24)p 3/p .

1/-)Z4 as the corresponding central charges cue and CIR,

xCuv= fd jac(M), C IR = limfE dgc(g) . (2 .9,2 .10)
0 E~0 0

e can write the spectral density as

C(L) = CIRS(A) +CI(tL, A) (2 .11)

and

cuv=foc 'edj, c(g) = CIR+ f dticl(IL) . (2.l2)
0 0
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By positivity of the spectral measure c(g), the end of the proof follows

Namely, the central charge decreases for conformal theories connected by a RG
trajectory, and it is constant if the theory is conformal along the flow.

(vii) Conversely, if CUV = CIR then the theory is conformal invariant . Using the
wave equation satisfied by the propagator, we can write

Ir M

	

d2p

	

1
<O(x)0(0)) = 3f dg A4cl(g) f

	

`px

	

2+

	

2 ')

	

for

	

lxl * 0 .

	

(2.l4)
0

	

(2,)2e p N-

If C UV = C IR, eq. (2.12) implies c I = 0 by positivity. Then, this correiator vanishes
for lxl*0.

CUV > CIR (2.13)

More comments
(viii) The net change of central charge is a universal quantity, i.e . it is invariant

under continuous deformations of the RG trajectory. It can be expressed as a sum
rule, which coincides with the one derived from Zamolodchikov's proof by Cardy
[19],

x

	

3
Ac --_ C UV - C IR = f dg cI(!u) =

47r fi

	

d2xx 2(0(x)O(0)) .

	

(2.15)
0

	

-X

Clearly, this sum rule is convergent if both cuv and C IR are finite . Let us verify this
fact in the last form of an x-integral . For g ---> oc we are close to the UV conformal
field theory (CFT), and we can express O perturbatively as in eq. (1.6), O = 27rß`O1 ,
ß` - E`g ` + O(g 2), E` = 2 - dim(o;) < 2, in terms of the relevant fields of the UV
CFT. Then (00) _ g21 x 14 -2E' and C(g)

	

g2A - I - 2 E` as g -+ oo, so it is integrable.
A similar argument can be done; Yon ~L

	

0 around the IR CFT. In the case of
marginal deformations, (00) = 0 apart from contact terms which do not con-
tribute to the sum rule .

(ix) We can make contact with Zamolodchikov's proof in the form of eq. (1.3) by
defining a function c(g) off criticality which interpolates monotonically between
cuv and CIR , and a metric Gii(g) in the space of couplings . These are obtained by
integrating the density c(g) against positive smearing functions. There are many
such functions, all giving the same physical content . The c-function is defined by
smearing the density with a function f(g),

c(g(A)) = f du c(iu)f(g) = f dg cl(li,A)f(g) +CIR,

	

(2.l6)

fulfilling the properties f> 0, f(O) = 1, f(A) decreases exponentially as g
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and ,u df/du < 0. Then the derivative along the flow is

where we have used the Callan-Symanzik equation and integrated by parts . This
variation can be expressed in terms of a metric in the space of couplings . By

in the set of relevant fields

	

g, this is defined asexpanding

2.2. EXAMPLES

a a

	

d

-ßz a ~c=AaAc= f dgcl(iL,A)l, d	f(g)<0,

Bi
f du pij(ju, Afflm, x) ,

m4

cl(A,m) =24 5

which again fits the sum rule (2.15) .

m2 / 4m2

2

(2 .17)

Gij = -J dg pèjh(Ii) ,

(2 .18)

with h another smearing function satisfying h > 0, h(0) = const. and exponentially
decreasing for A --+ oc .

	

e can finally obtain eq. (1 .3)

-

	

'ac/ag 8 = -67213 ißjG;j ,

	

(2.l9)

by matching the two smearing functions, IL df/dg = -A4h(g). For example*, take

h = 1 e - t` ,

	

f= (1 + g + ?IL2 + 6A') e -~` .

	

(2.20)

The cases of free massive theories give interesting examples where c(g) is
exactly computed as the imaginary part of a one-loop Feynman diagram.
The

	

ajorana fermion spectral density was given in ref. [20]

cl(g, m) = 6

	

3

V
1 -

	

2

	

0(g - 2m),

	

(2.2l)

where m is the mass of the fermion and 8 the step function . Note that c IR = 0 for
a purely massive theory . Upon substitution of this density into the sum rule (2.15),
one can compute c

	

'vv= i
The massive perturbation of the cuv = 1 bosonic theory produces a trace of the

stress tensor O = 2-rrm 2~p 2 ' Sp(x) being the bosonic field . The spectral density turns
out to be

e(g - 2m),

	

(2.22)

* Zamolodchikov's choice corresponds to h(A) = (7r/2)G(IxI = 1, A), the propagator .



A. Cappelli et al. / c-theorem and spectral representation

	

625

2.3 . RENORMALIZATION GROUP FLOW OF THE SPECTRAL DENSITY

Here we would like to digress on the physical meaning of the spectral density

C(A) = CIRS(A) + cI(g, A) .

	

2.23

The interpretation is that the spectral density c(g)dg measures the density of
degrees of freedom coupling to the stress tensor (which all degrees of freedom do).
It consists of a delta function at g = 0 which represents the degrees of freedom at
arbitrarily large distance. The rest of the spectral density, c l(g)dg, represents the
density of degrees of freedom at distance g' .

Let us see how this interpretation fits the RG philosophy . Since c(g) dIc cannot
develop anomalous dimensions, its behaviour under the RG flow is simply given by
dimensional analysis . The effective density (solution of the Callan-Symanzik
equation) is

ca(Ii)dg = c(Al,)Adg .

	

(2.24)

The S(A) terms does not flow and we shall only discuss the smooth part of the
spectral density in the following. The sum rule may be written as

Ac = f~ dg cI(,g, A) =1~A du CI(Al£ , A) = f~ dji CI(g, A/,k) .

	

(2.25)
0

	

0

	

0

The first equality tells us that Ac is a RG invariant and can be computed for any
value of A * 0, oo, i.e . at any intermediate point of the trajectory. The second
equality makes it manifest that the UV asymptotic limit A -3. w is equivalent to
tuning the couplings to the UV fixed point (A -+ 0, d g = (3(g) d A /A) along the
RG trajectory .
The function c ,(g) is integrable and roughly bell-shaped, as it can be seen in the

previous examples. Therefore in the UV limit we have

lim c,( I£ ) dg = 0

	

for

	

li * 0,

	

(2.26)

while its total integral remains finite . Then this function is a representation of the
delta function, c~(g) = Ac S(g) . In the UV limit, we recover

c(g) = (C IR + CUV - CIRMA) 1

	

2 .27

which is the correct expression for the UV CFT.
The compression of cI into a delta is interpreted as the flow of massive degrees

of freedom into effectively massless ones. Conversely, as we move away from the
UV critical point, part of the degrees of freedom get massive, forming a broad
distribution peaked at a characteristic scale A, and eventually decouple in the IR
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limit -A -;- oc, leaving only the delta term with a smaller coefficient . This is precisely
the quantitative picture of the loss of degrees of freedom under the RG flow as it
can be argued qualitatively in a Kadanoff block-spin transformation .

3. S actral re rase tenon aNove two dimensions

M DERIVATION AND GENERAL PROPERTIES OF THE SPECTRAL DENSITIES

We shall now discuss the spectral representation of the stress tensor correlator
in more than two dimensions. The derivation proceeds as in the two-dimensional
case except for the fact that there are two possible Lorentz structures for the
intermediate states. They correspond to spin s = 0 states, which already appeared
in two dimensions, and new s = 2 states . Let us first give the result and then
discuss it :

K

The constants

O(X)OAO)> = ~T.,p(X)T,,,-(0)),=0 + <Tap(X)Tptj, (0)X = 2

where the tensors, 17") of spin s are

All

	

(0)(to Mo)
2 f

	

d1i c
n 0

17(2)

	

np
I'( 11-1)

o,( a) =

	

11-1)

	

-
2

	

(Pspo,) -ys~ epfr(d) =-nn)

	

os

	

ps«

	

a

	

pu)
(

and where S.,3 =
a rt dig _5""is

d2 Note that the tracelessness of the spin s = 2 part is
explicit since J1(22~ P0, = 0. The propagator isa.

A

	

V

	

Pi=VOI(Sn-1) =

	

2e /2

	

(3 A)n

	

(n + 1)2" -1

	

FQ12)

are introduced in order to simplify later expressions .

( fa

A lz

	

ZC

	

(2)(

	

) jr-i(2).+

	

1)2 f

	

di£

	

p� (,a)G(x,1£),

	

(3.1)
0

(32)

d lip e'Px

	

1 ( 11 ) (n-2)/2
G(x, lu)

	

)n

	

2

	

2
=--

	

K(n-2)12(jujxj) .

	

(3 .3)f (27T

	

P

	

+ /A

	

27T

	

27rlxl



The traceless and transverse tensor II(2) vanishes identically in two dimensions.
In fact, it maps symmetric, traceless and transverse two-tensors h'(x) (hl = hTT,
hTT = 0 and ashß = 0) into themselves, which do not exist in two dimensions.
Introducing also a two-tensor of spin zero, faß = S,,ß g(x ), we can show how the
11(s) tensors act on the two spaces

Il(0)f

	

T
n
- 1

_

	

(a2)1
f,

17(2)f= 0
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H(')h" = 0,

H(2)hTT =

	

n - 1

	

(82)2h" .

	

(3.5)
F(n-1)

These are invariant subspaces . As a consequence, the densities c(® ) and c(2)

measure independent degrees of freedom. Reflection positivity implies again that
both c(S) are non-negative functions*.

Form of the spectral densities at CFT.

	

Next we establish the form of the densities
for a scale-invariant theory . There is a qualitative change above two dimensions
because dim(c(s)) = n - 3 > -1 .

(i) A power law behaviour

c(S)(U) (X Wi -3 (3.6)

does not lead to IR singularities and is, therefore, possible .
(ü) Since S(A) has dimension -1, it might appear in combination with a

dimensionful quantity, like c(S)(tL) (x An`S(A), but this is forbidden by scale
invariance . On the other hand, the form

c(s)(0 «l'" -2S(11) (3.7)

vanishes identically . Recall that in two dimensions the central charge was identi-
fied as the coefficient of the delta term in the spectral measure at the fixed point .
If such a term cannot appear above two dimensions, we have big trouble .

* Reflection positivity [17] states that (., )Kr > > 0, where .~f r .t is antilinear and it acts on tensor
operators K, = h,rßTaß(0, x") (ha,3 are coefficients), by implementing a reflection with respect to the
plane orthogonal to the cuc' &an time x",

.A(r-) =h*P Taß (0,-x") =hâ T,,ß(0,-x"),

Pap -(I*ij, - 1 ' ni,-"in,t-nn), i,j=1, . . .,n-1 .

By choosing

	

ha ,, = h', e.g .

	

lr�T =hTT = 0 and En i ~/zrr = 0, positivity of c( 2 ) follows fromi~

	

ii
hTT11 (2)hTr > 0.



628

	

A. Cappelli et al. / c-theorenn and spectral representation :

owever, there is a possible way out, by reinterpreting the meaningless eq. (3.7)
as follows. Consider c(S) = c(S)(g, A) in the theory away from criticality and
introduce another spectral density, which becomes a delta in the limit to the
critical point,

his limit simply follows by dimensionality and scaling . Before going into further
details we need to discuss spin zero and spin two separately .

Sptz tsvo.

	

The power law behaviour defines the constant c(2 )

C(2) (

	

) C

	

C(2)Mn-' .

	

(3 .9)

is parametrizes the leading short-distance singularity in the operator product
expansion of two stress tensors and, therefore, is observable in flat space field
theories .
finds

substituting this scaling behaviour in the spectral representation, one

x
<Taß(x)TP~(»s =?

(
~

	

n

	

2 C(2)

	

a(3.pcr(a)

	

d~ g,:-
3G(g, x)(Il

- 1)

	

o

tic (2)

	

1

	

1
Il - 1 w211

(
2 a(PSßU)

	

n &,,0 Po, - S«(PXßx,)x

- Sß(�xax,) + 4xaxßxpx� I ,

	

(3 .10)

where xa =-x"'11 x1 . In refs . [21,221 this result was obtained in coordinate space, by
assuming that the theory is conformal invariant at the fixed point . Then traceless-
ness and conservation of Taß fix completely the Lorentz structure in eq. (3.10) .
This structure reduces to (T_Z T_Z > = c(2)/2 z 4 in two dimensions, but note that in
that case it comes from the s = 0 density!
The leading short-distance singularity enters in many physical properties of the

theory, which therefore are parametrized by the charge c(2). For example, it enters
in anisotropic corrections to correlators in finite geometries [22] . This property as
well as examples of the RG flow of this charge will be discussed in sect . 5 .

In presence of a power-law term, it does not seem possible to define a delta
term for the spin-two density, as the limit from off-criticality of eq. (3.8), and we do
not discuss this possibility any more.



Spin zero. Improvement hypothesis .

	

A power law behaviour c(°)(tL) a tLn-3 leads to
a well-defined two-point function of the trace of the stress tensor

This is not inconsistent with scale invariance because the latter requires the
dilatation operator D = fdnx O to annihilate the vacuum, then 19 may be a
derivative of a nonvanishing operator . Indeed eq. (3.11) vanishes upon integration
over the space.
The field O has different properties above two dimensions. In a local two-

dimensional field theory, scale invariance implies i9=0 and, then, conformal
invariance . In higher dimensions, scale invariance implies O = (derivative opera-
tor), and does not imply (global) conformal invariance. For some theories, T«ß is
not uniquely defined from the action in flat space, it can be modified by the term

because a local field 0 of appropriate dimension exists in the theory*. O is called
improved if it can be put to zero in this way. Then scale invariance is promoted to
global conformal invariance [23] .

This somehow historical presentation of the improvement problem is rather
misleading, because T«ß is unique for the theory defined in a curved space.
Improvement redefinitions amount to adding terms in the action which vanish in
flat space, like the term RO. A better presentation of this problem is as follows :
O = 0 if and only if the scale invariant theory can be defined in curved space such
that it is Weyl invariant [13,23,241 . That is, iff the action displays the following
invariance

A. Cappelli et al. / c-theorem and spectral representation

	

629

x
(O(x)O(0» a (a2 ) 2 f du lun-3G(lu, x) .

	

(3.l1)
0

T«ß -> T«ß + const. x (SaJ3a2
_a«a0 )0,

	

(3 .12)

S [ g«ß ,, e~ r-] =S
[e2u(X) g,,,, e«ß,

for some constants 4; .
Counterexamples are given by gauge theories for n * 4, and spontaneously

broken theories . They resist to being improved because the lor : ~ field 0 in eq.
(3.12) is forbidden by a symmetry. This is gauge symmetry in the former case and
shift symmetry for the Goldstone bosons, -rr ---> 7r + const., which have only deriva-
tive interactions .
To summarize, we shall only consider theories which are conformal invariant at

fixed points,

CFT

	

CFI"
O(X)

	

= 0

	

a

	

c(°)(l,)

	

= 0

	

for

	

n > 2,

	

by hypothesis .

	

(3.14)

* It can never exist in two dimensions by the Mermin-Wagner theorem.

(3.13)
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(

	

Yu ,e~ ) gets other terms whose Lorentz structure is necessarily the same as
ci'D

Let us also note that improvement redefinitions do not affect ccz'(I~) . Actually,

~t~ry~it~r~te c-~i~~tctio)1 .

	

Away from criticality c(°'(~c, il) is a smooth function sup-
ported away from ~. = 0. 13y dividing it by ,u" --' we can introduce a "reduced"
density which behaves almost as the two-dimensional density. In the limit to the
L.~~

	

T, it becomes a delta function

~tiDD
(

	

, :i )

., ~ c~

The new constant cc~D' can be computed by a sum rule of the type
j d" r r"~

	

( .a )

	

(0)~ a`vay from criticality.
`

	

The trivial fixed point has cc +~' =

	

and the nontrivial ones have a positive value,
`which can be computed in principle by following backward the RG trajectory . If
this passes through intermediate fixed points, cc° ' is defined piecewise, as the sum
of .~c "' along these intermediate steps . In our normalization, cc° ' = 1 for the free
bosonic theory in any dimensions, iater computed by a mass perturbation .
As in two dimensions, we can construct a function ~( g ` ) monotonically decreas-

ing along the flow, and stationary at fixed points, where it takes the value ~ = cc°'.
This is defined by smearing the reduced density with a function f( l~ ),

C((1D(~ ~ ~, )

fulfilling the properties f > 0, f(0) = 1, f(~,) decreases exponentially as ~, ~ x,
and ,u df/d,u < 0. Then the derivative along the flow is

d

	

_

	

cc°~( l~, ~ )

	

d
~ d11 ~ - ~ d~

	

~~-z

	

~ d

	

f(~) < 0 . (3 .17)

This variation can be expressed again in terms of Zamolodchikov's metric in the
space of couplings . Expand O in the set of relevant fields ~; around a conformal-
invariant fixed point,

~O(x)O(0)i = V 2ß`l~' J d~ P,,(~, ~)G(~~ x) ~

	

(3.19)
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The metric in the space of couplings is defined by

G;j = (V2/An)f dg pi;(lu,11)h(lu)

	

(3.20)

with h another smearing function satisfying h > 0, h(0) = const., h - exp(-g) for
p, -4 oo. Then we can write

d

	

a
A d~ O -- -ß' a ; 0

g

(3.21)

because the two smearing functions can match*, p, df/dp, = -gn+-'h(g) .
This discussion looks as if we had found a generalization of the c-theorem above

two dimensions. However there is a problem. This construction does not tell us the
physical meaning, if any, of 0 --- c(° ) in the conformal invariant theory . This raises
the doubt that it might not be well-defined or single-valued at a multicritical fixed
point. A fixed point can be reached flowing backwards along many different RG
trajectories, and the value of c(° ) could depend a priori on the details of the RG
flow . A c-function manifestly decreasing along the flow, but double-valued at a
fixed point, would still allow a closed RG trajectory. We are missing an intrinsic
definition of c(°), i .e . based on the conformal theory only .

Let us explain better this point, for example in the case of the trivial (0), critical
(1) and tricritical (2) points. One has the flow (2) --+ (1) ---> (0), where (2) --* (1) is a
critical line, and the flows (2) ---> (0) in the massive phase . Any point in the massive
phase is carried to the IR trivial fixed point by a unique trajectory. Eq. (3.21)
shows that 0 can be integrated along them, and its limit to the LTV fixed point (2)
exists . Actually, in a neighbour of this point, we can expand perturbatively eq.
(3.21), ß` = - E'g`, al0 a 13;, then 0 is constant on closed smooth surfaces sur-
rounding the fixed point . Therefore c(°)(2) is consistently defined for all trajecto-
ries which avoid the critical trajectory (2) --3.(1).

Let us now suppose that the space of theories C is divided in two parts by a
critical surface, such that trajectories in one massive phase cannot be deformed
into the other phase without passing through it . In this case, c(°) may be double-
valued at the UV fixed point .

In summary, in more than two dimensions the proof of the c-theorem along
these lines misses a physical interpretätion for c(° ) in the conformal Czld theory . In
sect . 6, we shall present an attempt to find it by defining the theory on a curved
space .

* The power ~U"
+- is necessary for convergence of smearing . Note also that massless fields do exist

above two dimensions, but cannot contribute to pip
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3.2. EXAMPLES . SPECTRAL DENSITIES FOR FREE MASSIVE BOSONS AND FERMIONS

General remarks. The spectral representation discussed so far applies to the
renormalized field theory and there are no infinities to worry about. The spectral
densities are matrix elements of the physical Hilbert space, then they are finite
functions in the renormalized theory . They reconstruct the full stress-tensor
correlator in coordinate space because the integral over .U in eq. (3.1) is finite for
any given J x>

	

.
Conversely, the two spectral measures may be extracted from the correlator

< ,,,,(x)TPj0)> by taking two independent traces . For I x I 0 we can also use the
equation of motion for G(x, t .) and obtain

<

<
x

(0)>
-

	

An f dju c(')(li)WG(x, ru),

	

(3.22)
.F(rt )

1

	

_
VO

-
2

	

00
xT

	

)
	djuc(2)(lu)A4G(x,lu) .n~(0 >)

	

-
rr _ 1

<

	

(x) e ()>

	

2"T n()

This can be inverted i momentum space by means of a dispersion relation

d1£ 2 Im II(p2 = - ji2 )
f 7r

	

P

where IM Ij(p- ) = (1I(p 2 = - .U2 - iE) -1I(p- = -A2 + iE))/2i. Therefore,

2T(n) 1

7rA�

	

u3
Im<O( P) 0( -P)> J P-'= -'.-'

(3 .23)

(3 .24)

(3 .25)

2" +'I'(n) 1

	

1
c(2) =

TrV(n
- 2)

	

3 Im (Taß(p)T«,e(-p) > - n - 1 <O( P)O( -P) > )
2 2p w

(3 .26)

Let us add two comments.
First, given a lagrangian of a renormalizable theory, how is c(S)(tt) expressed in

terms of bare fields, i.e . how is the renormalized Taß constructed? By eq. (2.1), the
stress tensor has the canonical dimension, so it cannot have wave function
renormalization* . By taking the vacuum expectation value of the bare Taß on the

* If T.ß can have an improvement term, the improvement coefficient must be renormalized . Later,
we shall see this point for 1104.
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1

	

2

	

n - 2

	

z
V = - 2(n -1)

(
naa~dR~ - (n - 2)~aa aß~ -saa (a

P
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n

	

(P a

1
+ _sapm2(P2 .
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r.h.s . of eqs . (3.25) and (3.26), and expressing the result in terms of the renormal-
ized coupling, the densities must be automatically finite .

Second, correlators of composite operators have extra singularities in momen-
tum space in addition to those coming from the elementary fields . Izenormalized
composite operators, like Taß, have correlations which admit spectral representa-
tions as eq. (3.1) . Extra singularities appear when we interchange the order of
integrations f dIA f d"p H fd"p fdu in order to define correlators in momentum
space. This is not a valid operation . In momentum space, the integral over the
spectral representation is UV logarithmic divergent in four dimensions. Therefore
it must be subtracted one time, i.e . the finite c(s)(IL), related to imaginary parts,
reconstruct the real parts up to a constant .

Examples.

	

Let us recall the actions of a free massive boson and fermion [13,24].
They can be extended to curved space in such a way that they are Weyl invariant in
the massless case .
For the boson we have

n- 2
S = 2f d"x Vg- ga13aa(P aß(P + m2

~0
2+

	

R
(
P2

4(n-1)

The stress tensor is, in the flat space limit,

For the Dirac fermion, the action and the stress tensor read

_ H
+m4),2 4"041

H

	

, HTal3
- - 44'y aa i/l -

V

	

-&a/3 2~ Y aal + m~ec ß~ n

(3.27)

(3 .28)

(3 .29)

(3 .30)

These stress tensors are conserved and, for m = 0, manifestly traceless. Conserva-
tion can be checked, at the classical level, by using the equation of motion. The

computation of the spectral densities involves the calculation of the imaginary part
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of a one-loop diagram. The result for the boson is

Ort`
(it -3)/z

LS(n + 1)(n - 1)m411"-7

	

®(u, - 2m), (3.31)

-3~ 1 --C( 2)( A,???)

	

O(ja - 2m) .

	

(332)

For the fermion we find

c"( g . în) = 21" /212(n + 1)(n -

	

1 -

	

2

	

1

	

0(g - 2m) ,	(3 .33)

.) X 02 + 1)/2
I??

411t`

	

2

	

4111 2

2

	

2m) .
A

	

)

	

il - 1

	

îe

Some remarks are in order.
(é) In the UV limit in -* 0 one finds cc-'' = I for the boson (by convention) and

c( 2 ) = 21" ,12101 - 0/2 for the Dirac fermion [24], where 21" /21 is the dimension of
the Clifford algebra, c(21 = 1 . 2,6, . . . for n = 2,3,4. . . . .
60 The density c(21 is monotonically increasing in tL for the boson in any

dimension and for the fermion if n >, 3 .
(iii) When in ---3- 0 the spin-zero density gets compressed into a delta,

C(O)(A I M)

An-2
-> C(())16G0 I

4m2

	

(it - D/2

4. Natural candidates for a c-theorem

(334)

as discussed before . Moreover, for these free theories one finds c(O ) = c(2) in any
dimension!

Let us summarize the previous section results on the two candidates for a
c-theorem above two dimensions, and introduce the next two sections devoted to
more deep investigations .

(1) The first candidate is C(2), the coefficient in front of the powerlike
behaviour of the spin-two spectral density . This number is well-defined at the CFT.
Nevertheless, it cannot be proven to decrease by simple arguments. The c-theorem
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holds if the quantity

Ac(2) = c(2) - c(2) = lim - lim
C(il)

UV IR

	

,t_3
( ~x

is always positive* . Unitarity of the theory implies that c(2)(,L) > 0, but this is not
enough to establish its monotonicity and, then, the sign of Ac( 2). Therefore, a
c-theorem for c(2) in higher dimensions, if it exists, involves the dynamical proper-
ties of the theory. In this respect, we do not have any general argument to present .
In sect . 5 we discuss a physical interpretation of the spin-two density, which
suggests that this quantity does not measure the response of the theory to
dilatations .
Then, we compute dc (2) for some examples of RG flow in four and 4 - E

dimensions. We find that dc (2) is not positive definite and behaves in a way which
is not clearly related to the known dynamical properties of the theories considered .
We believe that there is enough evidence for ruling out this candidate for a

c-theorem.
(II) The second candidate is c", related to the spin-zero spectral density. It is

given by the limit of the "reduced" spectral density, which is defined away from
criticality

Aliô

	

~n-2

	

du = Ac(°)S(tL) dii (4.2)

The quantity c" is positive, monotonically decreasing along the RG flows and
stationary at fixed points by construction, exactly as in two dimensions . However
we do not know if it has a meaning in the CFT, because (Taß(x)TP.,(0))CF r is
independent of c(° ) for any J x ( . Then c(° ) could be multiple valued for a multicriti-
cal point, because it could depend on which RG trajectory we follow to reach this
point.

Therefore the proof of the c-theorem for c(° ) is missing a better definition of c(° )
at CFT. In sect . 6 we attack this problem in the following way:

(i) The field theory is defined on a (classical) curved space, the hyperbolic space
H � of constant negative curvature R = -a2n(n - 1) . Then a new mass scale a is
present, playing the role of an IR cut-off. By generalizing fhe spectral analysis, the
spin-zero spectral function contains more data anâ preserves its positivity proper-
ties . In particular, the correlator (OO>CFT does not vanish in curved space, due to
the trace anomaly, and the spectral density reads

c"(I.L , a) = r(n)p°at' -28 1, - a n + 1
2

	

)
	( at CFT in hyperbolic space) .	(4 .3)

* It can be shown that the generalization of Zamolodchikov's argument to higher dimension

discussed in ret. [9] reduces to this tautology for the c(')-charge . Namely, the spectral representa-

tion makes explicit the unitarity constraint, which is not sufficient to prove the decreasing of c( 2) .
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his is a well-defined distribution, selecting the massless state at the bottom of the
spectrum (i.e . the Weyl invariant state) . Note that the dimensional factor A` 2 is

replaced by another one made out of the curvature .
ow po is related to the trace anomaly will be discussed at length . In particular,

in four dimensions we show how the two spectral measures at the conformal point
correspond to the two structures in the trace anomaly.
GO In the second part we discuss the conditions which allows to take the flat

limit in a careful way, such that po is related to the ill-defined c". In particular,
for free bosonic and fermionic theories in 2, 3 and 4 dimensions (probably any) we
prove that cko ) = po . However, a simple argument relating these two numbers for
any interacting theory was not found. Moreover, c(O ) * po in the case of the O(N)
model in three dimensions, for large N.
Therefore this approach was so far unsuccessful . Nevertheless, we think the idea

of gong to curved space is worth discussing .

5. St

n = 4 -,E,

%C -Eg-
1 2 + jg3j
29

9 3E .

f teal-

	

used

	

esl

A,4

t us turn our attention to the spin-two spectral density c(2)(ß). First we give
some physical intuition on this quantity, following ref. [22] . Then we discuss the
relation between c(2)(IL) at CFT and the trace anomaly at n = 4. We prove that the
charge c(-) is equal to the coefficient of one term in the anomaly, the so-called
F-term, F being the square of the Weyl tensor [13] .

ext we study nontrivial examples for the RG flow of the charge c(2 ) by means
)of perturbation theory. The comparison of c(2u

	

and c(2) is consistent with theV IR
perturbative approximation if the theory possesses a "close" IR fixed point, i.e . in
the perturbative region. This is the case of the k(P4 theory in n = 4 - 6, which we
examine in detail . Let us summarize our results as follows

C(2)(g) = 1 - __~_g 2 + O(g 3~ eg2)~
1"

®c(2) = -5 %2 > 0 ~
324

The nontrivial zero of the beta function gives the IR fixed point g* = O(E) << 1
[1] . We have computed C(2)(g ) to the lowest nonvanishing order, and obtained

®C(2) = CUV
(2) _ C(2)

IR

	

'
= _(2)(	= 0) _ C(2)( g (52)

We have found A C (2) > 0 in this case, i.e . decreasing along the flow . However, it is
not stationary at the new fixed point, dc(2)/ag I g . :A 0. This suggests that the
spin-two spectral density does not feel the behaviour of the theory under scale
transformations.
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In other examples, we find that c(2) is not stationary as well, and moreover it is
increasing along the flow . We use the perturbative calculations of the n = 4 trace
anomaly, existing in the literature for QED [25], pure QCD [26], and QCD with
fermions [11] . The general relation between this anomaly and c(2), proven in
subsect. 5.2, gives the first perturbative correction c(2)(a) = c(2)(0) + coast. x a for
all these theories in four dimensions . This form of the leading perturbative term is
unchanged for n = 4 -,E, where some of these theories have a flow to a close fixed
point . These results are summarized as follows (see later for details) .

QCD (SUM colours, f quarks,
f=IIN12-k,k-1,N»1)
n=4

a2 a 3
8(a)

	

3k
4~r

+ 25N2

	

2(4Tr)
a* 4 k

	

a*

	

3
47r

	

75 N2

	

41r

	

22Cv
E

c(2ka) = O(N2 ) 1 + coast. x
a

)

	

1

	

c(2ka) = 12n, 1- 2-~°Cv
a

4Tr

	

4zr
(2) =

	

2

	

k ) .'~o

	

1

	

&(2) = - ~T
(_ N

70 a
n = 4 -,E

	

c(2~(a) = 18+-3 47r'
8 a2

ß(a) = -Ea + 3 4-rr'
a*

5.1 . PHYSICAL MEANING OF c(2)(W)

* O = 0 is assumed at CFT, i .e . at short distance .

Pure QCD (SUM colours,
Cv =N, nv=N2 - 1)
n =4-E

QED (one fermion)

®c(2) = - 3jE < 0

TAvT = TP.v - (1/n)3Ave .

a2
- Ea - 32Cv 4,ir

_ 3E.

	

(5.4)
4'r

These three examples display an increasing c(2) function along the RG flow .
As a conclusion, the behaviour of the c(2) density along the RG flow is not

completely constrained by unitarity . Examples in 4 and 4 -,E dimensions have
shown that neither the dynamics constrains it .
We consider this enough evidence to reject c(2) as a candidate for the c-theo-

rem.

Above two dimensions, the charge c(2) parametrizes the leading short-distance
singularity of (TAv TP,), which only has traceless components*
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This generates reparametrizations which are orthogonal to conformal transforma-
tions, i.e . x" --*x" + ~" such that d"~" - tR ,"~` - (21051"d - 0, called shear
transformations, which exist above two dimensions.

In ref. [22], the following physical application was given. For systems defined on
finite geometries, the two-point correlators have an anisotropic correction
paremetrized by C(2). As an example, let us suppose we take periodic boundary
conditions, of period L, in one direction, whereas the other directions remain
infinite . Then, the correlator of a scalar field OW has a correction 0((j x 11L)") << I

( XO) 1

(~b(x)0(0» =

	

1

	

1 -
A

VA
IX1

	

il=-, (XT
i X i2 .1

	

121

	

( L )

	

.e'
I . . . 1 . (5 .5)

infinitesimal change of L is equivalent to a shear transformation of coordi-
nates, which couples to T T_r and affects <0,0> by the operator product expansion

The charge c42 enters as a coefficient of the anisotropy correction, in
combination with the finite-size free cinergy, F/Volume - -AIL" . This gives a
practical way to compute C(2) in physical systems or in computer simulations .

n the other hand, the trace 19 generates dilatations and the RG flow describes
how the theory responds to these transformations. A decreasing C(2) along the flow
would mean that the behaviour of the theory under shear transformations is
related to those under scale transformation in a way independent of the theory .

5.2 . RELATION TO THE TRACE ANOMALY IN FOUR DIMENSIONS

The central charge parametrizes the trace anomaly of CFTs in two-dimensional
curved spaces

T2cR,

	

(n = 2),

	

(55)12

where R is the scalar curvature .
It is remarkable that a similar relation holds in four dimensions between the

trace anomaly and the spin-two spectral density at CFT. The trace anomaly can be
written as*

1<0> = -(-3aF + -yG),	(n =4),

	

(51)2880

where F is the square of the Weyl tensor and G is the Euler density j Cg G (x X,

F = C2
VP01

	

AR 2
VP0-

	

A

	

Il-2R 2v +
3-' R

2
,

	

G = R2vPO, - 4R92~, + R2 . (5 .8)9

*Two other terms cannot appear . R2 is forbidden by the Wess-Zumino consistency condition of
Weyl covariance of the effective potential r. AR can be put to zero by adding a local term to r ;
moreover, it does not appear in the integrated anomaly [24] .
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In the following, we shall show that

a = C (2) .

	

(5 .9)

The values of a and y have been computed for various theories. For free
particles of spin 0, 2 (Dirac) and 1 they read [13]

Indeed, the numbers for a agree with the ones previously given for c(2) for bosons
and fermions. We have also checked the value c(2) = 12 for the massless vector by
an analogous one-loop computation . Moreover, a further item of agreement is
found in the context of the E-expansion of the AO' theory (see next section).
For two-dimensional theories, the proof of eq. (5 .6) [27] goes as follows : (i) take

a metric variation of <09> and obtain a contact term for 09i9>, (ü) check
consistency with the short-distance behavior of <TT> using the conservation law.
Note that comparison of contact terms makes sense in a given renormalization
scheme .

In four dimensions, one compares contact terms appearing in 3-point functions
in flat space which are computed in two different ways. We use

r~G = 0,

	

gl.' S

	

~F= 0

	

(n = 4) .

	

(5.l0)
Sgg,v J	Sgft.v J

Therefore a metric variation of the integrated anomaly J V1g<O > only takes
contribution from the F-term, if the variation is traceless . The double variation is
proportional, in the flat limit, to the s = 2 structure IIF22v PO' in eq. (3.1)

1 S 1 S f
~<o>Iflat = -

	

a

	

~;2v P~(a)S(4)(x -Y)
4 âg"(Y) 4 S ~v x

	

1440

*See also ref. [38] .

1 d 2z<O(z)T
t L
v(x)T

f

	

P~(Y)
> .

4V2

The second equality follows from the Ward identity produced by SS =

- (1 /2 V)jC Tl,v Sg'Lv and assuming (i90> = 0 in flat space (Weyl invariance),

a y

boson 1 1
Dirac 6 11
vector 12 62
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tivhich is consistent with (

	

> being purely anomalous . ®n the other hand, a finite
contact term in (

	

) tells us that (

	

> is not scale invariant . Actually, it has a
logarithmic singular contact to

	

with a cut-off dependence A. Its amplitude can
be computed in terms of c~-~ by inserting c(2)(ß) = c(~)~" -3 into eq. (3.1). Then

Notice that we have again co

	

ute

	

t e order of the ~ and p-integrals in order to
uneo`=er the singular contact to

	

and we have taken the ~1 ~ limit in the last
finite expression.

This proves the announced result . The a-term in the anomaly exactly corre-
sponds to the coefficient of the spin-t<vo spectral density in flat space . As a by
product, positivity of the spectral density means that a must be positive .

~.3 . FL~`v ~~ c~'~ tN ~~~ THE®RY

he reno

	

alized ~~`~ theory in 4 - E dimensions is obtained by using dimen-
sional regularization and minimal subtraction [1, 28]. We almost follow the minimal
subtraction sche e of ref. [29] . Details of the calculation are presented in ap-
pendix
The bare action is

The stress tensor reads

1 ~ d
2t~~ d 2

(T~,°(x)Tp~(Y)il~,

a

	

d4p

	

e`p` A2

	

d

	

nz

	

d~2

gev, pcr(

	

)

	

~

	

d112 ~

	

2+

	

2(2~)

	

o p

1
144

	

c(,~

	

~~) ~~( a) S (~~( x

	

Y) ~

	

(5.12)

A oS = ~ d"x ~ 2g~v a~.~0av~0 + 2~OR~0

	

41_

	

~4

+ counterterms depending only on the metric .

	

(5.13)

T~v ~~ 1 Jl o

	

n-2
1~

	

=

	

ij

	

_
n g~vc 4i ~Pô +

	

~o _ 4(n _ 1)

	

(a~ av
_ S~� a2)~Pô (5 .14)

where T~ is the free massless boson tensor of eq. (3 .28) . The renormalized
coupling g is defined by
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where S = V/(27r)n, K is the renormalization scale, Zg and Z are the renormaliza-
tion constants for the coupling and the field respectively. Its flow is given by the
beta function

K dg/dK = Ia( g) _ - Eg - 1 2 + O(g 3) .

	

5.1629

The nontrivial zero of the beta function gives the IR fixed point g* _ - 3E + O(E2).
These preliminaries are already enough to state the result for the charge C(2),

C(2 )(g)=1
5

- 144g2 + ®(g3'Eg2) (n=4-0 .

Notice that the leading correction O(g) vanishes identically for any n. This is
because the theory is free in the large-N limit, where N is the number of
components of cp . Actually, if we consider an N-component field, SPa, a = 1, . . . , N,
with O(N)-symmetric quartic interaction, then c(2) = N(1 + O(1IN)), because the
theory is free to leading order. In the perturbative series, the Feynman diagrams
surviving this limit are multi-bubble diagrams, and indeed they all vanish. In
particular, the leading O(g) term is the two-bubble diagram.
The computation of the O(g2) is rather cumbersome, as it is equivalent to a

three-loop computation . This is performed in appendix B by using the technique of
refs . [30,311 .
The result we have obtained contains some interesting physical information .

First, c(2) is decreasing along the flow

(5 .17)

Instead, the two-dimensional Za~..elodchikoV's c-function is stationary at fixed
points, because the c-theorem eq. (1.3) implies ac/dg -,B in our case of slightly
relevant perturbation, i.e . a function of the type c(g) = c(0) + coast . x (Eg2 + g3) .

We conclude that c(2) is rather different from the two-dimensional c-function .
Let us add some more technical comments.
(i) The leading singularity at order g 2

	

is 1/,E2 . Therefore, the nontrivial
cancellations which take place confirm that c( 2 ) is finite in perturbation theory, as
we argued before .

* Note that the variation along the flow -13 ac( 2)/ag = 0 at fixed points, but this is just a generic
property of finite RG functions .

'ac (2) 5=
C
(2) 2- (2)
UV CIR - 324E (5 .18)

Nevertheless c(2) is not stationary at the new fixed point*

a
c(2)(g)lg* & 0 . (5 .l9)

ag
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00 Invariance of c(' ) under improvement was checked by repeating the calcula-
tion with a non-improved T., actually simplifying the computation.

(iii) Reparametrization invariance was also checked to the order of the computa-
tion.

(iv) There are no IR singularities in dimensional regularization for the massless
theory, for nonvanishing external momentum (see ref. [28]) .
M When discussing the stress tensor, it is compulsory to consider the action in

curved space. Then, we are faced with the existence of an additional coupling, ~0,

ut recall that C(21 is improvement indepen-
oreover, since ~ (the renormalized coupling
(g), the leading UV behaviour does not feel

curvature corrections. Therefore _1c(-
'

) is free of ambiguities. at is left to see is
whether there is a choke of ~0 such that 19 is improved at both fixed points, i.e . if
it holds e = fl(g)W, where W = 9'/4! + . . . is a renormalized field . The answer to

g2 ) we are working on is yes and it is explained in appendix B. It turns out that
~0 = (n - 2)/An - 1), the free theory value, fits the requirements and the corre-
sponding flow of f(g) is consistent with the findings of Li1scher in ref. [32] .

which fixes the improvement of T,,,, .
dent, so it does not depend on ~0 .

associated to ~0 ) does not enter in

S

5.4 . OTHER EXAMPLES OF _W2 s FOR n =4 AND n = 4 - E

n = 4 QCD.

	

Let us consider Quantum Chromodynamics with gauge group
(N) and f quarks (Dirac fermions in the fundamental representation). The

beta function reads

a*

41r

da

	

a

	

( a )2

	

( a )3
K- = J3(a) =a -b,,-

	

b,

	

b2dK

	

4z M 47r

(
b0

	

3= 1k,

	

b

	

25N2 1 + 0

	

k-

	

b2N

Therefore, there is a close fixed point at

4

	

k

	

( k )) .
-
75 N 2 1+0-~ N

(5 .20)

ecall the well-known value of bo = 2 (11N - 2P. If we let N and f be large with3

f= '-2 N - k

	

N>> 1,

	

k - 0(l),

	

(521)

such that asymptotic freedom is close to breaking down, the coefficients bi are [11]

'' N 3 1+0

	

N
( )) .

0-

	

(5.22)6

(523)

Let us compute C(2) in this case . At the UV fixed point, the theory is free, so from
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the table in eq. (5.3) we read

c~~=6n F + 12n v =6N(2N-k) + 12(N2 - 1) =45N 2 1 +O
k
N

	

= O(N2) .

(5 .24)

From the perturbative calculation of the trace anomaly in ref. [11] (see their eq.
(5.12)), and the relation given by eq. (5.9) we get the form c(2)(a)= c(2)(0) +
const.x a/47r. By substituting all the constants, we find

(2) =

	

()

	

-

	

(2)=

	

(2)	-

	

*

	

2
(

	

k®c

	

CÛV

	

CIR

	

c

	

(0)

	

C(2)( a ) = N

	

-2N
) < 0 .

	

(5.25)

Thus, c (2) is not stationary at neither fixed points, moreover, it is increasing along
the renormalization group flow. Therefore the results of ref. [111 provide a
counterexample to the existence of a c-theorem for c(2).

A more speculative argument follows if we assume that QCD is confining and
chiral symmetry breaking takes place at the IR fixed point. The breaking of
SW)L x SW )R to SW)V generates f 2 - 1 Goldstone bosons which are free
in the IR limit (they can only have derivative couplings) . Then we can guess
cÎ2) =f 2 - 1 . The condition ®c(2) > 0 can be discussed as a function of f and N for
large values of f, where the bound is saturated . One finds

®c (2) = c~~ - c(2R) > 0

	

for

	

f< 7.6N .

	

(5.26)

The assumed flow requires asymptotic freedom, i.e . f < -',' N. Therefore ®c(2) > 0 is
verified for the range of parameters which give a confining QCD. It is interesting
that the two bounds are close . However, we should stress that this argument is very
rough*. On the contrary, the previous perturbative calculation stands as a more
solid counterexample .

Aß,4 for n = 4.

	

Let us reconsider our result for c(2) in A04 theory, eq. (5.17). It
is unchanged as we let E -> 0, then we can compare it to the trace anomaly in four
dimensions by using eq. (5 .9) again. Indeed, this anomaly has been computed in
ref. [25] and their result agrees with our one. This is an a posteriori check of our
computation . Had we obtained a stationary charge c (2)(g) = c(2)(0) + Eg 2 + g3, thQ
O(E) terms would have been lost .

* The same argument for confining QED and QCD in three dimensions instead shows a region of
parameters for which .ßc( 2 ) < 0, thus providing a three-dimensional counterexample (Banks and
Shenker, unpublished).
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. Spectral representation on hyperbolic space

6.1 . FIELT? THEORY ON HYPERBOLIC SPACE H �

Let us summarize some basic geometrical properties* . Hyperbolic space is the
maximally symmetric space of negative curvature R = -n(n - 1)a2 and rie-
mannlan metric . It can be embedded in R"' as

2
®t

	

2
1

XA9Aa;$

_ - (X ° ) +

	

(XI.) = -- 2 a
a

where x ° is the auxiliary variable .

	

y picking up an origin OA
= (1/a,00, we

introduce intrinsic polar ordinates

sinh arCx~.)2 =

	

a

where r is the geodesic distance from the origin . The metric is

sinh ar

	

'`

	

,
ds-2 = (dr)

	

+

	

(dfl � _ 1 ) .
a

where W2,,_, )2 is the metric of the sphere S°t - ' .
Since r can grow to infinity, this space is unbounded. Moreover, its size

increases exponentially with the distance, d Vol = V(S" - ')((1 /a)sinh ar)" -' d r,
causing peculiar R properties in the field theory.

This space has a boundary, because it has the topology of the euclidean ball
pL = 1, . . . , n ; ~ 2 < 1), to which it can be mapped by the stereographical

projection

Therefore the boundary conditions at infinity need to be discussed in the fol-
lowing .
As we anticipated before, our interest in a space with curvature is instrumental

for introducing an extra (infrared) scale in our problem, hopefully in a theory-inde-
pendent way, such that a well-defined spectral density is obtained at the fixed
point . This is shown in the first part of this section . As a second step, we are
interested in taking the flat limit . Curvature effects have not a direct physical
interest for us and they complicate the RG flow . Hyperbolic space is the best

* Details are given in appendix C, see also ref. [33] .

cosh ar

2

r = dist( x, o) , (6 .2)

(6.3)

(6.4)
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choice for the first step of extending the spectral analysis, but then it is hard to
disentangle flat physics from it .

In the spectral analysis, we need to class the intermediate states appearing in
correlation functions according to their quantum numbers . A maximally symmetric
space is convenient, because particles and excited states are associated to irre-
ducible unitary representations of the isometry group, and our problem is purely
group theoretical . In short, the Hilbert space has a global meaning . Moreover, the
hyperboloid of negative curvature is better than the sphere, because it is un-
bounded. Then correlators must decay at infinity, as in euclidean space,

< çb(x)O(o)i = (OIçb(0)e-arH«0)h\

i<
0

I
Àt

>I2 e -aar _,, 0,

	

as

	

r --+ oc .

The energy must be bounded below, H I A > = Jl IJ1 >, A > 0, therefore the states in
the Hilbert space correspond to unitary highest weight representations of the
isometry group . They are constructed in the following.

Potential drawbacks of hyperbolic space come from its peculiar boundary
condition and IR behaviour. Free particles are not completely determined by their
actions, because the solutions of the wave equation need a choice of boundary
conditions, and the usual treatment is not sufficient here . For example, there are
two bosons for small mass, i.e . two unitary representations in the Hilbert space
satisfying the same wave equation. The introduction of boundary terms in the
action has been discussed in the refs . [34] .

Moreover, the IR limit on hyperbolic space, r >> I la, is far beyond the curva-
ture scale, which acts as an IR cut-off. Therefore, it is completely different from
the IR limit in flat space, 1/11 << r << 1/a, where you first let the IR cut-off go to
infinity, and then look at distances larger than the correlation length 1/A .
Therefore, on Hn the behaviour of massless states A - a and the phase diagram is
not interesting for flat physics . An exception could be the case of purely massive
theories, like confined QCD, if the mass scale is A >> a, and asymptotic distances
are not considered, as discussed in ref. [15] .

6.2 . SPECTRAL REPRESENTATION

The generators LAB of the isometry group SO(1, n) satisfy the algebra,

LAB , LCD I = 9ACLBD + 9BDLAC

	

9BCLAD
-
9ADLBC 9

and act on scalar fields as follows

[LABIOW] = ( -XAOB+XB aA)O( x ) *

(6 .5)

(6 .6)

(6 .7)
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he Hfilbert space description of the field theory requires the distinction between

the time direction 7, 7 - x", for x" - 0, and space x', i = I,-, n - 1 . Time must

be Wick rotated and unitarity of generators and representations are defined w.r.t .

the pseudo-riemannian signature of anti-deSitter space. Therefore we seek for

unitary h.w. (highest weight) representations of the group Sß(2, if - 1), more

precisely its universal covering . The generators are divided as follows

Lij

	

LIJ

	

rotations

	

(Lij ) - SO(n - 1),

boosts

Lo, ~ Pi = -Pil	momenta

	

(Lij , Pi, Bi, H) --), SO(2, it - 1) .

hamiltonian,

orations and boosts form the Lorentz group, then particles have the usual spin
quantum number s. The hamiltonian and the momenta generate pseudotransla-
tions, which mLx with Lorentz transformations. Highest weight representations are
built by applying lowering and rising operators

r2 (

to the highest weight state I A>, defined by

HJA> = AIA>,

	

LiJA> = 0,

(Lij, Bi ) ---i, SO( 1, it - 1) ,

+ P.),

	

[H, Li ] = -L i 5,

	

[ H, L_,~J = LTi ,1

(61)

Lij lA> =p~ij')JA>,

	

A = a+ (n - 1)/2 .

	

(60)

Therefore the mass quantum number is replaced by a. The representations are
unitary for a > max( - (n - 1)/2, - 1) and a- = - (n - 0/2, corresponding to the
vacuum
The quadratic Casimir is C2 = - -12 LAB L

AB, with eigenvalues

C247 ) = 0'
2 -

( n

2

1 )2

+ s(s + n - 3) .

When it acts on functions, it is represented by the covariant laplacian A =
- V7A V71, = - a 2

C2. In the scalar case, this can be checked by using eq. (6.7) . It
follows that the projector Y,, () on h .w . representations of weight a and s = 0
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can be represented as a sum of scalar wave functions, as we did in appendix A for
flat space. Similarly, by inserting this projector in the correlator of general scalar
fields, the spectral representation on Hn was derived in ref. [14] .
Here we give a straightforward derivation by using group theory, which avoids

reference to the wave equation, and discussion of boundary conditions . o
ambiguities appear in the spectral representation . In appendix C, we derive from
group theory the correlator of the scalar particle (p,, of "mass" o,, by summing up
the intermediate excited states

<~~(x)~~(o)> = <OIe,(o)e -arHP,~
(0)Io> = <OI ~p,(o)e-aRH

= I<OI (P
O,(o)IU>I2G(cr, r) .

The constant of proportionality above is the projection of the scalar state on the
h.w. state lo, > . By using the Casimir operator, one can check that this correlator
satisfies the wave equation, whose normalized solution is

1

	

a2

	

, (n-2)/2
G(a, r) =

	

Q(n~~i2(cosh ar),
T(n/2) V ~ 2 e", slnh ar

A +a 2

	

U2-
( n - 1 )2

	

S(n)( x)
2

	

~,g- (-x )

where Qv(z) are associate Legendre functions [35] . Notice however that there are

two unitary solutions for Jul < 1, differing for the behaviour at infinity (see later
also).
The derivation of the spectral representation for the correlator of a general

scalar field A(x) is now easy to obtain . The sum over all h.w. representations gives
a resolution of the identity

I= f

	

d
h.w .s . of SO(2, n -1)

to be inserted in correlators. The spectral representation is therefore

£r .$ =®(PO,(o) >

(6.10)

(6.12)

<A(r)A(o)) = f daPA(o-)G(a, r),

	

(6.l3)

where pA(o-) = E(a) l < A(o)la, (a)>
12 is the projection on the h.w. state, possibly

summed over other quantum numbers (a) which we do not need explicitly .
Next we represent the spin-zero part of < T,, �(x)T,,(0)> . The Lorentz structure of

the state l T,,,,(x )> is obtained by acting with the covariant derivative G,,, on a scalar
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state and requiring conservation

Cale) a (n - 1)(na2 + ®)<~IO> .

	

(6 .14)

Finally, the spectral representation is

<

IT,,> a [T7V
A v+gx.,,(-®`+ (n - 1)a2),I~>>

Plan-? f n+ t

	

do

	

(u)(® +na2 )2G(u, r) .

	

(6.15)
a(

	

2

	

)

Let us now find the form of the spectral density at conformal field theory. Since
0, this correlator should vanish apart from a contract term. Actually, this

happens for the values a = ±(n + 1)/2, for which the differential operator inside
the spectral representation is equal to the square of the wave equation . The
negative value is discarded, being below the unitarity bound and we finally find

n +1
P(ff) =P®8(a-

	

2

(x)e(o)>,=o =

	

,,p®a'`- ;(d + na`)

	

4

	

(at CFT on

	

n) .	(6 .16)

This is the result anticipated in sect . 4 . In hyperbolic space, the spin-zero density
is a delta function at C in any dimension. The number po is the well-defined
charge we were looking for . Let us add some comments.

(i) This delta to

	

is at the bottom of the spectrum, a = (n + 1)/2 . The bound is
obtained by requiring that the dilatation operator D = J dnxCO is well defined
at infinity . It is convenient to map the correlator to the ball D n, where

	

g (x) a
(I - ~2)-n, then

d'=x1

	

g(x1) <O(x1)O(x2)> dnx2

	

g(x2)

r = dist( x 1 , x2 ) .

(ii) The spectral density is in flat space notations

c(°)(g = ua,A,a) dp, = T(n)an -2p 0',
A
- du .
a )

6.3 . EXAMPLE-FREE MASSIVE BOSON

enar e -(Q+(n-1)/2)ar

Let us say something more about the doubling of bosons for low mass. Let uo
label the representation carried by the boson, and a the intermediate mass. The



action (3 .27) specifies the type of bosonic particle through the wave equation, then
one identifies

This equation has two solutions, compatible with unitarity, in the range a-o
min(l, (n - 1)/2). Therefore the action does not specify completely the theory, and
it must be supplemented with a choice of boundary conditions . Actually, the
propagators G( ±qo, r) have different behaviour at infinity. This is clear for the
massless particles, o o = ± -2 , because the theory is Weyl invariant and we can
conformally map the propagators to Dn. G(o'o = 2, x) corresponds to Dirichlet
boundary condition on I8Dn, G(oo = - '-,, x) to Neumann one [34]. These are the
two possible boundary conditions consistent with conformal invariance. The con-
formal propagators have an explicit form,

I-I 1

	

a2 (n-2)/2 a2 (n-2)/2
n

G(± 2 , r ) = V(n - 2)

	

2(cosh ar - 1)

	

2(cosh ar + 1)

Dn 1a2
(n-2)/2 1

V(n - 2) ( 4

	

-

	

2
-(1

	

~

	

z (n-2)/2 + 1

The Dirichlet b.c . on Dn corresponds to fast exponential decrease at infinity in H n,
G(1/2, r) - exp(- nar/2), faster than the growth of the volume element

	

Vol
exp(- (n - 1)ar/2).

	

The Neumann b.c .

	

gives a slower one

	

G(-1/2, r)
exp( - (n - 2)ar/2) . In absence of further physical intuition, both choices of
boundary conditions are possible . In the case of the Neumann particle, certain
quantities may need boundary terms to correct their behaviour at infinity .
Let us compute the spectral representation (6.15) for the massive boson. For

j x j 0 0, (00> can be computed as in flat space

(00> = 2m4V 2G 2 (uo, x)
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n( n - 2)

	

m2
M2 -

	

4

	

a2 - a2C2(60) ~
a2 = 47Ô - 4 -

	

(6 .17)

(6.18)

2a4(U.2

	

_1 )2

	

a2

	

n-20 - 4

	

(n-2)/2
z

	

~ 2e
~~

sinh ar

	

(Qoo_ 1/z (cosh ar)
)2 .

T(n/2)

	

(6.19)

The spectral density can be obtained by comparing this equation to eq. (6.15).
Unfortunately, we do not have a simple way to invert the spectral representation in
curved space. The Fourier space of the hyperboloid has been introduced in refs.
[33,14], but it is not easy to handle . Nevertheless, p(a, o--O ) can be obtained in odd



dimensions, because G(a, r) is an elementary function . For example, in three
dimensions

and
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a
G(o,-O,

r

	

- Vsinh ar e

	

'

(2oro)2- 1
p(a, at) ) = 4F, S(a - 2o,(j - 2k - 1)

[ (2k + 2aO + 1)' - 4

	

(6.21)

e shall mainly consider the bosonic theory with the Dirichlet b.c ., which exists
for '-, < a < oc, and allows to consider the RG flow in the massive phase. The
massless limit is at, -~ ; +'E

in agreement with our previous claim in eq. (6.16). Therefore we have computed
po = 1 for the boson, which fixes our conventions . Here are more comments.

(i) For ai, -~ ; + -, the intermediate state contributing to po is iiîe two-particle
state of lowest energy A = 2rl l,, i.e. Q = 2a(, + Oz - 1)/2 . This is true in any
dimension. Then po can be computed from the matrix element 0 (2A ojO

>12 (X

KA1110 01 1)1~>1' by group theory in the appendix C. It follows

po = 1

	

(boson, any n ) .

	

(6.23)

(ii) In the cases of the "irregular" Neumann boson -1 < ao < - '-, , and the
` ` iachyons" la-0 1 < '-, , p( ~) has states below the bound a > (n + 1)/2. Then the
dilatation operator I) is not well defined at x, it probably needs a boundary term,
to be included in the action . We do not develop further this point here, and refer
to the literature [34] . In the following, we shall consider theories for which the
bound can be respected .

(iii) Nevertheless, 0949) makes sense for the Neumann particle, and it takes the
same value in the massless limit, computed as before,

2 PO = 1 (Neumann boson, any n ) .

	

(6.24)

The fact that po is independent of boundary conditions is welcome. Actually, if
this charge is expected to have a physical meaning in flat space, then it should not
be sensible to long distance effects in hyperbolic space .
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6.4 . RELATION TO THE TRACE ANOMALY

The Weyl variations Sg, =fg,,.v of the effective action define the v.e.v.'s of the
trace of the stress tensor*

By taking a Weyl variation of the trace anomaly in eqs. (5.6) and (5.7) and
comparing the result of the spectral representation (6.16) at CFT, we can relate po
to the coefficients in the trace anomaly. In two dimensions we find

therefore

2V S

	

2V S
(O> = - ~

Sf
log Z,

	

(00) = -
~ g Sf (e>

.

	

(6 .25)
V

(0(x)0(0)icm-=c
V

6(® + 2a2)
5(2)( x)

	

(6.26)
~-9-- 1

Po =c (n = 2) .

	

(6.27)

This important relation motivated our approach to curved space.
However, things get involved in higher dimensions. For n = 3 and any odd

dimension there is no trace anomaly, therefore

09(X)49(0)>Cm-= 0 (n = 2k + 1) . (6.28)

For n = 4, the F-term in eq. (5.7) is Weyl invariant and drops out, while the
G-term gives

V

	

5~4 ~( x)
(0(x)0( 0))cFr = a2y

120
(,A + 4a2 )

	

(6.29)

i.e . poa y/3. These results from the trace anomaly seem inconsistent with the
spectral representation giving po 0 0 in any dimensions, and it is known for the
n = 4 boson that po = y = 1 [131 . The solution of this puzzle is as follows

(00> = f da (0,90,, 00> + (00>contact-)

	

(6.30)

where the last term is a contact term O(a'I -2) which exists in hyperbolic space for
n > 3. It cannot be seen in the spectral representation, because it does not
correspond to propagating intermediate states . At CFT, it has the same form as

* These definitions are consistent with conservation of T.., .
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the spectral representation in eq. (6.16),

careful analysis of the case of bosonic theory in three dimensions supports this
interpretation. The heat kernel can be found explicitly and a renormalized effec-
tive action o 3 can be derived, paying attention to contact terms . By taking its
variations one finds

S(n~
( x)

<0

	

>contact =ap,An(® + na 2 )°

	

-

	

(6.31)6

> =0, lim (00) = 0 .

	

(6.32)
an -

erefore p,= ®p. for n=1 For the boson in n=4, one has 3(p,,,+po)=
3p, + 3 = y = 1. This contact te can be thought to arise from a local term in the
effective action

Se --). Scn - PC

	

V2(11 A- 2
®r

	

rt - 1

	

n
n-2fCR .)( ) (6.33)

This in turn implies that PC also contributes to the spin-two part and can be
computed independently. For n > 4 additional local terms with powers of the
iemann tensor can appear . We have computed the bosonic trace anomaly for

higher dimensions n = 2k, and found that it has nontrivial coefficients in the
normalization of po = 1 . This fact indicates that the relation gets more and more
involved . For the Dirac fermion in four dimensions the numbers are po = 6,
PC =-3~Y=11 .

Note that po > 0 by positivity of ~ 0(x)49(0)) for I x (

	

0, while the sign of purely
contact terms is arbitrary . Therefore we cannot prove that y > 0, even if it seems
to be so in known examples (see the table in subsect. 5 .2) . Hopefully, further
conditions exist, relating pc to po. In such a case, po would be related to the
anomaly, which is a short-distance property of the field theory in curved space .

6.5 . SUM RULE HYPOTHESIS ON HYPERBOLIC SPACE

Let us discuss the possibility of a c-theorem for po and its relation to 0°)
defined in flat space in sect . 3 . po is a well-defined positive number of CFT in
curved space, but its RG flow is not simple, due to the extra dimensionful
parameter of the curvature . In this section we present a possible way to avoid the
curvature dependence . If it holds, it also implies poi = c(° ) by taking a careful limit
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to flat space . Recall the form of the spectral density

(	A)

	

( A )(

	

n +1 )

	

(	A
Pu,a =Po ~ & U- 2

	

+P1u~a

where we singled out the state at the bottom of the spectrum . At fixed points one
finds

A ) = (P0)Uv& (

	

n +1
Ala--O ( a

	

2

lim P
J0~,
-
A ~

_ ( Po IR

	

la,-
-

n/a --

	

a

	

2

	

f

(6.34)

(6.35)

Note that in presence of two scales, A and a, there are no scaling arguments
relating these two limits. However, in two dimensions, we just proved that po = c,
thus there should be a hidden relation . This suggests that the sum rule is actually
independent of the curvature scale

s
-a

	

= f

	

dup (u,-

	

=cuv

	

(n=2) .

	

(6.36)
3/2

Actually, s(A /a) is equal to cuv as Ala -3- 0, the UV limit, where the density
reduces to a delta, eq. (6.35), and also in the opposite regime A/a --3- X, the flat
limit! We do not have a general proof of this fact . We have verified it in the case of
free massive bosons and fermions.
Remarkably enough, a similar sum rule exists for these free theories in higher

dimensions

A
cuv = f

	

dup u, a
),,
f(u),

	

(6 .37)
(n + 1)/2

independent of A la, for free massive bosons and fermions, where

�

	

T(n)
f(U) = ,

	

n -3

	

n -5

	

n -3

	

(6.38)

2

	

Q+ 2 . . . c- 2

It was explicitly checked for n = 3, 4, and probably holds far any n. Our calculation
used rather nontrivial identities of Legendre functions (see appendix C). The
three-dimensional case can be verified by using the formulas given before .
This RG-invariant sum rule is a sufficient condition for the correct definition of

c(° ) at CFT, as a limit of a quantity defined in curved space. If .f(a) is the same for
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any theory, as for the free ones, then c(o ) satisfies a c-theorem . Otherwise po
satisfies a c-theorem, but Apo has only a qualitative meaning in flat space physics .
These speculations take the form of a sufficient condition .

Sucient condition .

	

Let us suppose that there exists a positive function f(a)
(normalized by f n + 1)/2) = 1) such that the following sum rule holds:

(iii) in the flat limit

	

-,, ocwith

	

^p,

	

._ aa and .1 * 0 finite, let f( cr) -> b/un - -

h
A

	

^

	

b

	

c(o)(g , A )
PI ~~ a

	

f(u) do,--->
T(n)

	

p,"-'	d~

(iv) In particular Apo = (b/F( ;O) Ac(° ) . If f(a) has the same asymptotic behaviour
for all theories, this implies the c-theorem for c(°) in flat space. Actually, this is
equivalent to eq. (6.40). In the case of free massive bosons and fermions for
it = 2,3,4. this yields (po)uv = (c(o))Uv .

(6 .41)

aof.. If the sum rule holds, it can be computed at any point of the RG
trajectory, exactly as it happens in flat space. Take A -+ 0, in this limit p(a . , A/a)
reduces to the lowest delta-term, and (i) follows . For A > 0 we can write the sum
rule as

A

	

x

	

A ) ^

	

( A ) .
(PO)UV = Po

	

+ f

	

dop U,

	

f (a~) >Po

	

(6.42)
( a )

	

(n+ t)/2+e

This bound goes to the limit A -4 oo, where the massive states decouple, and (ii)
follows, because (PO)UV > P°(°°) - (PO)IR*

Let us now consider the flat limit off criticality, A

	

0. p is a collection of deltas
at values g = (n + 1)/2, p = O(A) + ka, . . . . As a -~ 0, the massive states stay at
finite distance from the massless one, and form a smooth function times the
asymptotic behaviour of 1(c)

A

	

^

	

Pt(gla , A)an -3

~

	

.dup Q,
a

	

f(u) -~ dg Po(°°)S(~ - ®(a)) + aiô b

	

n-2

	

(6.43)

Then point (iii) follows, and ®p,-) = (b/T(n)) Ac(° ) .

x
s
(

= ar p a,
~ f(a) is independent of , (6 .39)

a 2 a
a

then
(i) s = (Po)UV,
(ii) the c-theorem holds for

(PO)UV > (PAR 1 (6.40)
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6.6 . THE O(N) Q-MODEL IN THREE DIMENSIONS

This theory provides a counterexample to the previous hypothesis that the sum
rule holds in a way independent of the theory, i.e . eqs. (6.37), (6.38) with f given by
the free theories . This sufficient condition is too strict . On the other hand, the
possibility that f depends on the theory was not investigated, as well as checks of
the sum rule in four dimensional theories .
The o-model is defined by the bare action

3

SJO,a]=
1

	

d x tp~(® +IL2 tA`+a 0`0`-NtL

	

+
2 f 47r

	

)

	

(	o )

where the Lagrange multiplier a gives the constraint

	

NIL0, and A0 is
the UV cut-off. The theory is solved in the large-N limit by the saddle point
approxim.âüon . The value t, () =A0/F - tL removes the singularity in the saddle
point equation and define the renormalized mass-coupling parameter t, . A phase
transition takes place at u = 0, which separates the disordered phase (I. > 0), from
the spontaneously broken one (tL < 0). These basic facts are recalled in ref. [36].
We have extended the saddle point calculation to curved hyperbolic space. The

form of the action is unchanged, only replace A ->p2 =,I + R/6. In the unbroken
phase, the integration over ¢ gives the effective action

A

	

7r2
s a

	

(P(»
uv

	

N 16

	

N(0.6l685 . . . ) ,	for

The saddle-point equation and the correlator (00> are computable because the
heat kernel has an explicit expression in the three-dimensional hyperbolic space.
The flow to the massive phase A > 0 provides a nontrivial test of the sum rule in
eq . (6.37) satisfied by the free theories . This was checked in two limits

A
s(0) = N(0 .5863 . . . ) ,

	

for - --> 0 .

	

(6.47)
a

N
A°

3
2

3
-Aol~ ,

z

(6.44)

N
Seff[ a] = 2 In det . ,,,( p2 + IL2 + a)

N d3x VF9 1 A0
+ - f -N,Oa(x) +

(
- A0~2

. (6 .45)
47 T,

3

The determinant is regularized by introducing the heat kernel

x dt
In det .1 ( p2 + tL

2 + a) = - f d3x Vg-
f

e_~cp-'+"- (x, x) . (6 .46)
n � t
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he calculation was extended to the broken phase, yielding a rather convincing
picture of the phase diagram in hyperbolic space. This side issue, as well as details
of the previous calculation, will be discussed elsewhere .

60. THE CARRY-OSBORN CONJECTURE IN FOUR DIMENSIONS

These authors have conjectured that the coefficient y of the anomaly might
satisf~, a c-theorem in four dimensions [9-11]. Osborn did a careful analysis of
Tenormalization in the minimal subtraction scheme in curved space. He considered
various RG functions which describe the flow of couplings parametrizing metric
counterterms. Renormalizability of the theory implies consistency conditions for
these functions.

ne among these has an appealing similarity with the Zamolodchikov theorem,
eq. (LA 1101 There exists a function* °y(g i ) of the couplings g' such that Y at
fixed points, and its flow is given by

*Pb in his notation .

d

dt y = -P -Riy

	

-ßdP'Xii - (6A8)

The c4knem follows if X > 0. While in two dimensions V is positive definite by
construction, Osborn's metric is not. This approach misses the main ingredient of
unitarity and is, in some sense, complementary to ours. Nevertheless, Candy and
shorn provided examples of theories in which V > 0 in lowest order of the

perturbation expansion . These are (i) QCD with a close fixed point, discussed in
subsect. 5 .4, for which Ay = Ay = 000 > 0; GO bosonic theory with a slightly
relevant perturbation A0, dim A = y << 1, such that it also possesses a close fixed
point in four dimensions, at A = O( y ): 'A y = 0( y 3) > 0.

Moreover, X > 0 was also checked to lowest order in the theories A04 and QED,
which do not possess a close IR fixed point . These cases are less convincing
because X can change sign in higher perturbative orders, and nothing can be said
about the monotonicity of the flow of y.

In summary, there are positive examples supporting this conjecture. In the light
of the discussion in the previous section, the quantity which is manifestly positive
and analogous to the two-dimensional case is po , not y. The problem of contact
terms hides the relation between these two numbers . No relation was yet found
specific to four dimensions, nor nontrivial examples for the flow of po .

It is an open possibility, that the positivity conditions for the Candy-Osborn
conjecture might be found by generalizing the spectral representation to other
curved space-times possessing anisotropy. This will be discussed elsewhere .
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Note added in proof

Positivity of the coefficient a in the trace anomaly eq. (5 .7) was already proven
in ref. [39], by an argument similar to the one in subsect. 5 .2 . We thank M. Duff for
informing us of his result .

SPECTRAL REPRESENTATION

Appendix A

The Lehmann spectral representation of a two-point Green function amounts to
an expansion in propagating intermediate states [16] . These belong to the physical
Hilbert space of the theory and correspond to the representations of the Poincar6
group. The propagation of states with an intermediate mass a is given by the
propagator of a free scalar particle of the same mass.

In order to construct the spectral representation of a two-point correlator we
shall proceed in three steps : (i) find a basis of the Hilbert space of the theory,
(ü) use it to produce a resolution of the identity and (iii) insert this resolution of
the identity in the correlator.

Let us consider an n-dimensional space-time with euclidean signature. The
Hilbert space is made of eigenfunctions of the Laplace operator, ® =

®Ip,tL> = -tL2 1p,tL>,

	

0"'(x) = (xip,O,

	

(A.1)

where we use minkowskian quantum numbers pa = (p, p� _ -ipo = -i p2 + g2 )

with positive energy . These eigenfunctions form a complete (n - '-)-dimensional
basis of the Hilbert space

H

H
a

dn-lx 4p
ll,P(x'

	

Xn)
ax"

(
pg,4( X '

Xn)

	

Scn-D(p - q),

	

A.2

a
f dn-'p

	

,L,n(y,
Xn)

axn (pp,p(x
'

	

X n) _ 16(n - ')(x

	

y) ,	(A .3)

eixp+x" p`+9. 2
n

(2V/p

	

+A (2Tr)

	

)

where we have singled out an euclidean time direction x", and the reflection of
the euclidean bracket is ~ p, AI x ) _ 0,*, p(x, - x").
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This space gives a unitary (highest weight) representation of the Poincar6 group
ISO( l, n - 1) . The momentum operator acts as P. = - i .3. and the eigenvalue of
the Casimir is p2 = .,I = _ tt2

. Therefore, the projector on representations of
squared mass ~LL

2 is built as

sum over all the representations of the Poincnr6 group gives a resolution of
the identity

which can be inserted into correlators.
As a first exercise, the propagator of a free scalar particle of mass IL can be

obtained by inserting the projector

	

in the correlation function

= t9( x 0 ) <9(0, x)e"

d'ylp e'Px

(2-,,)
12

	

P
2 + 112

QW aWWOW =

dg2C, (A.6)

) 2e(0) > +« -xo )(9(0)e -7'11 .2A�2e(0, x»
11

(A.7)

he normalization is fixed by { p, g I ~(x)10> = OPL . (x, x") "
Next, let us consider the correlator of an arbitral.y scalar field (A(x)A(O)> .

Inserting the resolution of the identity previously constructed we get

(A(x)A(0)) = f dg
2 <A(X) j"'è2A(O)) .

	

(A.8)

The amplitudes ( .dQ tp, g) and (TWJ p, g) transform in the same way under the
action of the Poincar6 group, which is given by [P, A] = -id,,A and A] =
- i(x, ti,, -x,, (7,)A, for a scalar field A or 9. By acting with P,,L and JA, one can
check that they both have the same quantum numbers . Therefore they are equal
up to a normalization, which can only depend on the invariant quantum numbers,
i.e . t 1lic, Casimirs of the group, mass and spin (s = 0 in this case)

= N(A(x)lp, ju>

	

A ( 'U2) ( 9 ( X ) 1 AU, JU > .

	

(A9)

y inserting this equation in eq . (A.8), the sum over eigenfunctions at fixed mass
reproduces the propagator and the spectral representation follows

(A(x)A(O )> =
J
(dgS NA(g2)I2

G(x,g) = f dg2
PA( ~

2)G( X , A ) . (A .10)
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The function PA('U2 ) is called the spectral density. It has been defined by just
using the Hilbert space of the theory, so it is nonperturbative and finite . Moreover,
if the theory is unitary, it is a positive function .
By expressing G(M, x) in momentum space, the spectral representation takes

the form of a dispersion relation (see ref. [16]) which can be inverted as

PA(lue ) = (1l7r)Im<A(p)A(-p)>Ip-'=- j,. -,

f dg2 e 2
= % dg 2

a+(p2 + lu2)

<A(x)A(0)) = (OIA(0)A(x)10) = (OIA(0)e" A(0)10) (x"<0)

= f d t2 <01A(0),Y,_,2 e 'P.C A(0)10>

where IM f(p 2)IP2= _ t,-' = (f(p2 = - lug - iE) -f(p2 = -U2 + ic))/2i. The analyti-
cal properties assumed in this context correspond, in our derivation, to the
restriction to the positive energy spectrum, i.e . to the unitary highest weight
representations . These, in turn, are sufficient for analysing physical correlators
falling off exponentially at infinity.

A quick derivation . In the previous argument, we have constructed explicitly
the projector on Poincaré representations in terms of wave-functions. This was
meant for pedagogical reasons, but it is not necessary. Actually, we only need their
combination giving the propagator, more precisely the sum over highest weight
representations of given pL . This can be obtained directly, as follows . Let us rewrite
the projector on Poincaré representations as

f

	

d112 f

	

d"p S( p2 + ,,2),5(n)(P -P)®(po) ,

	

(A.12)
Minkowski

where Pa is the momentum operator and p, = (po , p) is its minkowskian eigen-
value. Let us insert it in (A(x)A(0)>, e .g . for x" < 0,

= f d,u2
f

	

d"pe'px8( p2 +I,2)0(po)<01A(0)s(
")(P_p)A(0)10)

Minkowski

(A.13)

The matrix element in the last equation does not depend on x, thus it is a function
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of the

	

asimirs ~,' and s. The integral over p factorizes

~~)
®( P® ) _

	

,a)8-~

	

elp'x

	

x .' .ï'®epllYra S(-Pn + L ..'2 +1% 2 )

er

~.l

	

p

	

-~

	

2~r

	

p; ..~- p z + ~,2

e propagator in euclidean space follows by adding the term for x" > 0. There-
fore we obtain again the spectral representation (A.10), with spectral measure

PERTURBATI~E CAL~HLATIOIvS IN A~~ THEORY

In this appendix, we sketch the perturLû`ive calculation of the spin-two spectral
density reported in subsect . 5.3 . e also show that O = 0 at the IR fixed point, by
a suitable choice of the improvement parameter ~ in the action (5.13) . Therefore
this theory gives a nontrivial example for the improvement hypothesis we made in
subsect. 3.1 .
From the action (5 .13), we set up the renormalization in n = 4 - E dimensions,

using dimensional regularization and minimal subtraction . Our scheme agrees with
ref. [29], chapter 9. The renormalization constants Z and Z~ are defined by

where S = l~/(2-rr)'~ is a geometrical factor and rc the renormalization scale . These
constants are determined by the requirements that (i) they are the sum of poles in
E, and (ü) the two- a:~d four-vertex functions Tc'-~(p2 =K2) and T~~~(p`)~s,P . are
finite as E ~ 0. At the two-loop order one finds [29]

Z

	

1

	

48 E '

	

Zg '=1+ 2 ~ + 4 E '

E /

	

3 g

	

z( 9 - 171
SA S - KS~1___+s ~

	

I
l 2, E

	

4E 2

	

L4E2 E

	

4E2

	

24E

By requiring rc d~.~/dK = 0 one finds the beta function (5 .16) . Feynman integrals

(A.14)

(A.15)

(B .2)
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are computed with the formula

b(a, 8) = f
dqn

(2,)n(g2)«(( P -q )2)P

Sr(2 -E/2) y(a +ß - 2 +E/2)
(p

2
)
2-E/2-u -ß

C~2~(~) - A~ -EE

	

+-f%'1(E)AoA -E + -1 2(E)(A01i ~) 2 .

where y(x) = r(x)/r(2 -,E/2 - x).
Let us notice that there are no IR divergences in these massless diagrams,

because the external momenta provides a cut-off. IR divergences can only appear
at very high perturbative order O(1 /E), (this can be seen by using the operator
product expansion) . Moreover there are no IR divergences associated to mass
renormalization, because tadpoles diagrams vanish in dimensional regularization .
The density c(2 ) is computed by the imaginary part of the correlator

<T(p)T(-p)> as in eq. (3.26), with T given in eq. (5.14) . This has the same
Feynman series as <:(p2 : :(p2 :>, but the T-vertex gives a complicate tensor algebra.
The perturbative expansion of the spectral density is

In this equation, the overaii E is obtained by taking the imaginary part, and _,1 i are
the result of the Feynman diagrams. vanishes, as explained in the text . -'1"2

is

given by 3 three-loop diagrams, naively divergent as O(1/E3). One of these
diagrams, the "cat-eye", is not known in closed form. In ref. [30] it was expressed
as a double series, by using Gegenbauer polynomials . We need it in the form

I(a) = f
dgndkn

a(2 ~) 2n g2( p - q)2k 2(p - k)2((q - k)2)

2

- (P ) -,E -a
S2F(2 - E/2) 2 r(1 - E/2)3

2r(2 - E)y(a)

°` ( - 1)'nr(n+2-E)r(m+n+a+E)
x

n .,n-O m!n!(n + 1 - E/2)I'(m +n +2 - E/2)r(2-m - 3E/2-a)

1

	

1

	

1
(n +a) + (m +n + 1)

	

(m +n +a +E/2)

1
+ (m+n+ 1)(n+2-a-E) '



062

	

A. Cappelli et al. / c-theorem and spectral representation

together with the remarkable recurrence relation [31]

a+ E/2 2 -4a-3E
1(cß)

	

cx-1+E
1(a+1)- «-1+E

b(1,1+a)b(1,1+a+E/2) . (B .6)

Actually, in our diagrams the nontrivial numerator, coming from the T-vertices,
can be simplified with the denominator, leaving three irreducible terms I(a), for
a =,E/2, E/2 - 1, E/2 - 2, and some b-integrals . Then the part of 1(a) singular in
E is computed by a finite number of terms in eq. (B.5). It turns out that this is all
we need. All the algebra was checked with the REDUCE program.
The result is . V, =

	

(1 /0, i.e . the leading and subleading singularities cancel .
Therefore the spectral measure is finite, as expected,

C(2)

	

~

	

=KI-4E
~
(2)( 0),(l " 1-1) ~=

C` 2)(g) = I - ~

	

(

	

1 - i41
g2+O(g''g`E)-

	

(8.7)

Imptot ,enwnt at the Ili f,e point.

	

In discussing the stress tensor, it is compul-
sory to consider the theory in curved space. Then the bosonic theory possesses an
additional coupling ~,, which fixes the improvement term. At the UV fixed point
A t , = 0 the trace

	

vanishes if

In the interacting theory, this parameter gets renormalized like a mass parameter.
scher has obtained [32]

tt -2

4(n - 1)

	

(for

	

A O = 0) .	(B .8)

1 5 g'

2E

	

2 ( E2

	

24E

	

144E

(B .9)

Clearly ~ cannot affect ß(g). at least to low order, because this is determined by
leading UV singularities, but it has a flow in g, and it determines the properties of
O at the IR fixed point . By tuning it, we have a one-parameter family of IR fixed
points, for the theory in curved space.
However:

(i) The spin-two measure is independent of ~, as argued in the text . Actually the
computation of c(2) was repeated with a different choice of ~(), obtaining the same
result .
(ii) There is a unique choice of ~, such that O = 0 at the IR fixed point, to O(g 2 ) .
This corresponds to keeping fixed ~() to the free-theory value, i.e . adding no
corrections in AO, A2

Indeed, by inverting eq. (B .9) with ~O given by eq . (B.8), one finds that ~ is finite
as E --3, 0, i.e . it is an admissible parameter for the renormalized Green functions in



curved space. Analysis of the RG flow also shows that this is the unique perturba
tive form of ~ = ~(g) satisfying the UV boundary condition ~(0) = ~0 .
Moreover for this value of ~0 the bare expression of the trace is

The coupling and the composite field undergo a renormalization, and the result is

where W = cp4/4! + . . . is a renormalized field . This formula is the improvement
hypothesis of subsect . 3.1 . It was verified to O(g 2) in two relatively easy cases.

They are
0 e4
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(B.12)
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(B.13)
E

	

2 E

Indeed these correlators are finite as E -> 0 and proportional to the beta function,
then eq. (B.11) is checked with a renormalized field W. We took the imaginary
part, because correlators of composite fields have additional singularities not taken
into account by conventional renormalization (say <:~P2 : :(p2 :i is logarithmic singu-
lar in the free theory). Therefore eq. (B.11) is perfectly applicable to spectral
functions, which are imaginary parts. They reconstruct finite correlators in coordi-
nate space. On the other hand the real part of correlators in momentum space is
divergent, and it is given by a subtracted dispersion relation .

THE HYPERBOLOID IN n DIMENSIONS

C.1 . GENERALITIES
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O = -EVA .

	

(B.10)

0 = VOW11 ,

Appendix C

The hyperboloid in n dimensions [33), which is denoted as H � , can be covari-
antly described as a hypersurface in n + 1 dimensions

x "x=gA ßx Ax a = -(x")2+(x,)2 + . . . +(x ")`'= -
1
a 2 with

	

x"> 0, (C .1)
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It corresponds to the x" Wick rotation of anti-de Sitter space . It is convenient to
define the covariant derivative on the hypersurface as

It follows that R = -n(n - I)a2, by comparing eq. (C.3) with the form of the
iemann tensor in a maximally symmetric spaces.
There am several intrinsic ways of representing H, Polar coordinates are

introduced by picking an origin OA =(Ila,0 19 and eliminating the auxiliary
variable x'

he curvature is obtained as follows

where V= Vol(S" -1 )

XA
Of =?f

	

X
C

Of .

	

(C2)
XIX

D
1 T'4, TB IXC

	

(XB9AC -XA9BC) ~RABC XD*X *X

1-

( X"
),
=

sink ar

	

X
()

	

cosh ar
V a

	

a

of invariant functions f =f(r) is

where r is the geodesic distance from the origin . The metric is

C.2 . SO(2, N - 1) UNITARY HIGHEST WEIGHT REPRESENTATIONS

r = dist( x, o) ,	(C .4)

dS 2 = (dr) 2 +

	

sinh ar

	

2

(U211-1)
2 .

	

(C5)
a

where (din - 1
)2 in the metric of the sphere S" . We shall also use the variables

z = cosh ar > 1,

	

r =ar = log(z +

	

z
2

	(C .6)

The volume element can be obtained from the metric eq. (C.5) . The integration

f d"xVg7(x) =a -"Vfacdz( Z 2 _ 1)(ti-2)/2
f(z) -

	

(C.7)
0

As indicated in subsect . 6.2, we consider the generators LAB of SO(I,n), the
isometry group of Hw but unitarity is chosen according to the xn Wick-rotated
metric, which is, in standard notations, whose of the group SO(2, n - 1) . We recall
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from the text that the generators are divided into the sets

L ii = -Lii ,

	

rotations,

	

(Lii) --+ SO(n - 1),

Lin --BI-B%,

	

boosts,

	

(L ii , Bi ) --> SO(1, n - 1),

L on = H = H%

	

hamiltonian,

Loi---Pi= -Pit , momenta, (L ij , Pi , Bi , H) -> SO(2, n - 1),

and the lowering and raising operators are

1

	

1
Li ---
T2

(Bi - Pi),

	

Li ---
r2-

(Bi

The highest weight states I A, s > are defined by

HIA, s> = AIA, s>,

	

L i IA, s> = 0,

n-1
Lij lA,s> = prlIjA,s>,

	

A =u+

	

2

IIL~i IA>112 > 0 -), A > 0,

[ H, Li ]

	

-Li ,

	

[H,Vi l

	

LL °"

(C.8)

(C.9)

Then, the excited states are of the form L . . . . Lir IA, s>. We shall be mainly
interested in spin-zero representations, which are indicated without the index s,
IA,O> = IA> .

For s = 0, the unitarity bound on A comes from

112

	

n -3
11 Y,ViVi IA>

	

>0--+ À>

	

2

	

orA=0.

	

(C.10)
i

The quadratic Casimir operator is defined by

C2 = - 2LABLAB = - f'L i~ 1,ii + H2 + Pi-' - BÎ = J2 - L~L i + H2 - (n - 1)H,

(C .11)

where J 2 is the Casimir of O(n - 1), with eigenvalue As + n - 3). Therefore

C2 IA, s> = [ A(A - n + 1) + s(s + n - 3)] IA, s> .

	

(C.12)



666

	

A. AMet al. / c-theorein a"d spectral representation

n scalar fields (b, the L, 4B are represented by the derivatives

[L.4B')O(X) ] = ( _XA 49B +XB 49A)O( X ) =KABOW*

	

(C.13)

Therefore, the Casimir is represented on scalar functions f(x) by the covariant
laplacian, --,Af = -a 2

C2f. This can be derived by using eq. (C.2), as follows

a l

	

A

	

XAXB

	

XB

	

)f= _ IVAVr_ a2p f=

	

K

	

'K.4 ,Rf= -

	

i~~ -

	

aA aB - 11

	

a
B- Af .= 'Af -2

	

X *X

	

X IX

n invariant functions f(r), this has the intrinsic expression

(C.14)

-

	

cosh ar
aI

	

[( Z 2

	

+11Zflf ._If( r )

	

t9,2 + a(n - 1)- r jf= a'-

	

(C.15)
sinh ar

he propagator (6.10) of the scalar field T,, carrying the representation of weight
,k = a + Oz - 0/2 is an eigenstate of the Casimir operator . By applying it as a
differential operator, the wave equation (6.11) can be obtained. Its solution is an
invariant function, therefore the laplacian is given by eq. (C.15), which can be put
into the form of the Legendre equation for z > 1, giving solution (6.11) in the text
[35]

Actually, we should specify the choice of boundary conditions which led to this
solution . As discussed in the literature [15], there is a one-parameter family of
solutions singular at the origin, which reduces to two solutions compatible with
Weyl invariance in the massless case . Therefore, the propagator is not completely
reconstructed by the fact that it is a singular solution of the equation of motion.
We avoid this problem by giving a straightforward derivation of the propagator

based on group theory . We proceed in two steps : (i) construct a scalar state,,
(ii) sandwich e '" between two scalar states . The first step is done as follows . The
general form for a scalar state is

OcJ~p,) ~ ~p,(O) 10>

	

aN V
)N,A>,

N=1

where K= '_-iL j L j and the vacuum 10> is the h.w . state with k = 0. A scalar state
must be annihilated by the boosts Bi , yielding a recursion relation

'I

	

N

	

A +

	

2

n

)
3-n -a

°( - )

	

3-n
N A+-

2

	

+N- I

	

F(N+ I)F A+

	

2

	

EN

(C.17)

aN = -aN-1



The propagator is then obtained as

G(x,A) = <<PAIe-THI(PA>
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=

	

1: laNl2 e -T(A+2N) <AI(K) N(K =)NIA>
N=0

=lao12

la0 l 2 =a'.-2

with the solution of the wave equation (6.11).

r(N+a)r(nr+ n 2 1 1
n-1

T(A)T
(

	

2

n-1 3- n=
laol2 e-;' F

(

	

2

	

, A ; A +

	

2

	

, e-2' ,

	

(C.18)

which agrees, once the normalization is fixed

T(N+1)T(N+A+ 3-n
)

/n1 ~ 3-n (C.t9)
!'/ 2 Il~d +

	

2

	

)
V

C.3 . FIRST TERM OF THE SPECTRAL REPRESENTATION FOR FREE MASSIVE BOSONS

Let us recall that the mass of the free boson is related to the highest weight by
the equation m2/a2 = Qô - ;1 . Let us consider the positive branch cro > '-, , and
compute the first term in the spectral representation of <00>. Since O = ilm4cp2,

the intermediate states in 090) are two-particle states, of the form

> -
00

aNam(K
)NI

Ao> ® (K t ) M lA o>,
N, M=0

(C .20)

in agreement with eq. (C.16) . The lowest intermediate state is the two-particle
state A = 2Ao

(C.21)

This produces the term pOS(A - 2110) in the spectral representation p(A) . In order
to compute po, we need the normalization of the two-particle state in eq. (C.21)
w.r.t . the standard one given in the spectral representation (6.15) . This latter one
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is, fora= 1 and f°

	

®,

where g = (pt - 2)/2 and v = o, - -1. The former one is, by eqs. (C.21) and (C.18)2

u2-

	

n +1 )2 2

An

	

(

	

2

	

( z2

	

QV

	

(C .22)-
110 nV

	

r(2
) (2 e") J£

- Il
r(2,ko + -')

1

	

02) = 2 ja014 .

	

z
2

	

Qfjz) .

	

(C.23)
A - ')A0

I (j)l k AO)k/-L; )

comparing the last two equations and using eq. (C.19), it follows

V

	

2(2oo +11)2

	

F 11 )F2(0+1)
(2 .

In the massless limit ao --* .1 one obtains2

V Po = (n + 1)2n-i

C.4 . SUM RULES INDEPENDENT OF THE CURVATURE

where ji = (n - 2)/2 and vo = 7() - 2'

I=f

	

dnX~fn( x, a) (0( X) 19(0) ) boson
Hn

n
F(2a +

	

+ I

2
ma + n - 1)

(C.24)

(C25)

while the higher states in the spectral representation vanish .
This computation of po can be repeated for the Neumann massless boson,
= - .1, obtaining the same result . In this case, the contribution comes from the2

first excitation of the two particle state, A = 2AO + 2. Other states vanish again,
due to Weyl invariance .

The sum rule, eqs. (6.37) and (6. .'

	

-, was first shown to be independent of 0-0 in
the form of an integral over H,,

Vfmdzf,(z)n

	

vo(4u02 - 1)2
-(QM ) ,	(C26)2

F

	

2)
2?1+1 e 2i7rbL
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The function fn was found as follows . The square of the function Q was
rewritten by using the integral representations 8.715 and 7.137.1 in ref. [35]. Then
the identity in eq. (C.26) was interpreted as a condition on the Laplace transform

1= (4~ô - 1)2J

	

dT e-Z~~T F(T)

	

~

	

F= 2T cosh ~ - 2sinh ~r,

	

(C.27)
0

where F is related to fn by an integral operator, F = Knfn, whose action is
computed by series expansion . The result of cumbersome computations is

f2
1 1 +z

= Q2V2 z Iog

	

2

	

+z- 1

	

,

1
f3 = a 3V 4( ~ cosh T - sink ) ,

	

z =cosh z

1

	

1 +z z -1
f4 =

	

8 z log

	

-
a4V

	

2

	

z+ 1
(C.28)

Note that the leading behaviour at short distance is fn ~ rn, by dimensionality.
These functions can be turned into functions of the spectral parameter f(~) by

inserting the spectral representation (6.15) in eq. (C.26), and using the wave
equation satisfied by G(~, r). The answers are

They led to conjecture the general form of f t in any dimensions in eq. (6.38) .
These sum rules were verified in the case of free massive Dirac fermions

following similar steps . In ref. [37], the co:relation of the fermionic stress tensor
was written as a sum of two terms of the bosonic type,

~OD~fermion =
2lnl21a 2n v0
n a
-	2n-2e2ia~.i,
2

The previous integral kernel was inspected for each term.
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